Skip to main content

Traffic Flow Driven Spatio-Temporal Graph Convolutional Network for Ride-Hailing Demand Forecasting

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12712))

Included in the following conference series:

Abstract

Accurately predicting the demand for ride-hailing in the region is important for transportation and the economy. Prior works are devoted to mining the spatio-temporal correlations between regions limited to historical demand data, weather data, and event data, ignoring rich traffic flow information related to citizens’ travel. However, due to the dynamic characteristics of traffic flow and the irregularity of the road network structure, it is difficult to utilize traffic flow information directly. In this paper, we propose a framework called traffic flow driven spatio-temporal graph convolutional network (TST-GCN) to forecast ride-hailing demand. Specifically, we construct a novel region graph based on point of interest (POI) information to model the association between different regions. Besides, we design a stacked traffic-region demand graph convolutional network (TRGCN) module, which is composed of two kinds of nested graph convolutional network structures, effectively modeling the spatial dynamic dependency between regions. Then, the convolution long short-term memory (ConvLSTM) layer is further adopted to obtain spatio-temporal features. We evaluate the proposed model on two real datasets, and the experimental results show that our model outperforms many state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chai, D., Wang, L., Yang, Q.: Bike flow prediction with multi-graph convolutional networks. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 397–400. ACM (2018)

    Google Scholar 

  2. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  3. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  4. Estrach, J.B., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and deep locally connected networks on graphs. In: 2nd International Conference on Learning Representations, ICLR 2014 (2014)

    Google Scholar 

  5. Fang, S., Zhang, Q., Meng, G., Xiang, S., Pan, C.: GSTNet: global spatial-temporal network for traffic flow prediction. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI, pp. 10–16 (2019)

    Google Scholar 

  6. Ge, L., Li, H., Liu, J., Zhou, A.: Temporal graph convolutional networks for traffic speed prediction considering external factors. In: 2019 20th IEEE International Conference on Mobile Data Management (MDM), pp. 234–242. IEEE (2019)

    Google Scholar 

  7. Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., Ye, J., Liu, Y.: Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. In: 2019 AAAI Conference on Artificial Intelligence (AAAI 2019) (2019)

    Google Scholar 

  8. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 922–929 (2019)

    Google Scholar 

  9. Guo, S., Lin, Y., Li, S., Chen, Z., Wan, H.: Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting. IEEE Trans. Intell. Transp. Syst. 20, 3913–3926 (2019)

    Article  Google Scholar 

  10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  11. Han, Y., Wang, S., Ren, Y., Wang, C., Gao, P., Chen, G.: Predicting station-level short-term passenger flow in a citywide metro network using spatiotemporal graph convolutional neural networks. ISPRS Int. J. Geo-Inf. 8(6), 243 (2019)

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Liu, L., Qiu, Z., Li, G., Wang, Q., Ouyang, W., Lin, L.: Contextualized spatial-temporal network for taxi origin-destination demand prediction. IEEE Trans. Intell. Transp. Syst. 20, 3875–3887 (2019)

    Article  Google Scholar 

  14. Liu, Y., Zheng, H., Feng, X., Chen, Z.: Short-term traffic flow prediction with Conv-LSTM. In: 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6. IEEE (2017)

    Google Scholar 

  15. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2014)

    Google Scholar 

  16. Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)

    Article  Google Scholar 

  17. Rodrigues, F., Markou, I., Pereira, F.C.: Combining time-series and textual data for taxi demand prediction in event areas: a deep learning approach. Inf. Fusion 49, 120–129 (2019)

    Article  Google Scholar 

  18. Tong, Y., Chen, Y., Zhou, Z., Lei, C., Lv, W.: The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: the 23rd ACM SIGKDD International Conference (2017)

    Google Scholar 

  19. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rJXMpikCZ. Accepted as poster

  20. Wang, D., Cao, W., Li, J., Ye, J.: DeepSD: supply-demand prediction for online car-hailing services using deep neural networks. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 243–254. IEEE (2017)

    Google Scholar 

  21. Wang, Y., Yin, H., Chen, H., Wo, T., Xu, J., Zheng, K.: Origin-destination matrix prediction via graph convolution: a new perspective of passenger demand modeling. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1227–1235 (2019)

    Google Scholar 

  22. Wu, W., Liu, T., Yang, J.: CACRNN: a context-aware attention-based convolutional recurrent neural network for fine-grained taxi demand prediction. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12084, pp. 636–648. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47426-3_49

    Chapter  Google Scholar 

  23. Shi, X, Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  24. Xu, J., Rahmatizadeh, R., Bölöni, L., Turgut, D.: Real-time prediction of taxi demand using recurrent neural networks. IEEE Trans. Intell. Transp. Syst. 19(8), 2572–2581 (2017)

    Article  Google Scholar 

  25. Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z.: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. In: AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  26. Yao, H., et al.: Deep multi-view spatial-temporal network for taxi demand prediction. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  27. Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: a generic approach for extreme condition traffic forecasting. In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 777–785. SIAM (2017)

    Google Scholar 

  28. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  29. Zhao, L., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Tran. Intell. Transp. Syst. 21, 3848–3858 (2019)

    Article  Google Scholar 

  30. Zhao, Z., Chen, W., Wu, X., Chen, P.C., Liu, J.: LSTM network: a deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 11(2), 68–75 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiquan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, H., Wang, Z., Yu, Y., Meng, X., Liu, G. (2021). Traffic Flow Driven Spatio-Temporal Graph Convolutional Network for Ride-Hailing Demand Forecasting. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12712. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75762-5_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75761-8

  • Online ISBN: 978-3-030-75762-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics