
Mining Sequential Patterns in Uncertain
Databases Using Hierarchical Index Structure

Kashob Kumar Roy1 , Md Hasibul Haque Moon1 , Md Mahmudur
Rahman1 , Chowdhury Farhan Ahmed1(�) , and Carson K. Leung2

1 Department of Computer Science & Engineering, University of Dhaka, Bangladesh
2 Department of Computer Science, University of Manitoba, Canada

kashobroy@gmail.com, hasibulhq.moon@gmail.com, mahmudur@du.ac.bd,

farhan@du.ac.bd �, kleung@cs.umanitoba.ca

Abstract. In this uncertain world, data uncertainty is inherent in many
applications and its importance is growing drastically due to the rapid
development of modern technologies. Nowadays, researchers have paid
more attention to mine patterns in uncertain databases. A few recent
works attempt to mine frequent uncertain sequential patterns. Despite
their success, they are incompetent to reduce the number of false-positive
pattern generation in their mining process and maintain the patterns effi-
ciently. In this paper, we propose multiple theoretically tightened pruning
upper bounds that remarkably reduce the mining space. A novel hierar-
chical structure is introduced to maintain the patterns in a space-efficient
way. Afterward, we develop a versatile framework for mining uncertain
sequential patterns that can effectively handle weight constraints as well.
Besides, with the advent of incremental uncertain databases, existing
works are not scalable. There exist several incremental sequential pat-
tern mining algorithms, but they are limited to mine in precise databases.
Therefore, we propose a new technique to adapt our framework to mine
patterns when the database is incremental. Finally, we conduct exten-
sive experiments on several real-life datasets and show the efficacy of our
framework in different applications.

Keywords: Sequential Pattern Mining · Uncertain Database · Weighted
Sequential Patterns · Incremental Database.

1 Introduction

Sequential Pattern Mining is an important and challenging data mining prob-
lem [11,13] with broad applications where the order of the itemsets or events
in a sequence is important. There are many applications such as environmental
surveillance, medical diagnosis, security, and manufacturing systems etc where
uncertainty is inherent in nature due to several limitations: (i) our limited un-
derstanding of reality; (ii) limitations of the observation equipment; or (iii) lim-
itations of available resources for the analysis of data, etc. A large number of
approaches have been introduced in [1,5,7,8] to mine frequent itemsets from
uncertain databases. Algorithms proposed in [3,15] mine sequential patterns in
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uncertain databases. However, in the real world, not all items are equally impor-
tant. For example, in biomedical data analysis, some genes are more vital than
others in causing a particular disease. Weighted pattern mining methods are
proposed in [6,14] for this task. Rahman et al. [12] handle weight constraints in
mining uncertain sequential patterns by maintaining weight and expected sup-
port threshold separately. Thus, it can efficiently mine sequences having high
frequencies with high weights but incompetent to mine sequences which have
low frequencies with high weights or high frequencies with low weights. Besides,
existing uncertain sequential pattern mining methods have some vital limitations
such as: a) generation of a huge number of false-positive patterns due to the prun-
ing upper bounds; b) inefficient maintenance of candidate patterns, which results
in costly support computation; and c) lack of a sophisticated weight upper bound
to mine weighted patterns efficiently while maintaining anti-monotone property.
To address these limitations, we propose multiple novel pruning upper bounds
that are theoretically tightened than respective upper bounds already introduced
in the literature and utilize a hierarchical index structure to maintain potential
candidate patterns in a space-efficient way.

Moreover, with the advent of modern technologies, most databases are dy-
namic and incremental in nature. A large number of researches [2,4,9] have been
successful in incremental pattern mining. But none of the existing uncertain se-
quential pattern mining algorithms are effective in handling the dynamic nature
because running batch algorithms from scratch after each increment is not a fea-
sible solution in the sense of time. To the best of our knowledge, our proposed
technique is the first work to mine sequential patterns in incremental uncertain
databases. In summary, our contributions in this work are as follows,

1. Three theoretically tightened upper bounds: expSupcap, wgtcap, wExpSupcap

to reduce the search space of mining potential candidate patterns.

2. A novel hierarchical index structure, USeq-Trie, to maintain the patterns.

3. A faster method, SupCalc, to compute expected support of patterns.

4. An efficient algorithm, FUSP , to mine sequential patterns in uncertain
database.

5. An approach InUSP for incremental mining of uncertain sequential patterns.

Extensive experimental analysis validates the efficacy of our proposed methods
and shows that our methods consistently outperform other baseline approaches.

2 Background Study

Related Works. Among a plethora of research on sequential pattern mining,
GSP [13] works based on candidate generation and testing paradigm whereas
PrefixSpan [11] follows the divide-and-conquer approach to mine frequent se-
quences in precise databases. PrefixSpan [11] expands patterns by recursively
projecting the database into smaller parts and mining local patterns in those
prefix-projected databases. Uncertain data has gained great attention in re-
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Table 1: Initial Database, DB
Id Uncertain Sequence

1 (a:0.9, c:0.6)(a:0.7)(b:0.3)(d:0.7)

2 (a:0.6, c:0.4)(a:0.5)(a:0.4, b:0.3)

3 (a:0.3)(a:0.2, b:0.2)(a:0.4, b:0.3, g:0.5)

4 (a:0.1, c:0.1)(a:0.3, b:0.1, c:0.4)

5 (d:0.1)(a:0.4)(d:0.1)(a:0.5, c:0.6)

6 (b:0.3)(b:0.4)(a:0.1)(a:0.1, b:0.2)

Table 2: Weight Table
Item Weight Item Weight

a 0.8 b 1.0

c 0.9 d 0.9

e 0.7 f 0.9

g 0.8

cent years [1,6,10,12,15]. Inspired by PrefixSpan, U-PrefixSpan [10] mines prob-
abilistic frequent sequences whereas uWSequence [12] mines expected support-
based frequent sequences with weight constraints in uncertain databases. uWSe-
quence [12] uses expSupporttop upper-bound to prune the mining space of pat-
terns. They use weight threshold as an extra level of filtering which is not aligned
with the concept of weighted support defined in [14] for precise databases. Follow-
ing [14], we introduce the concept of weighted expected support in uncertain se-
quential pattern mining that considers both expected support and weight of pat-
terns simultaneously. Further, researchers proposed various algorithms in [2,4,9]
to handle increments in databases. IncSpan [2] introduces the concept of buffer-
ing semi-frequent sequences (SFS) mined from initial databases which may be-
come frequent after future increments. WIncSpan [4] finds weighted sequential
patterns in incremental precise databases. Despite the promising significance of
incremental uncertain sequential pattern mining in different applications, exist-
ing works are not capable to mine patterns efficiently. Hence, we introduce a
new concept of promising frequent sequences (PFS) to improve the efficiency.

Preliminaries. Let I = { i1, i2,..., in} be the set of all items in a database.
An event ei = (i1, i2,...,ik) is a subset of I. A sequence is an ordered set of events.
For example, α=<(i2), (i1, i5), (i1)> consists of 3 consecutive events. In uncer-
tain sequences, items in each event are assigned with their existential probabili-
ties such as α =<(i2: Pi2), (i1: Pi1 , i5: Pi5), (i1: Pi1)>. An uncertain sequential
database is a collection of uncertain sequences shown in Table 1. Support of a
sequence α in a database is the number of data tuples that contain α as a subse-
quence. In this paper, we follow the definition of expected support (expSup) for
a sequence (items within the sequence are independent) which is defined in [12]
as the sum of the maximum possible probabilities of that sequence in each data
tuple where the probability of a sequence is computed simply by multiplying the
uncertainty value of its all items. A sequence α can be extended with an item i in
two ways: i) i-extension, insert i to the last event of α, and ii) s-extension, add i
to α as a new event. Weight of a sequence (sWeight) is the sum of its each individ-
ual item’s weight divided by the length of the sequence [14] i.e., the total number
of items in the sequence. According to Table 1 and Table 2, for sequence α =
<(a)(b)>, support of α is 5, expSup(α) = max(0.9× 0.3, 0.7× 0.3)+max(0.6×
0.3, 0.5×0.3)+max(0.3×0.2, 0.3×0.3, 0.2×0.3)+(0.1×0.1)+0+(0.1×0.2) = 0.57,
and sWeight(α) = (0.8 + 1.0)/2 = 0.9 as per the definitions.
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3 A Framework for mining Uncertain Sequential Patterns

In this section, we propose a new framework for mining sequential patterns
in uncertain databases efficiently with/without the weight constraints in min-
ing patterns followed by discussing the incremental mining approach when the
database would be of dynamic nature.

Definitions. maxPr is the maximum possible probability of a sequence
α =< (i1)(i2)...(i|α|) > in the whole database [12],

maxPr(α) =

|α|∏
k=1

(P̂DB|αk−1
(ik)) where αk−1 =< (i1)...(ik−1) > (1)

where P̂DB|α(i) = maximum possible probability of item i in a database DB | α
that is the projection of original database with α as current prefix [11]. Moreover,
[12] shows that the maxPr measure holds anti-monotone property. Similar to
maxPr, we define another measure maxPrS(α) as the maximum probability of
a pattern α in a single data sequence S. According to Table 1, the maxPr(<
(c)(a) >) = 0.6×0.7 = 0.54 and maxPr(< (ac) >) = 0.9×0.6 = 0.54; where for
the 1st data sequence, maxPrS(<(a)(b)>) = max(0.9× 0.3, 0.7× 0.3) = 0.27.
We define an upper bound of expected support of a sequence α of length m as,

expSupcap(αm) = maxPr(αm−1)×
∑

∀S∈(DB|αm−1)

maxPrS(im) (2)

Lemma 1. For a sequence α, expSupcap(α) ≥ expSup(α) and expSup(α) ≥
expSup(α

′
),where α ⊆ α

′
; ∴ expSupcap(α) ≥ expSup(α

′
). If expSupcap(α) < a

minimum threshold γ holds, then expSup(α) < γ and expSup(α′) < γ,∀α′ ⊇ α
must be true. Thus it satisfies the anti-monotonicity constraints.

Lemma 2. For a sequence α, expSupcap(α) ≤ expSupporttop(α)3always holds.
Hence, expSupcap(α) significantly reduces the search space in mining patterns
and leads to a smaller number of false positive patterns than expSupporttop(α).

Later on, we define few more definitions where each item has a weight to indicate
its importance. We will be consistent with weighted pattern mining in following
sections. Note that our framework is easily adaptable to mine patterns with-
out weight constraints that is discussed in the experiments section. Following
the concept of weighted support for precise database in [14], we define weighted
expected support of a sequence α as WES(α) = expSup(α) × sWeight(α). Ac-
cording to Tables 1 and 2,WES(<(a)(b)>) = 0.57×0.9 = 0.513. A sequence α is
called weighted sequential pattern if WES(α) meets a minimum threshold. This
threshold is defined to be minWES = min sup×(size of the whole database)×
WAM × wgtFct. Here, min sup is user given value in range [0,1] related to a
sequence’s frequency, WAM is weighted arithmetic mean of all item-weights

3 uWSequence[12] defines the upper bound of expected support as expSupporttop(α)
= maxPr(αm−1)×maxPr(im)× supim where supim is the support count of im.
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present in the database and defined as WAM = (
∑

i∈I wi × fi)/
∑

i∈I fi, where
wi and fi are the weight and frequency of item i in current database. Hence, the
value of WAM changes after each increment in the database. wgtFct is a user-
given positive value chosen to tune the mining of weighted sequential patterns.
Choice of min sup and wgtFct depends on how much frequent and weighted
patterns are required in the respective applications.

However, the measure WES does not hold anti-monotone property as any
item with higher weight can be appended to a weighted-infrequent sequence and
the resulting super-sequence may become weighted-frequent. So, to employ anti-
monotone property in mining weighted frequent patterns, we propose two other
upper bound measures, wgtcap and wExpSupcap, which are used as upper bound
of weight and weighted expected support respectively. Upper bound of weight of
a sequence α, wgtcap(α) is defined as,

wgtcap(α) = max(mxWDB(DB|α),mxWs(α)) (3)

where mxWDB(DB|α) is the maximum weight of all frequent items in the α-
projected database and mxWs(α) is the maximum weight of all items in the
sequence α. To enforce the anti-monotone property of weighted frequent patterns
in precise databases, authors in [4,14] make an attempt to use the maximal
weight of all items in database as upper bound of weight of a sequence. It is
obvious to see that wgtcap of a sequence is always less than or equal to the
maximal weight of all items in database. As wgtcap becomes tighter, it generates
fewer false positive patterns compared to the existing methods.

Lemma 3. For any sequence α, wgtcap(α) is at least equal to the sWeight value
of α and all of its supersequences, α′. Because, wgtcap(α) ≥ sWeight(α) and
wgtcap(α) ≥ wgtcap(α

′
), where α ⊆ α

′
; ∴ wgtcap(α) ≥ sWeight(α

′
).

The proposed upper bound of weighted expected support is defined as,

wExpSupcap(α) = expSupcap(α)× wgtcap(α) (4)

Lemma 4. For a sequence α, if wExpSupcap(α) < minWES, then none of
α and its supersequences can be weighted frequent. Because, wExpSupcap(α) ≥
WES(α), and wExpSupcap(α) ≥ WES(α

′
), for all α ⊆ α

′
.

According to Lemma 4, we can safely define our pruning condition to reduce the
search space of patterns in pattern-growth based mining as follows:

If for any k-sequence α, wExpSupcap(α) < minWES, then searching possible
extension of α to (k+1)-sequence can be pruned, i.e, neither α nor any super
sequences of α would be frequent at all.

Moreover, Lemma 4 ensures that our proposed algorithms do not generate
any false negative patterns. However, as wExpSupcap(α) ≥ WES(α), some pat-
terns may be discovered with wExpSupcap(α) ≥ minWES but WES(α) <
minWES. An extra scan of the database is required to remove them. We have
omitted proof of the lemmas due to space limitation.
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3.1 USeq-Trie: Maintenance of Patterns

We use a hierarchical data structure, named as USeq-Trie, to store uncertain
sequences and update their weighted expected support efficiently. Each node in
the USeq-Trie represents an item in a sequence and will be created as either
s-extension or i-extension from its parent node. Recall that a sequence is an
ordered set of events, and an event is a set of items. In s-extension, the edge
label is added as a different event. In i-extension, it is added in the same event
as its parent. Each edge is labeled by an item. The edge labels in a path to from
root to a node forms a pattern. For example, <(a)>, <(b)>, <(ab)>, <(c)>,
<(b)(c)>, <(d)>, <(cd)> and <(c)(d)> are sequential patterns who are stored
into USeq-Trie shown in Fig. 1. In this figure, the s-extensions are denoted by
the solid lines and i-extensions by dashed lines. For simplicity of the figure, we
are not showing edge labels here. Each node represents a (weighted) frequent
uncertain sequence and stores its (weighted) expected support. Now, we present
an efficient method, SupCalc, to calculate expSup or WES for each candidate
pattern stored in a USeq-Trie.

Support Calculation, SupCalc. It reads sequences from the dataset one
by one and updates the support of all patterns in USeq-Trie against them. For a
sequence α =< e1e2..en > (where ei is an event/itemset), the steps are following,

1. Define an array of size n at each node. For the root node, all values are 1.0.
At a particular node, the maximum expected support of pattern s from root
to that node is stored at proper indices of the node’s array - are the ending
positions of s as a sub-sequence in α. The values at other indices are 0.0.

2. While traversing the USeq-Trie in depth-first order: (i) For a node created by
a s-extension with an item ik, we iterate over all events in α and calculate the
support of the current pattern s (ends with ik in a new event) by multiplying
the probability of item ik in current event em with the maximum probability
in the parent node’s array up to the event em−1. The resulting support is
stored at position m in the following node’s array. (ii) For i-extension, the

root (d):0.81

(c):0.27

(cd):0.0
(c)(d):0.24

(b):0.7

(b)(c):0.2

(a):0.72

(ab):0.49

0.8 0.0 0.9 0.0 0.0

0.0 0.0 0.0 0.3 0.0
0.0 0.7 0.6 0.0 0.0

0.0 0.0 0.0 0.0 0.9
1.0 1.0 1.0 1.0 1.0

WES(<(a)>) = 0+0.9*0.8 = 0.72

0.0 0.0 0.54 0.0 0.0
WES(<(ab)>)

= 0+0.54*(0.8+1.0)/2 = 0.49

WES(<(b)>) 
= 0+0.7*1.0 = 0.7

WES(<(b)(c)>) 
= 0+0.21*(1.0+0.9)/2 = 0.2

WES(<(c)>) = 0+0.3*0.9 = 0.27

WES(<(c)(d)>) 
= 0+0.27*(0.9+0.9)/2 

= 0.24

WES(<(cd)>) 
= 0+0.0*(0.9+0.9)/2 = 0.0

WES(<(d)>) = 0+0.9*0.9 = 0.81

0.0 0.0 0.0 0.21 0.0 0.0 0.0 0.0 0.0 0.27

0.0 0.0 0.0 0.0 0.0

(a:0.8)(b:0.7) (a:0.9, b:0.6) (c:0.3)(d:0.9)

the considering data sequence

<(e1) (e2) (e3) (e4) (e5)>
i-extension
s-extension

Initial WES 
of pattern s

Fig. 1: An efficient way to compute WES of patterns stored into USeq-Trie
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support will be calculated by multiplying the probability of the item ik in
em with the value at position m in the parent node’s array and stored at
positionm in the following child node’s array. After that, the maximum value
in the resulting array multiplied by its weight will be added to the weighted
expected support of the current pattern at the corresponding node.

3. Use the resultant array to calculate the weighted expected support of all
super patterns while traversing the next child nodes.

Fig. 1 shows the resulting USeq-Trie after updating WES for all the stored
patterns against a sequence, α=<(a:0.8)(b:0.7)(a:0.9,b:0.6)(c:0.3)(d:0.9)>.

Complexity of SupCalc. It takes O(N × |α|) for updating N number of
nodes against the sequence α. Therefore, the total time complexity of actual
support calculation is O(|DB| × N × k) where k is the maximum sequence
length in the dataset. It outperforms the procedure used in uWSequence [12]
which needs O(|DB|×N×k2) to calculate a sequence’s actual expected support.
Moreover, we can remove false-positive patterns and find frequent ones from the
USeq-Trie in O(N). Thus, the use of USeq-Trie has made our method efficient.

3.2 FUSP: Faster mining of Uncertain Sequential Patterns

Inspired by PrefixSpan [11], we propose FUSP to mine weighted sequential pat-
terns in an uncertain database. It uses the wExpSupcap measure and SupCalc
method to reduce the search space and improve the efficiency. The sketch of
FUSP algorithm is as follows.

1. Process the database such that the existential probability of an item in a
sequence is replaced with the maximum probability of all of its next occur-
rences in this sequence. This idea is similar to the preprocess function of
uWSequence [12]. This preprocessed database will be used to run the Pre-
fixSpan-like mining approach to find the candidates for frequent sequences.
While processing, sort the items in an event/itemset in lexicographical order.

2. Calculate WAM of all items present in the current database and calculate
the threshold of weighted expected support, minWES.

3. Find length-1 frequent items and for each item, project the preprocessed
database into smaller parts and expand longer patterns recursively. Store
the candidates into a USeq-Trie.

4. While growing longer patterns, extend current prefix α to α′ with an item
β as s-extension or i-extension according to the pruning condition.

5. Use of wExpSupcap value instead of actual support generates few false-
positive candidates. Scan the whole actual database, update weighted ex-
pected supports and prune false-positive candidates based on their WES.

3.3 InUSP: Incremental mining of Uncertain Sequential Patterns

Existing incremental works [2,4] follow the technique to lower the minimum sup-
port threshold by a user-given buffer ratio, µ ∈ [0, 1], and find almost frequent
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sequence called SFS - stating that most of the frequent patterns in the appended
database will either come from SFS or already frequent sequences (FS ) in the
initial database. Inspired by this concept, we use minWES

′
= minWES × µ

to find SFS where minWES
′ ≤ WES < minWES, along with FS where WES

≥ minWES. However, we argue that SFS is not necessarily enough to capture
new frequent patterns in future increments. Let us consider some cases: (a) an
increment to the database may introduce a new sequence which was initially
absent in both FS and SFS but frequently appeared in later increments; (b)
a sequence had become infrequent after an increment but could have become
semi-frequent or even frequent again after next few increments. There are many
real-life cases where new frequent patterns might appear in future increments due
to its seasonal behavior or different other characteristics. Existing approaches do
not handle these cases. To address these cases, we propose to maintain another
set of sequences denoted as Promising Frequent Sequences (PFS ) which are nei-
ther globally frequent nor semi-frequent after each increment ∆DB introduced
into DB but their WES satisfy a user-specified threshold that can be defined as
LWES = γ × µ ×min sup × |∆DB| ×WAM × wgtFct where γ is a constant
factor, to find locally frequent patterns in ∆DB at a particular point. Here, the
globally frequent or semi-frequent implies when considering the size of the entire
database, and locally frequent when using the size of only one increment. Intu-
itively, we can say that locally frequent patterns may become globally frequent or
semi-frequent after next few increments. The patterns whose WES values do not
meet the local threshold LWES, are very unlikely to become globally frequent
or semi-frequents. Thus maintaining PFS may significantly increase the perfor-
mance of an algorithm in finding the almost complete set of frequent patterns
after each increment. Therefore, we devise InUSP to incorporate the concept of
PFS in mining patterns. Instead of performing FUSP from scratch after each
increment, InUSP works only on ∆DB. Initially, it runs FUSP once to find out
FS and SFS from initial database and uses USeq-Trie to store FS and SFS. In
addition, a different USeq-Trie, which is initially empty, is used to store PFS.

After each increment ∆DB, the steps of InUSP algorithm are as follows:

1. Update the values of database size, WAM, minWES, and minWES
′
.

2. Run FUWS only in ∆DB to find locally frequent sequences (LFS ) against
a local threshold, LWES, and store them into USeq-Trie. Users can choose
LWES based on the aspects of application.

3. For all α in FS, SFS and PFS, update WESα using the SupCalc method.

– if WESα < LWES, delete α’s information.

– else if WESα < minWES′, move α to PFS′.

– else if WESα < minWES, move α to SFS′.

– else move α to FS′.

4. Move new patterns α from LFS to PFS′ or SFS′ or FS′ based on WESα.

5. Use FS′, SFS′, and PFS′ as FS, SFS, and PFS respectively for the next
increment.
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Fig. 2: FUSP outperforms uWSequence in candidate generation

Table 3: Runtime (seconds) comparison between uWSequence and FUSP
Sign Dataset Kosarak Dataset Fifa Dataset

min sup uWSeq. FUSP min sup uWSeq. FUSP min sup uWSeq. FUSP
20% 717.69 10.64 0.25% 5942.06 348.32 20% 1615.50 12.73
18% 1116.75 18.34 0.22% 7102.27 443.13 18% 2943.45 25.85
15% 2052.04 32.64 0.2% 8581.56 475.12 17% 4003.97 34.79
12% 4316.43 72.39 0.18% 14622.38 659.30 16% 6114.34 56.05
10% 7275.41 122.94 0.15% 33864.18 1029.70 15% 9033.86 74.95

4 Experimental Results

We have evaluated our algorithms using several real-life and popular datasets
such as Sign, Kosarak, Fifa, Leviathan, Retail, Foodmart, Chainstore, and On-
line Retail from SPMF 4 data repository. We assigned probability and weight
values to the items of these datasets as all of them were precise and none of
them contained weight information. We followed normal distribution with mean
of 0.5 and standard deviation of 0.25 (for probabilities) or 0.125 (for weights) to
generate these values. We implemented our algorithms in Python programming
language and a machine with Core™ i5-9600U 2.90GHz CPU and 8GB RAM.

Performance of FUSP. We have compared with the recent algorithm,
uWSequence [12], which proposed a framework where the definition of weighted
sequential pattern in uncertain databases is different from ours. Furthermore,
uWSequence [12] outperforms existing methods for mining sequential patterns
also without weight constraints in uncertain databases. So, to show the efficiency
of FUSP in mining uncertain sequential patterns without weight constraints, we
have compared FUSP with the current best uWSequence by setting the weights
of all items to 1.0 which brings both algorithms under a unifying framework.
(a) False Candidate Generation: Recall that both FUSP and uWSequence
work like PrefixSpan using some upper bound of actual expected support value
and thus, generate some false positive candidates. From Fig. 2, we can see that

4 http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
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FUSP generates a smaller number of false candidates for any support threshold
as it uses a tighter upper bound. For example, in the Sign (dense) dataset with
15% minimum support threshold, it generates 11 times fewer candidates com-
pared to uWSequence. In Kosarak (sparse) with 0.15% support threshold, FUSP
generates only 79.7% false candidates where for uWSequence, it is 97.4%.
(b) Runtime Analysis: FUSP needs to maintain a smaller number of candi-
date patterns in its mining process and uses a faster method to calculate expected
support of a pattern. Thus, it is a way faster than the uWSequence for any sup-
port threshold. Results shown in Table 3 validates this claim. We can see FUSP
is 50-70 times faster in Sign dataset for different thresholds. Interestingly, the
difference in their runtime increases with the decrease in the threshold parame-
ter. We have found similar results also in other datasets.

Performance of the Incremental Technique, InUSP. We have modi-
fied the current best incremental solution, WIncSpan [4] to work in uncertain
data by replacing the core PrefixSpan-like algorithm by FUSP so that both the
proposed InUSP and modified WIncSpan′ mine weighted sequential patterns
from uncertain database. The baseline approach is running FUSP from scratch
in the whole updated database after each increment. We define completeness of
the result from an incremental solution to be the percentage of patterns found
with respect to the result of the baseline. To use the datasets as incremental
ones, we used the first 50% of the dataset to be the initial part and then intro-
duced 5 increments of random sizes5, unless mentioned otherwise.
(a) Analysis with respect to buffer ratio: Buffer ratio, µ = 1.0 means
no buffer and lower values mean larger buffers to store semi-frequent sequences.
Thus, with lower µ, incremental approaches generate and maintain more pat-
terns which help to increase the completeness of their result. However, due to
local mining in incremented portions and maintaining additional promising se-
quences, InUSP always achieves more completeness than WIncSpan′. For the
same reason, it also requires slightly more time than WIncSpan′. From Fig.

5 For the Retail market-basket dataset, we used the first one-fifth transactions (1st
month) as the initial portion and then 4 increments to represent the next 4 months.
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3 and Fig. 4, we can see the trade-off between completeness and runtime. We
observe that difference in completeness is larger in datasets like Retail and Food-
mart (market-basket) where increments contain frequent items or introduce new
items frequently than datasets like Leviathan (word sequences) where the ini-
tial database contains almost all of the frequent sequences. By repeating this
experiment in other datasets and by varying the support threshold, we find that
though InUSP consumes slightly more time, it outperformsWIncSpan′ in terms
of completeness of result in every dataset for any combination of µ and min sup.
(b) Scalability Analysis: To test scalability we have run InUSP, WIncSpan′

and the baseline approach in several large datasets introducing several incre-
ments. Fig. 5 shows the result for Kosarak dataset with min sup = 0.1%. InUSP
and WIncSpan′ requires slightly more time at the initial point as they have to
find and buffer the semi-frequent patterns for future use. After that, at any point
of dataset increment, both of them take significantly less time to find the updated
set of frequent sequences. Our proposed technique outperforms the baseline ap-
proach in terms of scalability and although it takes slightly more time than
WIncSpan′, the difference is negligible as InUSP provides better completeness.
(c) Varying Initial Size of Datasets: We considered different initial sizes for
this analysis and introduced required number of increments (each sized 50-80%
of the initial size) to use the full dataset. Fig. 6 shows the result in Chainstore
and Online Retail dataset with min sup = 0.05% for both. We have found that
the smaller the initial dataset, the more are the sequences to be found as new
patterns after the increments. The completeness of incremental approaches also
depends on the distribution of items among the increments. As a result, the
completeness of WIncSpan′ is competitive only if the initial dataset contains
sufficient sequences compared to the total size of all future increments. However,
the completeness of InUSP is less affected by initial size as it also mines in the
incremented portions.

5 Conclusions

In this work, our proposed FUSP algorithm can mine sequential patterns in
uncertain databases with or without weight constraints. It uses multiple theo-
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retically tightened upper bounds in pruning technique and hence, generates a
smaller number of false-positive patterns compared to the state-of-the-art works.
Furthermore, the use of a space-efficient data structure USeq-Trie for pattern
maintenance and an efficient method SupCalc for support calculation, has made
FUSP superior to other works in terms of runtime. In case of incremental mining,
the concept of promising frequent sequences lifts the effectiveness of our InUSP
algorithm. The experimental analysis shows that our proposed techniques can be
great tools for a lot of real-life applications such as medical records, sensor net-
work, user behavior analysis, privacy-preserving data mining, that use uncertain
sequential data. We hope that the concept of USeq-Trie structure and promis-
ing frequent sequences will help researchers to design efficient mining methods
in related fields (e.g., uncertain data streams, spatio-temopral data, etc).
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