Skip to main content

Causal Combinatorial Factorization Machines for Set-Wise Recommendation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12713))

Abstract

With set-wise (exact-k, slate, combinatorial) recommendation, we aim to optimize the whole set of items to recommend while taking the dependency among items into consideration. This enables us to model, for example, the substitution relationship of items, i.e., a customer tends to purchase only one item in the same category, in contrast to the top-k recommendation in which the independency of items is assumed. Recent efforts in this context have focused on the computational aspects of optimizing the set of items to recommend. However, they have not taken into account sample selection bias in datasets. Real-world datasets for recommendation have missing entries not completely at random due to biased exposure or user preferences. Addressing the selection bias is important for the set-wise recommendation since methods with larger hypothesis spaces are more likely to overfit biased training data. In light of recent top-k recommendation research that has addressed this issue by using causal inference techniques, we therefore propose a set-wise recommendation model with debiased training methods based on recent causal inference techniques. We demonstrate the advantage of our method using real-world recommendation datasets consisting of biased training sets and randomized test sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Austin, P.C.: An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar. Behav. Res. 46(3), 399–424 (2011)

    Article  Google Scholar 

  2. Bonner, S., Vasile, F.: Causal embeddings for recommendation. In: Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, pp. 104–112. ACM, New York (2018)

    Google Scholar 

  3. Bottou, L., et al.: Counterfactual reasoning and learning systems: the example of computational advertising. J. Mach. Learn. Res. 14(1), 3207–3260 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 39–46. ACM (2010)

    Google Scholar 

  5. Gong, Y., et al.: Exact-k recommendation via maximal clique optimization. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 617–626. ACM, New York (2019)

    Google Scholar 

  6. Hill, J.L.: Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20(1), 217–240 (2011)

    Article  MathSciNet  Google Scholar 

  7. Ie, E., et al.: Slateq: A tractable decomposition for reinforcement learning with recommendation sets. In: IJCAI (2019)

    Google Scholar 

  8. Jiang, R., Gowal, S., Qian, Y., Mann, T.A., Rezende, D.J.: Beyond greedy ranking: Slate optimization via list-cvae. In: ICLR (2019)

    Google Scholar 

  9. Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: International Conference on Machine Learning, pp. 3020–3029 (2016)

    Google Scholar 

  10. Johansson, F.D., Sontag, D., Ranganath, R.: Support and invertibility in domain-invariant representations. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 527–536 (2019)

    Google Scholar 

  11. Kang, J.D., Schafer, J.L., et al.: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Stat. Sci. 22(4), 523–539 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Kök, A.G., Fisher, M.L., Vaidyanathan, R.: Assortment planning: Review of literature and industry practice. In: Agrawal, N., Smith, S. (eds.) Retail Supply Chain Management. International Series in Operations Research & Management Science, vol. 122, pp. 99–153. Springer, Boston (2008) https://doi.org/10.1007/978-0-387-78902-6_6

  13. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data, vol. 793. Wiley, Hoboken (2019)

    Google Scholar 

  14. Manchanda, P., Ansari, A., Gupta, S.: The “shopping basket”: a model for multicategory purchase incidence decisions. Mark. Sci. 18(2), 95–114 (1999)

    Article  Google Scholar 

  15. Marlin, B.M., Zemel, R.S., Roweis, S., Slaney, M.: Collaborative filtering and the missing at random assumption. In: Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, pp. 267–275. AUAI Press (2007)

    Google Scholar 

  16. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining. pp. 995–1000. IEEE (2010)

    Google Scholar 

  17. Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. J. Am. Stat. Assoc. 100(469), 322–331 (2005)

    Article  MathSciNet  Google Scholar 

  18. Saito, Y., Aihara, S., Matsutani, M., Narita, Y.: A large-scale open dataset for bandit algorithms. arXiv preprint arXiv:2008.07146 (2020)

  19. Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., Joachims, T.: Recommendations as treatments: Debiasing learning and evaluation. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1670–1679. PMLR, New York, USA (20–22 June 2016)

    Google Scholar 

  20. Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70. pp. 3076–3085. JMLR. org (2017)

    Google Scholar 

  21. Tanimoto, A., Sakai, T., Takenouchi, T., Kashima, H.: Regret minimization for causal inference on large treatment space. In: AISTATS (2021)

    Google Scholar 

  22. Wang, F., et al.: Sequential evaluation and generation framework for combinatorial recommender system. arXiv preprint arXiv:1902.00245 (2019)

  23. Wang, X., Qi, J., Ramamohanarao, K., Sun, Yu., Li, B., Zhang, R.: A joint optimization approach for personalized recommendation diversification. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10939, pp. 597–609. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93040-4_47

    Chapter  Google Scholar 

  24. Wang, X., Zhang, R., Sun, Y., Qi, J.: Doubly robust joint learning for recommendation on data missing not at random. In: International Conference on Machine Learning, pp. 6638–6647 (2019)

    Google Scholar 

  25. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Advances in Neural Information Processing Systems, pp. 3391–3401 (2017)

    Google Scholar 

  26. Zhao, H., Combes, R.T.D., Zhang, K., Gordon, G.: On learning invariant representations for domain adaptation. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 7523–7532. PMLR, Long Beach, California, USA (09–15 June 2019)

    Google Scholar 

  27. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, pp. 22–32. ACM (2005)

    Google Scholar 

  28. Zou, H., et al.: Counterfactual prediction for bundle treatment. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 19705–19715. Curran Associates, Inc. (2020)

    Google Scholar 

Download references

Acknowledgements

TT was partially supported by JSPS KAKENHI Grant Numbers 20K03753 and 19H04071. HK was supported by the JSPS KAKENHI Grant Number 20H04244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Tanimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanimoto, A., Sakai, T., Takenouchi, T., Kashima, H. (2021). Causal Combinatorial Factorization Machines for Set-Wise Recommendation. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12713. Springer, Cham. https://doi.org/10.1007/978-3-030-75765-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75765-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75764-9

  • Online ISBN: 978-3-030-75765-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics