Skip to main content

Gaussian Soft Decision Trees for Interpretable Feature-Based Classification

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12713))

Included in the following conference series:

  • 2246 Accesses

Abstract

How can we accurately classify feature-based data such that the learned model and results are more interpretable? Interpretability is beneficial in various perspectives, such as in checking for compliance with exiting knowledge and gaining insights from decision processes. To gain in both accuracy and interpretability, we propose a novel tree-structured classifier called Gaussian Soft Decision Trees (GSDT). GSDT is characterized by multi-branched structures, Gaussian mixture-based decisions, and a hinge loss with path regularization. The three key features make it learn short trees where the weight vector of each node is a prototype for data that mapped to the node. We show that GSDT results in the best average accuracy compared to eight baselines. We also perform an ablation study of the various structures of covariance matrix in the Gaussian mixture nodes in GSDT and demonstrate the interpretability of GSDT in a case study of classification in a breast cancer dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/pranavraikokte/braintumorfeaturesextracted.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/Breast+Cancer.

  3. 3.

    https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original).

  4. 4.

    https://www.kaggle.com/uciml/pima-indians-diabetes-database.

  5. 5.

    https://archive.ics.uci.edu/ml/datasets/Heart+Disease.

  6. 6.

    https://archive.ics.uci.edu/ml/datasets/Hepatitis.

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  2. Chang, Y., Hsieh, C., Chang, K., Ringgaard, M., Lin, C.: Training and testing low-degree polynomial data mappings via linear SVM. J. Mach. Learn. Res. 11, 1471–1490 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Dogan, Ü., Glasmachers, T., Igel, C.: A unified view on multi-class support vector classification. J. Mach. Learn. Res. 17, 45:1–45:32 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., Garcia, R.: Incorporating second-order functional knowledge for better option pricing. In: NIPS, pp. 472–478. MIT Press (2000)

    Google Scholar 

  5. Eckart, B., Kim, K., Kautz, J.: HGMR: hierarchical gaussian mixtures for adaptive 3D registration. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 730–746. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_43

    Chapter  Google Scholar 

  6. Frosst, N., Hinton, G.E.: Distilling a neural network into a soft decision tree. In: AI*IA. CEUR Workshop Proceedings, vol. 2071. CEUR-WS.org (2017)

    Google Scholar 

  7. Harville, D.A.: Matrix algebra from a statistician’s perspective (1998)

    Google Scholar 

  8. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015). CoRR abs/1503.02531

    Google Scholar 

  9. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Statistics 36, 1171–1220 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Irsoy, O., Alpaydin, E.: Autoencoder trees. In: ACML, vol. 45, pp. 378–390 (2015)

    Google Scholar 

  11. Irsoy, O., Yildiz, O.T., Alpaydin, E.: Soft decision trees. In: ICPR (2012)

    Google Scholar 

  12. Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6(2), 181–214 (1994)

    Article  Google Scholar 

  13. Kim, B., Khanna, R., Koyejo, O.: Examples are not enough, learn to criticize! criticism for interpretability. In: NIPS (2016)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  15. Liu, M., Chang, E., Dai, B.Q.: Hierarchical Gaussian mixture model for speaker verification. In: Seventh International Conference on Spoken Language Processing (2002)

    Google Scholar 

  16. Maaten, L.V.D., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  17. Magdon-Ismail, M., Purnell, J.T.: Approximating the covariance matrix of gmms with low-rank perturbations. Int. J. Data Min. Model. Manag. 4(2), 107–122 (2012)

    Google Scholar 

  18. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell 267, 1–38 (2018)

    Article  MathSciNet  Google Scholar 

  19. Olech, L.P., Paradowski, M.: Hierarchical gaussian mixture model with objects attached to terminal and non-terminal dendrogram nodes. In: CORES (2015)

    Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Yoo, J., Sael, L.: Edit: interpreting ensemble models via compact soft decision trees. In: ICDM, pp. 1438–1443 (2019)

    Google Scholar 

  22. Zhu, J., Hastie, T.: Kernel logistic regression and the import vector machine. In: NIPS, pp. 1081–1088 (2001)

    Google Scholar 

Download references

Acknowledgments

Publication of this article has been funded by the Basic Science Research Program through the National Research Foundation of Korea (2018R1A1A3A0407953, 2018R1A5A1060031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Sael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoo, J., Sael, L. (2021). Gaussian Soft Decision Trees for Interpretable Feature-Based Classification. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12713. Springer, Cham. https://doi.org/10.1007/978-3-030-75765-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75765-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75764-9

  • Online ISBN: 978-3-030-75765-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics