Skip to main content

An Energy Sustainable CPS/IoT Ecosystem

  • Conference paper
  • First Online:
Book cover Science and Technologies for Smart Cities (SmartCity360° 2020)

Abstract

This paper provides a short overview on methods and technologies necessary to build smart and sustainable Internet-of-Things (IoT). It observes IoT systems in a close relation with data centered intelligence and its application in cyber-physical systems. With the current rate of growth IoT devices and supporting CPS infrastructure will reach extremely high numbers in less than a decade. This will create an enormous overhead on world’s supply of electrical energy. In this paper, we propose a model extension for estimation of energy consumption by IoT devices in next decade. The paper gives a definition of CPS/IoT Ecosystem as a mutually codependent heterogeneous multidisciplinary structure. Further we explore a set of methods to reduce energy consumption and make CPS/IoT Ecosystem sustainable by design. As a case study we propose energy harvesting sensor node implemented as a wildfire early detection system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arduino Uno Rev3 — Arduino Official Store. https://store.arduino.cc/arduino-uno-rev3

  2. Intel Arria 10 FPGA. https://www.intel.com/content/www/de/de/products/programmable/fpga/arria-10.html

  3. Zynq-7000 SoC. https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

  4. Waldbrände in Attika 2018, July 2019. https://de.wikipedia.org/w/index.php?title=Waldbr%C3%A4nde_in_Attika_2018&oldid=190577400. Page Version ID: 190577400

  5. California wildfires, May 2020. https://tinyurl.com/y7nmnesb. Page Version ID: 956440002

  6. Amor, N.B., Kanoun, O.: Investigation to the use of vibration energy for supply of hearing aids. In: 2007 IEEE Instrumentation Measurement Technology Conference IMTC 2007, pp. 1–6 (2007)

    Google Scholar 

  7. Andrae, A.S.G., Edler, T.: On global electricity usage of communication technology: trends to 2030. Challenges 6(1), 117–157 (2015). https://doi.org/10.3390/challe6010117. https://www.mdpi.com/2078-1547/6/1/117. Multidisciplinary Digital Publishing Institute

  8. BP: BP Statistical Review of World Energy 2017 p. 52, June 2017

    Google Scholar 

  9. Carmo, J.P., Goncalves, L.M., Correia, J.H.: Thermoelectric microconverter for energy harvesting systems. IEEE Trans. Industr. Electron. 57(3), 861–867 (2010)

    Article  Google Scholar 

  10. Chalasani, S., Conrad, J.M.: A survey of energy harvesting sources for embedded systems. In: IEEE SoutheastCon 2008, pp. 442–447 (2008). https://doi.org/10.1109/SECON.2008.4494336. ISSN 1558-058X

  11. Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016). https://doi.org/10.1109/JIOT.2016.2584538

  12. Colomer-Farrarons, J., Miribel-Catala, P., Saiz-Vela, A., Puig-Vidal, M., Samitier, J.: Power-conditioning circuitry for a self-powered system based on micro pzt generators in a 0.13-\(\mu \text{m}\) low-voltage low-power technology. IEEE Trans. Ind. Electron. 55(9), 3249–3257 (2008)

    Google Scholar 

  13. Commission, E.: EFFIS - Active Fire Detection, January 2018. https://effis.jrc.ec.europa.eu/about-effis/technical-background/active-fire-detection/

  14. Dalola, S., Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D., Taroni, A.: Characterization of thermoelectric modules for powering autonomous sensors. IEEE Trans. Instrum. Meas. 58(1), 99–107 (2009)

    Article  Google Scholar 

  15. Dalola, S., et al.: Autonomous sensor system with RF link and thermoelectric generator for power harvesting. In: 2008 IEEE Instrumentation and Measurement Technology Conference, pp. 1376–1380 (2008)

    Google Scholar 

  16. Kwok, D.W., Huang, F.P.: Skorupa, J.A., Smith, J.W.: US9018512B2 - Thermoelectric generation system - Google Patents, April 2015. https://patents.google.com/patent/US9018512B2/en

  17. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutor. 18(1), 732–794 (2016). https://doi.org/10.1109/COMST.2015.2481183

  18. Devices, A.: ADP165 Datasheet and Product Info | Analog Devices. https://www.analog.com/en/products/adp165.html

  19. Devices, A.: ADP5092 Datasheet and Product Info | Analog Devices. https://www.analog.com/en/products/adp5092.html?doc=ADP5091-5092.pdf#product-overview

  20. Devices, A.: EVAL-ADP165-166 Evaluation Board | Analog Devices. https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-ADP165-166.html

  21. Devices, A.: EVAL-ADP509X Evaluation Board | Analog Devices. https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-ADP509X.html#eb-overview

  22. Dondi, D., Bertacchini, A., Brunelli, D., Larcher, L., Benini, L.: Modeling and optimization of a solar energy harvester system for self-powered wireless sensor networks. IEEE Trans. Industr. Electron. 55(7), 2759–2766 (2008)

    Article  Google Scholar 

  23. Eaton: Eaton PB-5R0H474-R. https://www.mouser.at/datasheet/2/87/eaton-pb_supercapacitors-cylindrical-pack-data-she-1608804.pdf

  24. Fernández-Yáñez, P., Gómez, A., García-Contreras, R., Armas, O.: Evaluating thermoelectric modules in diesel exhaust systems: potential under urban and extra-urban driving conditions. J. Clean. Prod. 182, 1070–1079 (2018). https://doi.org/10.1016/j.jclepro.2018.02.006. http://www.sciencedirect.com/science/article/pii/S095965261830310X

  25. Gill, S.S., Buyya, R.: A Taxonomy and Future Directions for Sustainable Cloud Computing: 360 Degree View p. 68, December 2018

    Google Scholar 

  26. Güre, N.: Vibration energy harvesting from a railway vehicle using commercial piezoelectric transducers (2017). http://dspace.marmara.edu.tr/handle/11424/36590

  27. Hande, A., Polk, T., Walker, W., Bhatia, D.: Indoor solar energy harvesting for sensor network router nodes. Microprocess. Microsyst. 31(6), 420–432 (2007). https://doi.org/10.1016/j.micpro.2007.02.006. http://www.sciencedirect.com/science/article/pii/S0141933107000415

  28. Harb, A.: Energy harvesting: state-of-the-art. Renewable Energy 36(10), 2641–2654 (2011). https://doi.org/10.1016/j.renene.2010.06.014. http://www.sciencedirect.com/science/article/pii/S0960148110002703

  29. Hartberger, T.: Algorithm implementation in HLS or HDL: power consumption and efficiency effects. Bachelor Thesis, TU Wien, November 2017

    Google Scholar 

  30. Isakovic, H., et al.: CPS/IoT Ecosystem: A platform for research and education. p. 8, October 2018

    Google Scholar 

  31. Jorge Martins, F.P. Brito, L.G.J.A.: Universidade do Minho: Thermoelectric exhaust energy recovery with temperature control through heat pipes, April 2011. http://hdl.handle.net/1822/15737

  32. Kaur, T., Chana, I.: Energy Efficiency Techniques in Cloud Computing: A Survey and Taxonomy, October 2015. https://doi.org/10.1145/2742488

  33. Leonov, V.: Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sens. J. 13(6), 2284–2291 (2013). https://doi.org/10.1109/JSEN.2013.2252526

  34. Leonov, V., Vullers, R.J.M.: Wearable electronics self-powered by using human body heat: the state of the art and the perspective. J. Renew. Sustain. Energy 1(6), 062701 (2009). https://doi.org/10.1063/1.3255465. http://aip.scitation.org/doi/10.1063/1.3255465

  35. Mastelic, T., Brandic, I.: Recent trends in energy-efficient cloud computing. IEEE Cloud Comput. 2(1), 40–47 (2015). https://doi.org/10.1109/MCC.2015.15. http://ieeexplore.ieee.org/document/7091782/

  36. MFR, T.: TEG1-24111-6.0. https://thermoelectric-generator.com/product/teg1-24111-6-0/. library Catalog: thermoelectric-generator.com

  37. Pi, R.: Raspberry Pi. https://www.raspberrypi.org, library Catalog. https://www.raspberrypi.org

  38. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.: Energy-aware wireless microsensor networks. IEEE Signal Process. Mag. 19(2), 40–50 (2002). https://doi.org/10.1109/79.985679

  39. Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M.: Design considerations for solar energy harvesting wireless embedded systems. In: IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, pp. 457–462, April 2005. https://doi.org/10.1109/IPSN.2005.1440973

  40. Rose, K., Eldridge, S., Chapin, L.: The Internet of Things: An Overview, February 2015. https://www.internetsociety.org/wp-content/uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf

  41. Samson, D., Kluge, M., Becker, T., Schmid, U.: Wireless sensor node powered by aircraft specific thermoelectric energy harvesting. Sens. Actuators A Phys. 172(1), 240–244 (2011). https://doi.org/10.1016/j.sna.2010.12.020. http://www.sciencedirect.com/science/article/pii/S0924424710005182

  42. Schlögl, P.: An Energy harvesting powered sensor node for machine condition monitoring. Ph.D. thesis (2018). http://repositum.tuwien.ac.at/obvutwhs/content/titleinfo/2962783

  43. Shah, R.C., Rabaey, J.M.: Energy aware routing for low energy ad hoc sensor networks. In: 2002 IEEE Wireless Communications and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609), vol. 1, pp. 350–355 (2002)

    Google Scholar 

  44. STMicroelectronics: B-L072Z-LRWAN1. https://www.st.com/en/evaluation-tools/b-l072z-lrwan1.html, library Catalog: www.st.com

  45. STMicroelectronics: STLM20. https://www.st.com/en/mems-and-sensors/stlm20.html, library Catalog: www.st.com

  46. STMicroelectronics: X-NUCLEO-GNSS1A1.https://www.st.com/en/ecosystems/x-nucleo-gnss1a1.html, library Catalog: www.st.com

  47. Rausch, T., Raith, P., Pillai, P., Dustdar, S.: A System for Operating Energy-Aware Cloudlets, November 2019. http://cpsiot.at/?p=235, library Catalog: cpsiot.at Section: News

  48. Yan, R., Sun, H., Qian, Y.: Energy-aware sensor node design with its application in wireless sensor networks. IEEE Trans. Instrum. Meas. 62(5), 1183–1191 (2013). https://doi.org/10.1109/TIM.2013.2245181

Download references

Acknowledgments

This work has been conducted within projects that has received funding from the Austrian Government through the Federal Ministry Of Education, Science And Research (BMWFW) in the funding program Hochschulraum-Strukturmittel 2016 (HRSM). This work is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haris Isakovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Isakovic, H., Crespo, E.A., Grosu, R. (2021). An Energy Sustainable CPS/IoT Ecosystem. In: Paiva, S., Lopes, S.I., Zitouni, R., Gupta, N., Lopes, S.F., Yonezawa, T. (eds) Science and Technologies for Smart Cities. SmartCity360° 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-76063-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76063-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76062-5

  • Online ISBN: 978-3-030-76063-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics