Skip to main content

Causal Inference Using Global Forecasting Models for Counterfactual Prediction

  • Conference paper
  • First Online:
Book cover Advances in Knowledge Discovery and Data Mining (PAKDD 2021)

Abstract

This research proposes a global forecasting and inference method based on recurrent neural networks (RNN) to predict policy interventions’ causal effects on an outcome over time through the counterfactual approach. The traditional univariate methods that operate within the well-established synthetic control method have strong linearity assumptions in the covariates. This has recently been addressed by successfully using univariate RNNs for this task. We use an RNN trained not univariately per series but globally across all time series, which allows us to model treated and control time series simultaneously over the pre-treatment period. Therewith, we do not need to make equivalence assumptions between distributions of the control and treated outcomes in the pre-treatment period. This allows us to achieve better accuracy and precisely isolate the effect of an intervention. We compare our novel approach with local univariate approaches on two real-world datasets on 1) how policy changes in Alcohol outlet licensing affect emergency service calls, and 2) how COVID19 lockdown measures affect emergency services use. Our results show that our novel method can outperform the accuracy of state-of-the-art predictions, thereby estimating the size of a causal effect more accurately. The experimental results are statistically significant, indicating our framework generates better counterfactual predictions.

Acknowledgments to Turning Point researchers who code the NASS data and ambulance services and paramedics who create and provide that data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadie, A., Diamond, A., Hainmueller, J.: Synthetic control methods for comparative case studies: estimating the effect of California’s tobacco control program. J. Am. Stat. Assoc. 105(490), 493–505 (2010)

    Article  MathSciNet  Google Scholar 

  2. Athey, S., Chetty, R., Imbens, G., Kang, H.: Estimating treatment effects using multiple surrogates: The role of the surrogate score and the surrogate index. arXiv preprint arXiv:1603.09326 (2016)

  3. Athey, S., Imbens, G.W.: Identification and inference in nonlinear difference-in-differences models. Econometrica 74(2), 431–497 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bandara, K., Bergmeir, C., Smyl, S.: Forecasting across time series databases using recurrent neural networks on groups of similar series: a clustering approach. Expert Syst. Appl. 140, 112896 (2020)

    Article  Google Scholar 

  5. Bandara, K., Bergmeir, C., Campbell, S., Scott, D., Lubman, D.: Towards accurate predictions and causal ‘what-if’ analyses for planning and policy-making: a case study in emergency medical services demand. In: IJCNN, pp. 1–10. IEEE (2020)

    Google Scholar 

  6. Bandara, K., Bergmeir, C., Hewamalage, H.: LSTM-MSNet: leveraging forecasts on sets of related time series with multiple seasonal patterns. IEEE TNNLS (2020)

    Google Scholar 

  7. Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., Seaman, B.: Sales demand forecast in e-commerce using a long short-term memory neural network methodology. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019, Part III. LNCS, vol. 11955, pp. 462–474. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36718-3_39

    Chapter  Google Scholar 

  8. Brodersen, K.H., Gallusser, F., Koehler, J., Remy, N., Scott, S.L.: Inferring causal impact using Bayesian structural time-series models. Ann. Appl. Stat. 9(1), 247–274 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chandrasekhar, A.: Econometrics of network formation. In: The Oxford Handbook of the Economics of Networks, pp. 303–357 (2016)

    Google Scholar 

  10. Cleveland, R., Cleveland, W., McRae, J., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6(1), 3–33 (1990)

    Google Scholar 

  11. Lubman, D.I., et al.: The national ambulance surveillance system. PLoS One 15, e0228316 (2020)

    Article  Google Scholar 

  12. Farrell, M.H., Liang, T., Misra, S.: Deep neural networks for estimation and inference. arXiv preprint arXiv:1809.09953 (2018)

  13. Granger, C.W.: Testing for causality: a personal viewpoint. J. Econ. Dyn. Control 2, 329–352 (1980)

    Article  MathSciNet  Google Scholar 

  14. Hartford, J., Lewis, G., Leyton-Brown, K., Taddy, M.: Deep IV: a flexible approach for counterfactual prediction. In: ICML, pp. 1414–1423 (2017)

    Google Scholar 

  15. Hewamalage, H., Bergmeir, C., Bandara, K.: Recurrent neural networks for time series forecasting: current status and future directions. Int. J. Forecast. 37(1), 388–427 (2020)

    Article  Google Scholar 

  16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  17. Imbens, G.W., Lemieux, T.: Regression discontinuity designs: a guide to practice. J. Econ. 142(2), 615–635 (2008)

    Article  MathSciNet  Google Scholar 

  18. Imbens, G.W., Rubin, D.B.: Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  19. Januschowski, T., et al.: Criteria for classifying forecasting methods. Int. J. Forecast. 36(1), 167–177 (2020)

    Article  Google Scholar 

  20. Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: International Conference on Machine Learning, pp. 3020–3029 (2016)

    Google Scholar 

  21. Lim, B.: Forecasting treatment responses over time using recurrent marginal structural networks. NeurIPS 18, 7483–7493 (2018)

    Google Scholar 

  22. Nauta, M., Bucur, D., Seifert, C.: Causal discovery with attention-based convolutional neural networks. ML Knowl. Extr. 1(1), 312–340 (2019)

    Google Scholar 

  23. Poulos, J.: RNN-based counterfactual prediction. arXiv preprint arXiv:1712.03553 (2017)

  24. Rubin, D.B.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psycho. 66(5), 688 (1974)

    Article  Google Scholar 

  25. Shi, C., Blei, D., Veitch, V.: Adapting neural networks for the estimation of treatment effects. In: NeurIPS. pp. 2507–2517 (2019)

    Google Scholar 

  26. Steinkraus, A.: Estimating treatment effects with artificial neural nets: a comparison to synthetic control method. Econ. Bull. 39(4), 2778–2791 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Priscila Grecov , Kasun Bandara , Christoph Bergmeir , Klaus Ackermann , Sam Campbell , Deborah Scott or Dan Lubman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grecov, P. et al. (2021). Causal Inference Using Global Forecasting Models for Counterfactual Prediction. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12713. Springer, Cham. https://doi.org/10.1007/978-3-030-75765-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75765-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75764-9

  • Online ISBN: 978-3-030-75765-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics