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Abstract. We present a proof-theoretical and model-theoretical app-
roach to reasoning about knowledge and conditional probability. We
extend both the language of epistemic logic and the language of lin-
ear weight formulas, allowing statements like “Agent Ag knows that the
probability of A given B is at least a half”. We axiomatize this logic,
provide corresponding semantics and prove that the axiomatization is
sound and strongly complete. We also show that the logic is decidable.
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1 Introduction

Epistemic logics are formal models designed in order to reason about the knowl-
edge of agents and their knowledge of each other’s knowledge. During the last
couple of decades, they have found applications in various fields such as game
theory, the analysis of multi-agent systems in computer science and artificial
intelligence, and for analyzing the behavior and interaction of agents in a dis-
tributed system [7,8,24]. In parallel, uncertain reasoning has emerged as one
of the main fields in artificial intelligence, with many different tools developed
for representing and reasoning with uncertain knowledge. A particular line of
research concerns the formalization in terms of logic, and the questions of pro-
viding an axiomatization and decision procedure for probabilistic logic attracted
the attention of researchers and triggered investigation about formal systems for
probabilistic reasoning [1,6,9–11,19,20].

Fagin and Halpern [5] emphasised the need for combining those two fields
for many application areas, and in particular in distributed systems applica-
tions, when one wants to analyze randomized or probabilistic programs. They
developed a joint framework for reasoning about knowledge and probability, pro-
posed a complete axiomatization and investigated decidability of the framework.
Based on the seminal paper by Fagin, Halpern and Meggido [6], they extended
the propositional epistemic language with formulas which express linear combi-
nations of probabilities, called linear weight formulas, i.e., the formulas of the
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form a1w(α1) + ... + akw(αk) ≥ r, where aj ’s and r are rational numbers. They
proposed a finitary axiomatization and proved weak completeness, using a small
model theorem.

In this paper, we extend the logic from [5] by also allowing formulas that can
represent conditional probability. Thus, our language contains both knowledge
operators Ki (one for each agent i) and conditional probability formulas of the
form a1wi(α1, β1) + ... + akwi(αk, βk) ≥ r. The expressions of the form wi(α, β)
represent conditional probabilities that agent i places on events according to
Kolmogorov definition: P (A|B) = P (A∩B)

P (B) if P (B) > 0, while P (A|B) is unde-
fined when P (B) = 0. The corresponding semantics consists of enriched Kripke
models, with a probability measure assigned to every agent in each world.

Our main results are a sound and complete axiomatization for the logic and
decidability result. We prove strong completeness (every consistent set of formu-
las is satisfiable) using an adaptation of Henkin’s construction, modifying some
of our earlier methods [2–4,16,18,19,21]. Our axiom system contains infinitary
rules of inference, whose premises and conclusions are in the form of k-nested
implications (Definition 6). This form of infinitary rules is a technical solution
already used in probabilistic, epistemic and temporal logics for obtaining vari-
ous strong necessitation results [13,15,17,22,23]. An obvious alternative to an
infinitary axiomatization would be to develop a finitary system which would
be weakly complete (strong completeness of a finitary system is impossible due
to the noncompactness phenomena for probability logics, see [11]). We do not
know a finitary axiomatization for this rich language. Moreover, even for log-
ics which need to express conditional probabilities only (i.e., without knowledge
operators), the task of developing a finitary system turned out to be very hard
to accomplish. Fagin, Halpern and Meggido [6] faced problems when they tried
to represent conditional probabilities by adding multiplication to the syntax of
linear weight formulas, and they needed to introduce a first-order extension of
the language in order to obtain completeness. The only finitary axiomatization
we are aware of is the fuzzy approach of Marchioni and Godo [14], who consider
the probability of a conditional event of the form “α given β” as the truth-value
of the fuzzy proposition P (α|β) which is read as “P (α|β) is probable.”

In the last part of this paper, we prove that satisfiability problem for our
logic is decidable. From the technical point of view, we combine the method of
filtration [12] and a reduction to a system of inequalities.

2 Syntax and Semantics

Let P = {p, q, r, . . . } be a set of propositional letters and let A be a finite set of
agents. Let Q denote the set of all rational numbers and let [0, 1]Q = [0, 1] ∩ Q.

Definition 1 (Formula). The set For of all formulas of the logic is the smallest
set such that:

– P ⊂ For;
– If α ∈ For then Kiα ∈ For.
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– For any i ∈ A and k ≥ 1, if α1, α
′
1, . . . , αk, α′

k ∈ For and a1, . . . , ak, r ∈ Q,
then a1wi(α1, α

′
1) + · · · + akwi(αk, α′

k) ≥ r ∈ For,
– If α and β are formulas then ¬α, α ∧ β ∈ For.

The meaning of formula Kiα is “agent i knows α”, while the expression
wi(α, β) denotes conditional probability of α given β, according to the agent i.

An expression of the form a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k) is called term.
Following [5], we do not allow appearance of multiple agents inside of a term.
We denote terms with fi, gi and hi.

The propositional connectives, ∨, → and ↔, are introduced as abbreviations,
in the usual way. We define 
 to be an abbreviation for the formula p∨¬p where
p is a propositional letter, while ⊥ is ¬
. We also use abbreviations to define
other types of inequalities; for example: wi(α, β) ≥ wi(α′, β′) as an abbreviation
for wi(α, β) − wi(α′, β′) ≥ 0, wi(α, β) ≤ wi(α′, β′) for wi(α′, β′) ≥ wi(α, β),
wi(α, β) = wi(α′, β′) for (wi(α, β) ≥ wi(α′, β′)) ∧ (wi(α, β) ≤ wi(α′, β′)), and
wi(α, β) > wi(α′, β′) for (wi(α, β) ≥ wi(α′, β′)) ∧ ¬(wi(α, β) = wi(α′, β′)).

Now we introduce the semantics of our logic CKL.

Definition 2 (CKL-structure). A CKL-structure is a tuple (W,K, P rob, v)
where:

1. W is a non-empty set of objects called worlds.
2. v : W × P → {true, false} assigns to each world u ∈ W a two-valued evalu-

ation v(u, ·) of propositional letters,
3. K = {Ki | i ∈ A} is a set of binary equivalence relations on W . We denote

Ki(u) = {u′ | (u′, u) ∈ Ki}, and write uKiu
′ if u′ ∈ Ki(u),

4. Prob assigns to every i ∈ A and u ∈ W a probability space Prob(i, u) =
(Wi(u),Hi(u), μi(u)), where
– Wi(u) is a non-empty subset of W ,
– Hi(u) is an algebra of subsets of Wi(u), i.e. a set such that

(a) Wi(u) ∈ Hi(u),
(b) if A ∈ Hi(u), then Wi(u) \ A ∈ Hi(u), and
(c) if A,B ∈ Hi(u), then A ∪ B ∈ Hi(u).

– μi(u) : Hi(u) −→ [0, 1] is a finitely additive measure, i.e.,
(a) μi(u)(Wi(u)) = 1,
(b) μi(u)(A ∪ B) = μi(u)(A) + μi(u)(B), whenever A ∩ B = ∅.

The elements of Hi(u) are called measurable sets.

Definition 3 (Satisfiability). Let M be a CKL-structure and let u be some
world from M . The satisfiability relation |= is defined recursively as follows:

1. If α ∈ P then M,u |= α iff v(u, α) = true,
2. M,u |= Kiα iff M,u′ |= α for all u′ ∈ Ki(u),
3. M,u |= ∑n

k=1 akwi(αk, βk) ≥ r if μi(u)({u′ ∈ Wi(u) | M,u′ |= βk}) > 0
for every k ∈ {1, . . . , n} and

∑n
k=1 akμi(u)({u′ ∈ Wi(u) | M,u′ |= αk}|{u′ ∈

Wi(u) | M,u′ |= βk}) ≥ r,
4. M,u |= ¬α iff M,u �|= α,
5. M,u |= α ∧ β iff M,u |= α and M,u |= β.
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We denote by [α]i,M,u the set of all worlds from Wi(u) in which α holds, i.e.,

[α]i,M,u = {u′ ∈ Wi(u) | M,u′ |= α}.

We write [α] instead of [α]i,M,u when i, M and u are clear from the context.
Note that the satisfiability relation defined in Definition 3 is a partial relation,
i.e., it is not in general defined for all formulas. The reason is that a formula∑n

k=1 akwi(αk, βk) ≥ r can be evaluated in u only if all the sets [αk]i,M,u and
[βk]i,M,u are measurable. In order to keep the relation |= total (i.e., well-defined
for all the formulas), in this paper we consider only the models in which all those
sets are indeed measurable.

Definition 4 (CKL-measurable structure). A CKL-structure M is CKL-
measurable iff [α]i,u ∈ H(u) for every world u from M , every α ∈ For and every
i ∈ A. We denote the set of all measurable structures with CKLMeas.

Note that, according to Definition 3, the formula wi(α, β) ≥ r ∨ wi(α, β) ≤ r
is not necessary satisfied in a model; the reason is that unconditional probability
is simply undefined if probability of the condition is zero.

Definition 5 (Model, entailment). For an M = (W,Prob,K, v) ∈ CKLMeas,
u ∈ W and a set of formulas T , we say that M,u is a model of T , and write
M,u |= T , iff M,u |= α for every α ∈ T . The set T is satisfiable, if there is
M ∈ CKLMeas and a world u from M such that M,u |= T . Formula α is valid
if ¬α is not satisfiable. We say that T entails α and write T |= α, if for every
M = (W,Prob,K, v) ∈ CKLMeas and every u ∈ W if M,u |= T then M,u |= α.

3 Axiomatization

In this section we present an axiomatization of our logic, which we denote
Ax(CKL). First we need to introduce a useful notion which we use for the proof
of Theorem 2.

Definition 6 (k-nested implication). Let α ∈ For be a formula and let
k ∈ N. Let θ = (θ0, . . . , θk) be a sequence of k formulas, and X = (X1, . . . , Xk)
a sequence of knowledge operators from {Ki | i ∈ A}. The k-nested implication
formula Φk,θ,X(α) is defined recursively as follows:

Φ0,θ,X(α) = θ0 → α

Φk,θ,X(α) = θk → XkΦk−1,θk−1
j=0 ,Xk−1

j=0
(α)

For example, if X = (Ka,Kb,Kc), a, b, c ∈ A, then Φ3,θ,X(α) = θ3 →
Kc(θ2 → Kb(θ1 → Ka(θ0 → 
))).
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Ax(CKL) contains the following axiom schemas and inference rules. It is
straightforward to check that Ax(CKL) is sound with respect to CKLMeas.

Axiom and rule for propositional reasoning

(A1) All instances of classical propositional tautologies.
(R1) From {α, α → β} infer β

Axioms and rules for reasoning about knowledge

(A2) (Kiα ∧ Ki(α → β)) → Kiβ, for every i ∈ G
(A3) Kiα → α,
(A4) Kiα → KiKiα,
(A5) ¬Kiα → Ki¬Kiα,
(R2) From α infer Kiα.

Axioms for reasoning about linear inequalities

(A6) ((a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k) ≤ r) ∧ (wi(α′
k+1,
) > 0)) ↔

(a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k) + 0wi(αk+1, α
′
k+1) ≤ r)

(A7) (a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k) ≤ r) → (aj1wi(αj1 , α
′
j1

) + · · · +
ajkwi(αjk , α′

jk
) ≤ r) where j1, . . . jk is a permutation of 1, . . . k.

(A8) (a1wi(α1, α
′
1)+· · ·+akwi(αk, α′

k) ≤ r)∧(a′
1wi(α1, α

′
1)+· · ·+a′

kwi(αk, α′
k) ≤

r′) → ((a1 + a′
1)wi(α1, α

′
1) + · · · + (ak + a′

k)wi(αk, α′
k) ≤ r + r′)

(A9) (a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k) ≤ r) ↔ (da1wi(α1, α
′
1) + · · · +

dakwi(αk, α′
k) ≤ dr) where d > 0.

(A10)
∧n

i=0 wi(α′
i,
) > 0 → ((a1wi(α1, α

′
1) + · · · + akwi(αk, α′

k) ≤ r) ∨
(a1wi(α1, α

′
1) + · · · + akwi(αk, α′

k) ≥ r)
(A11) (fi ≥ r) → (fi > r′) for r > r′

Axioms and rule for reasoning about probabilities

(A12) wi(α,
) ≥ 0
(A13) wi(α ∧ β,
) + wi(α ∧ ¬β,
) = wi(α,
)
(A14) wi(α,
) = wi(β,
) if α ↔ β is an instance of propositional tautology
(A15)

∑n
j=1 ajwi(αj , βj) ≥ r → wi(βj ,
) > 0 for every j ∈ {1, . . . , n}

(A16) (wi(β,
) ≥ s ∧ wi(α, β) ≥ r) → wi(α ∧ β,
) ≥ sr
(R3) From α infer wi(α,
) ≥ 1
(R4) From the set of premises {Φk,θ,X(fi ≥ r − 1

k ) | k ∈ N} infer Φk,θ,X(fi ≥ r)
(R5) From the set of premises {Φk,θ,X(wi(β,
) > 0)}∪{Φk,θ,X((wi(β,
) ≥ s →

wi(α ∧ β,
) ≥ rs) | s ∈ [0, 1]Q} infer Φk,θ,X(wi(α, β) ≥ r)

The given axioms and rules are divided into four groups, according to the
type of reasoning. The axioms A6–A14 are adapted from axiom system from [5]
to our approach to conditional probabilities. The axioms A15 and A16, together
with the rule R5 properly capture the third condition of Definition 3. The rules
R4 and R5 are infinitary inference rules. R4 is a variant of so called Archimedean
rule, whose role is to prevent nonstandard values. Intuitively, it says that is the
value of a term is infinitely close to r, then it must be equal to r.

Let us now define some basic notions of proof theory.
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Definition 7 (Theorem, proof). A formula α is a theorem, denoted by � α, if
there is a sequence of formulas α0, α1, . . . , αλ+1 (λ is finite or countable ordinal),
such that αλ+1 = α and every αi, i ≤ λ + 1, is an axiom, or it is derived from
the preceding formulas by an inference rule.

A formula α is deducible from a set T ⊆ For (T �Ax(CKL) α) if there is a
sequence of formulas α0, α1, . . . , αλ+1 (λ is finite or countable ordinal), such that
αλ+1 = α and every αi is an axiom or a formula from T , or it is derived from
the preceding formulas by an inference rule, with the exception that e R2 and R3
can be applied to the theorems only. The sequence α0, α1, . . . , α is a proof of α
from T . We write � instead of �AxCKL when it is clear from context.

Note that the length of a proof is any countable successor ordinal.

Definition 8 (Consistency). A set of formulas T is inconsistent if T � ⊥,
otherwise it is consistent. T is a maximal consistent set (mcs) of formulas if it
is consistent and every proper superset of T is inconsistent.

4 Completeness

In this section we show that the axiomatization Ax(CKL) is strongly complete
for the logic CKL, i.e., we prove that every consistent set of formulas has a
model. First we prove several auxiliary statements.

Theorem 1 (Deduction theorem). Let T be a set of formula and α and β a
formulas. Then

T ∪ {α} � β iff T � α → β.

Deduction theorem can be proven using transfinite induction on the length
of the inference. For the cases when we apply infinitary inference rules, we refer
the reader to [23], when a similar proof is presented, using the form of k-nested
implications in the infinitary rules.

Theorem 2 (Strong necessitation). If T is a set of formulas and T � α,
then KiT � Kiα, for all i ∈ A, where KiT = {Kiα | α ∈ T}.
Proof. Let T � α. We will prove the theorem by using the transfinite induction
on the length of the proof of T � α. Here we will only consider the application
of the rule R5. Let α be the formula Φk,θ,X(wi(γ, β) ≥ r) which was obtained
by the rule R5. Then we have

T � Φk,θ,X(wi(β,
) > 0)
T � Φk,θ,X(wi(β,
) ≥ s → wi(γ ∧ β,
) ≥ rs) for all s ∈ [0, 1]Q
KiT � KiΦk,θ,X(wi(β,
) > 0) by IH
KiT � KiΦk,θ,X(wi(β,
) ≥ s → wi(γ ∧ β,
) ≥ rs) for all s ∈ [0, 1]Q, by IH
KiT � 
 → KiΦk,θ,X(wi(β,
) > 0)
KiT � 
 → KiΦk,θ,X(wi(β,
) ≥ s → wi(γ ∧ β,
) ≥ rs) for all s ∈ [0, 1]Q
KiT � Φk+1,θ,X(wi(β,
) > 0), θ = (θ,
),X = (X,Ki)
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KiT � Φk+1,θ,X(wi(β,
) ≥ s → wi(γ ∧ β,
) ≥ rs) for all s ∈ [0, 1]Q,
KiT � Φk+1,θ,X(wi(γ, β) ≥ r), by R5
KiT � 
 → KiΦk,θ,X(wi(γ, β) ≥ r)
KiT � Kiα. ��
Next we prove some crucial statements which we need for the proof of the

completeness theorem.

Theorem 3 (Lindenbaum’s Theorem). Every consistent set of formulas can
be extended to a maximal consistent set.

Proof. Let T be an arbitrary consistent set of formulas. Assume that {γi | i =
0, 1, 2, . . . } is an enumeration of all formulas from For. We construct the set T ∗

recursively, in the following way:

1. T0 = T .
2. If the formula γi is consistent with Ti, then Ti+1 = Ti ∪ {γi}.
3. If the formula γi is not consistent with Ti, then:

(a) If γi = Φk,θ,X(fi ≥ r) and fi = wi(α, β), then we define Ti+1 = Ti ∪
{¬γi,¬Φk,θ,X(fi ≥ r − 1

m ), γ”i} where
γ”i = ¬Φk,θ,X(wi(β,
) > 0), if Ti ∪ {¬Φk,θ,X(wi(β,
) > 0} �� ⊥
γ”i = ¬Φk,θ,X(wi(β,
) ≥ s → wi(α ∧ β,
) ≥ sr), otherwise,
for some m ∈ N and s ∈ [0, 1]Q such that Ti+1 is consistent.

(b) If γi = Φk,θ,X(fi ≥ r) and fi �= wi(α, β) then we define Ti+1 = Ti ∪
{¬γi,¬Φk,θ,X(fi ≥ r − 1

m )} for some m ∈ N, such that Ti+1 is consistent.
(c) Otherwise, Ti+1 = Ti ∪ {¬γi}.

4. T ∗ =
⋃∞

n=0 Tn.

First we will show that the set T ∗ is correctly defined, i.e., there exist m ∈ N

from (3a) and (3b) and rational number s from the step (3a) of the construction.
Let us prove correctness in step (3a) exists.

Let us assume that T ′
i = Ti ∪ {Φk,θ,X(wi(α, β) ≥ r)} is inconsistent.

From Theorem 1 we obtain Ti � ¬Φk,θ,X(wi(α, β) ≥ r). Suppose that the
set Ti ∪ {¬Φk,θ,X(wi(α, β) ≥ r − 1

m )} inconsistent for every m ∈ N. By
Theorem 1, we have Ti � Φk,θ,X(wi(α, β) ≥ r − 1

m ) for every m ∈ N. Then
by the rule R3 we have Ti � Φk,θ,X(wi(α, β) ≥ r). Contradiction. Now sup-
pose that the set T ′

i ∪ {¬Φk,θ,X(wi(β,
) > 0)} is inconsistent, and that
the set T ′

i ∪ {¬Φk,θ,X(wi(β,
) ≥ s → wi(α ∧ β,
) ≥ sr)} is inconsistent
for every s. By Theorem 1, we obtain that T ′

i � Φk,θ,X(wi(β,
) > 0) and
T ′

i � Φk,θ,X(wi(β,
) ≥ s → wi(α ∧ β,
) ≥ sr), for every s. By the rule R4 we
have T ′

i � Φk,θ,X(wi(α, β) ≥ r). Contradiction.
Next we prove that T ∗ is a maximal consistent set. Note that every Ti is

consistent by the construction. This still doesn’t imply consistency of T ∗ =⋃∞
n=0 Tn, since we have infinitary rules. First we show that for every γ′ ∈ For

either γ′ ∈ T ∗ or ¬γ′ ∈ T ∗ holds. Let i and j be the nonnegative integers such
that γi = γ′ and γj = ¬γ′. Then, either γ′ or ¬γ′ is consistent with Tmax{i,j}. If
Tmax{i,j} is not consistent with γ′ and ¬γ′ then by Theorem 1, Tmax{i,j} will be
inconsistent. Then either γ′ ∈ Ti+1 or ¬γ′ ∈ Tj+1, so either γ′ ∈ T ∗ or ¬γ′ ∈ T ∗.
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In order to prove the consistency of T ∗, we will show that T ∗ is deduc-
tively closed. If the formula γ is an instance of some axiom, then γ ∈ T ∗ by
the construction of T ∗. Here we show that T ∗ is closed under the rule R5; the
other cases are similar. Suppose T ∗ � Φk,θ,X(wi(α, β) ≥ r) was obtained by R5,
where Φk,θ,X(wi(β,
) > 0) ∈ T ∗ and Φk,θ,X(wi(β,
) ≥ s → wi(α ∧ β,
) ≥
sr) ∈ T ∗ for all s ∈ [0, 1]Q. Assume that Φk,θ,X(wi(α, β) ≥ r) �∈ T ∗.
Let j be the positive integer such that γj = Φk,θ,X(wi(α, β) ≥ r). Then,
Tj ∪ {γj} is inconsistent, since otherwise Φk,θ,X(wi(α, β) ≥ r) ∈ Tj+1 ⊂ T ∗.
By the step (3a) ¬Φk,θ,X(wi(β,
) > 0) ∈ Tj+1 or there is s′ ∈ [0, 1]Q
such that ¬Φk,θ,X(wi(β,
) ≥ s′ → wi(α ∧ β,
) ≥ s′r) ∈ Tj+1. Suppose
¬Φk,θ,X(wi(β,
) > 0) ∈ Tj+1 and from Φk,θ,X(wi(β,
) > 0) ∈ T ∗ there is
nonegative integer k such that Φk,θ,X(wi(β,
) > 0) ∈ Tk. Then Tmax{k,j+1} � ⊥,
a contradiction.

Now suppose that ¬Φk,θ,X(wi(β,
) ≥ s′ → wi(α∧β,
) ≥ s′r) ∈ Tj+1, where
s′ ∈ [0, 1]Q. We have that Φk,θ,X(wi(β,
) ≥ s → wi(α∧β,
) ≥ sr) ∈ T ∗ for all
s ∈ [0, 1]Q, so we have Φk,θ,X(wi(β,
) ≥ s′ → wi(α ∧ β,
) ≥ s′r) ∈ T ∗. Then,
there is nonegative integer k′ such that Φk,θ,X(wi(wi(β,
) ≥ s′ → wi(α∧β,
) ≥
s′r) ∈ T ′

k . Then Tmax{k′,j+1} � ⊥, a contradiction. Consequently, the set T ∗ is
deductively closed.

From the fact that T ∗ is deductively closed we can prove that T ∗ is consistent.
Indeed, if T ∗ is inconsistent, there is γ′ ∈ For such that T ∗ � γ′ ∧¬γ′. But then
there is a nonnegative integer i such that γ′ ∧ ¬γ′ ∈ Ti, a contradiction. ��

Next we introduce some notation, that we use in definition of the canonical
model. For a given T ⊆ For and i ∈ A, we define the set T/Ki as follows:

T/Ki = {α | Kiα ∈ T}.

Definition 9 (Canonical model). The canonical model MC = (W,K, P rob, v)
is defined as follows:

– W = {u | u is maximal consistent set},
– for every world u and every propositional letter p ∈ P, v(u, p) = true iff

p ∈ u,
– K = {Ki | i ∈ A} where Ki = {(u′, u) | u′/Ki ⊂ u}
– Prob(i, u) = (Wi(u),Hi(u), μi(u)) such that:

• Wi(u) = W ,
• Hi(u) = {{u′ ∈ W | α ∈ u′} | α ∈ For},
• μi(u) : Hi(u) → [0, 1] such that μi(u)({u′ ∈ W | α ∈ u′}) = sup{r ∈

[0, 1]Q |wi(α,
) ≥ r ∈ u}.
We use the following notation to refer to the elements of Hi(u) from the

canonical model:
[[α]] = {u′ ∈ W | α ∈ u′}.

Lemma 1. Let u be a world of MC . If fi = a1wi(α1, α
′
1) + · · · + akwi(αk, α′

k)
then a1μi(u)([[α1]]|[[α′

1]]) + · · · + akμi(u)([[αk]]|[[α′
k]]) = sup{s | u � fi ≥ s}.
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Proof. First we will show that μi(u)([[α]]|[[β]]) = sup{r ∈ [0, 1]Q | wi(α, β) ≥
r ∈ u}. Note that if μi(u)([[β]]) = 0 then both μi(u)([[α]]|[[β]]) and sup{r ∈
[0, 1]Q | wi(α, β) ≥ r ∈ u} are undefined.

Suppose that wi(α, β) ≥ r ∈ u and let {sn | n ∈ N} be strictly increas-
ing sequence of numbers from [0, 1]Q, such that limn→∞ sn = μi(u)([[β]]). Let
n be any number from N. Then u � wi(β,
) ≥ sn. Using the assumption
wi(α, β) ≥ r ∈ u, the axioms A15 and A16 and propositional reasoning, we
obtain u � wi(β,
) > 0 and u � wi(α ∧ β,
) ≥ rsn. Finally, by Definition 9
we have μi(u)([[β]]) > 0 and μi(u)([[α ∧ β]]) ≥ limn→∞ rsn = rμi(u)([[β]]), i.e.,
μi(u)([[β]]) > 0 and μi(u)([[α]]|[[β]]) ≥ r. We can conclude that μi(u)([[α]]|[[β]]) ≥
sup{r ∈ [0, 1]Q | wi(α, β) ≥ r ∈ u}.

Let now μi(u)([[α]]|[[β]]) ≥ t and μi(u)([[β]]) > 0. We want to show that
u � wi(β,
) > 0 and u � wi(β,
) ≥ s → wi(α ∧ β,
) ≥ ts for all s ∈ [0, 1]Q.

If u �� wi(β,
) > 0 then u � wi(β,
) = 0, i.e., μi(u)([[β]]) = 0, contradiction.
If s > μi(u)([[β]]), than u � ¬(wi(β,
) ≥ s), so u � wi(β,
) ≥ s → wi(α ∧

β,
) ≥ ts. Let now s ≤ μi(u)([[β]]), then st ≤ μi(u)([[α ∧ β]]), so u � wi(α ∧
β,
) ≥ ts. Now, we have that for every s ∈ [0, 1]Q, u � wi(β,
) ≥ s →
wi(α ∧ β,
) ≥ ts, by the rule R5 we get u � wi(α, β) ≥ t. So μi(u)([[α]]|[[β]]) ≤
sup{r ∈ [0, 1]Q | wi(α, β) ≥ r ∈ u}.

Let fi = a1wi(α1, α
′
1)+· · ·+akwi(αk, α′

k). By the properties of supremum and
A8, a1μi(u)([[α1]]|[[α′

1]])+ · · ·+akμi(u)([[αk]]|[[α′
k]]) = a1 sup{s1 | u � wi(α1, α

′
1) ≥

s1} + · · · + ak sup{sk | u � wi(αk, α′
k) ≥ sk} = sup{s | u � fi ≥ s}. ��

Lemma 2. The canonical model MC is a CKL-structure.

Proof. The proof that every Hi(u) from MC is an algebra of sets is trivial. The
fact that every μi(u) is a finitely additive probability measure follows from the
axioms for reasoning about probabilities and Lemma 1. ��

On the other hand, in order to show that MC ∈ CKLMeas, we need to prove
that [α]i,MC ,u = [[α]], for every i and u. This follows form the following lemma.

Lemma 3 (Truth lemma). Let MC be the canonical model and γ ∈ For.
Then for every world u from MC

γ ∈ u iff MC , u |= γ.

Proof. We use induction on the complexity of the formula γ. If γ is a proposi-
tional letter, the statement follows from the construction of MC . The cases when
γ is a conjunction or a negation are straightforward.

Suppose γ = Kiβ. Let Kiβ ∈ u. Since β ∈ u/Ki, then β ∈ u′ for every
u′ such that (u, u′) ∈ Ki (by the definition of Ki). Therefore, MC , u′ |= β by
induction hypothesis (β is subformula of Kiβ), and then MC , u |= Kiβ.

Let now MC , u |= Kiβ. Assume the opposite, that Kiβ �∈ u. Then, u/Ki ∪
{¬β} must be consistent. If it would not be consistent, then u/Ki � β by the
Deduction theorem and u ⊃ Ki(u/Ki) � Kiβ by Theorem 2, i.e., Kiβ ∈ u,
which is a contradiction. Therefore, u/Ki ∪ {¬β} can be extended to a maximal
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consistent U , so uKiU . Since ¬β ∈ U , then MC , U |= ¬β by induction hypothesis,
so we get the contradiction MC , u �|= Kiβ.

Let fi = a1wi(α1, α
′
1)+ · · ·+akwi(αk, α′

k). We suppose that fi ≥ r ∈ u, then
r ≤ sup{s | u � fi ≥ s} and wi(α′

j ,
) > 0 ∈ u for every j ∈ {1, . . . , k}. Then by
Lemma 1, MC , u |= fi ≥ r.

For the other direction, assume that MC , u |= fi ≥ r. Suppose that fi ≥ r �∈
u. Then we have wi(α′

j ,
) = 0 ∈ u for some j ∈ {1, . . . , k} or fi < r ∈ u. If
wi(α′

j ,
) = 0 for some j then MC , u �|= fi ≥ r, a contradiction. Let fi < r ∈ u,
then, reasoning as above we conclude MC , u |= fi < r, a contradiction. ��

Consequently, we have shown that for every α ∈ For, every i ∈ A and every
world u from MC the equality [α]i,MC ,u = [[α]] holds, so MC is a CKL-measurable
structure.

Theorem 4 (Strong completeness of CKL). A set of formulas T is consis-
tent iff T is CKLMeas-satisfiable.

Proof. The direction form right to left is straightforward. For the other direction,
suppose that T is a consistent set of formulas. By Theorem 3, there is a maximal
consistent superset T ∗ of T . Since MC ∈ CKLMeas, we only need to show that
MC is a model of T ∗. By Lemma 3, if T is consistent set we know that T ∗ is a
world in MC , so we obtain MC , T ∗ |= T . ��

5 Decidability of CKL

In this section, we prove that the logic CKL is decidable. Recall the satisfiability
problem: given a CKL-formula α, we want to determine if there exists a world u
in a CKLMeas-model M such that M,u |= α. First, we show that a CKL-formula
is satisfiable iff it is satisfiable in a measurable structure with a finite number of
worlds.

For a formula α we denote Subf(α) the set of all subformulas of α.

Theorem 5. If a CKL-formula α is satisfiable in a model M ∈ CKLMeas, then
it is satisfied in a model M∗ ∈ CKLMeas with at most 2|Subf(α)| number of worlds.

Proof. Let s be a world from M such that M, s |= α. Let Subf(α) be the set
of all subformulas of α and k = |Subf(α)|. By ∼ we denote the equivalence
relation over W × W , where s ∼ s′ iff for every β ∈ Subf(α), M, s |= β iff
M, s′ |= β. The quotient set W/∼ is finite and |W/∼| ≤ 2|Subf(α)|. Now, for
every class Ci we choose an element and denote it s∗

i . We consider the model
M∗ = (W ∗,K∗, P rob∗, v∗), where:

– W ∗ = {s∗
i | Ci ∈ W/∼},

– K∗ = {K∗
a | a ∈ A} is a set of binary relations on W ∗ where (s∗

i , s
∗
j ) ∈ K∗

a iff
for every Kaφ ∈ Subf(α), M, s∗

i |= Kaφ iff M, s∗
j |= Kaφ

– For every agent a and s∗
i ∈ W ∗, Prob∗(a, s∗

i ) = (W ∗
a (s∗

i ),H
∗
a(s∗

i ), μ
∗
a(s∗

i )) is
defined as follows:
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• W ∗
a (s∗

i ) = {s∗
j ∈ W ∗ | (∃u ∈ Cj)u ∈ Wa(si)},

• H∗
a(s∗

i ) is the power set of W ∗
a (s∗

i ),
• μ∗

a(s∗
i )({s∗

j}) = μa(s∗
i )(Cj(s∗

i )), where Cj(s∗
i ) = Cj ∩ W ∗

a (s∗
i ) and for any

D ∈ H∗
a(s∗

i ), μ∗
a(s∗

i )(D) =
∑

s∗
j ∈D μ∗

a(s∗
i )({s∗

j}),
– v∗(si, p) = v(si, p).

It can be shown that M∗ ∈ CKLMeas.
Finally, using induction on the complexity of the formulas, one can show that

for any β ∈ Subf(α), M, s |= β iff M∗, s∗
i |= β where s∗

i represents Cs in M∗. ��
Note that there are infinitely many finite models from CKLMeas with at most

2|Subf(α)| worlds, because there are infinitely many possibilities for real-valued
probabilities. Thus, the previous theorem does not directly imply decidability,
and the further complementary steps are needed. In order to show decidability
we will translate the problem of satisfiability of a formula to the problem of
satisfiability of finite sets of equations and inequalities.

Theorem 6. Satisfiability problem for CKL is decidable.

Proof. Let α be a CKL-formula. We want to check whether there is a CKLMeas-
structure M and a world s form M such that M, s |= α. Using the previous
theorem, we will consider only the structures with l worlds, where l ≤ 2|Subf(α)|.

The idea is to see is there any structure with at least l worlds whom we
can join a valuation, a set of binary equivalence relations and finitely additive
probabilities such that the formula α is satisfied in some world of the structure.
For this we will use potential structures which we call pre-structures. In pre-
structures we do not specify probability measures (in order to avoid infinitely
many cases), but we want to specify enough information about measures from
which we can determine satisfiability of all subformulas of α.

Let Subf(α) be the set of subformulas of α, let Pα = P ∩ Subf(α) and let
SubP (α) be the set of all subformulas of α of the form

∑n
k=1 akwi(αk, βk) ≥ r.

For every l ≤ 2|Subf(α)| we consider pre-structures M = (W,K, S, v) such that:

– W is a set of worlds such that |W | = l
– v : W × Pα → {true, false}.
– K = {Ka | a ∈ A} on W .
– S : W × SubP (α) → {true, false}.

Note that for every number l we have finitely many possibilities for the
choice of pre-structures, i.e., we have finite number of choices of valuation, binary
equivalence relations and function S. This pre-structure is not a CKL-structure,
but we can check if a subformula of α holds in a world of a pre-structure M
using the relation �, defined as follows:

1. If γ ∈ Pα then M, s � γ iff v(s, γ) = true,
2. M, s � Kaγ iff M, s′ � γ for all s′ ∈ Ka(s),
3. M, s �

∑n
k=1 akwa(γk, βk) ≥ r iff S(s,

∑n
k=1 akwa(γk, βk) ≥ r) = true

4. M, s � ¬γ iff M, s �� γ,
5. M, s � γ ∧ β iff M, s � γ and M, s � γ.
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We will consider only those M = (W,K, S, v) such that M, s � α for some
world s ∈ W . For each such M we want to check whether M can be extended to
a structure, i.e., whether there is a measurable structure M = (W,K, P rob, v)
such that v is a restriction of v and for every agent a and every s ∈ W and∑n

k=1 akwa(γk, βk) ≥ r ∈ SubP (α) we have M, s |= ∑n
k=1 akwa(γk, βk) ≥ r iff

S(s,
∑n

k=1 akwa(γk, βk) ≥ r) = true. It is straightforward to check that for such
M we have M, s |= β iff M, s � β holds for every β ∈ Subf(α). Since the way v
extends v is irrelevant, it suffices to check whether S can be replaced with Prob
in some M = (W,K, S, v) such that M, s � α for some world s ∈ W . For that
purpose, for each such M we consider specific equations and inequalities, that
we describe below. We chose the variables of the form ya,si,sj

which represent
the values μa(si)({sj}). Now we state the equations and inequalities:

(1) ya,si,sj
≥ 0, for every world sj

(2)
∑

sj∈M

ya,si,sj
= 1

(3)
∑

wj :M l,wj�βk

ya,si,sj
> 0 for every k ∈ {1, . . . , n}, and

n∑

k=1

(
ak

∑

sj :M,sj�βk∧γk

ya,si,sj

n∏

t�=k,t=1

∑

sj :M,sj�βt

ya,si,sj

)
≥

r

n∏

k=1

∑

sj :M,sj�βk

ya,si,sj
, for every formula

n∑

k=1

akwa(γk, βk) ≥ r

such that S(si,
n∑

k=1

akwa(γk, βk) ≥ r) = true

(4)
n∨

k=1

( ∑

sj :M,sj�βk

ya,si,sj
= 0

)
or

n∑

k=1

(
ak

∑

sj :M,sj�βk∧γk

ya,si,sj

n∏

t�=k,t=1

∑

sj :M,sj�βt

ya,si,sj

)
<

r

n∏

k=1

∑

sj :M,sj�βk

ya,si,sj
, for every formula

n∑

k=1

akwa(γk, βk) ≥ r

such that S(si,

n∑

k=1

akwa(γk, βk) ≥ r) = false

The inequality (1) above assures that all the probability measures are non-
negative, and the equality (2) states that the probability of the set of all possible
worlds has to be equal to 1. The equality (3) states that the probabilities of the
sets of all evidences in a formula are greater than 0 and the linear combination
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of probabilities is greater than r, from the corresponding formula. It is easy to
see that (3) corresponds to the third condition of the satisfiability relation from
Definition 3, after we clean the denominators. Similarly, (4), corresponds to the
combination of the fourth and the third condition from Definition 3.

The equations and inequalities (1)–(4) form not one, but a number of finite
systems of equations and inequalities. Note that adding (4) to any system Sys
of equations and inequalities results with a disjunction of at least two different
extensions of Sys. For the purpose of this proof, the fact that we always have
finitely many systems is sufficient, and it is enough if one of the systems is
solvable. Those systems are represented in the language of real closed fields,
and it is well known that the theory of real closed fields is decidable. Since we
have finitely many possibilities for the choice of l, and for every l finitely many
possibilities for the choice of pre-structure, our logic is decidable as well. ��

6 Conclusion

We have investigated a propositional logic of knowledge and conditional prob-
ability that allows explicit reasoning about probabilities. We have been able to
obtain strongly complete axiomatization and decision procedure for our logic.
Following [5], we proposed the most general case, where no semantic relation-
ship is posed between the modalities for knowledge and probability. Fagin and
Halpern [5] also consider some modification of the semantics, by posing rela-
tions between the sample spaces Wi(u) and possible worlds Ki(u), which model
some typical situations in the multi-agent systems. For example, they consider
a natural assumption Wi(u) ⊆ Ki(u), which forbids an agent to place positive
probabilities to the events she knows to be false. The paper [5] provides charac-
terization of all those semantic assumptions in terms of corresponding axioms.
(for example, Wi(u) ⊆ Ki(u) corresponds to Kiα → wi(α) = 1). Adding those
axioms to our system would also make it complete for the considered semantics.
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- AI4TrustBC (the first and the third author).
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