Skip to main content

Semantic Segmentation Using Convolutional Neural Networks for Volume Estimation of Native Potatoes at High Speed

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2020)

Abstract

Peru is one of the main producers of a wide variety of native potatoes in the world. Nevertheless, to achieve a competitive export of derived products is necessary to implement automation tasks in the production process. Nowadays, volume measurements of native potatoes are done manually, increasing production costs. To reduce these costs, a deep approach based on convolutional neural networks have been developed, tested, and evaluated, using a portable machine vision system to improve high-speed native potato volume estimations. The system was tested under different conditions and was able to detect volume with up to 90% of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Bradley, D., Roth, G.: Adaptive thresholding using the integral image. J. Graph. Tools 12(2), 13–21 (2007)

    Article  Google Scholar 

  3. Brar, E.A.S., Singh, K.: Potato defect detection using fuzzy c-mean clustering based segmentation. Indian J. Sci. Technol. 9 (2016). https://doi.org/10.17485/ijst/2016/v9i32/100737

  4. Inicio - International Potato Center. https://cipotato.org/es/

  5. Dacal-Nieto, A., Vázquez-Fernández, E., Formella, A., Martin, F., Torres-Guijarro, S., González-Jorge, H.: A genetic algorithm approach for feature selection in potatoes classification by computer vision. In: IECON Proceedings (Industrial Electronics Conference), pp. 1955–1960. IEEE Computer Society (2009). https://doi.org/10.1109/IECON.2009.5414871

  6. Hofstee, J.W., Molema, G.J.: Machine vision based yield mapping of potatoes. In: 2002 Chicago, IL, 28–31 July 2002. p. 1. American Society of Agricultural and Biological Engineers, St. Joseph, MI, November 2002. https://doi.org/10.13031/2013.9699. http://elibrary.asabe.org/abstract.asp?JID=5&AID=9699&CID=cil2002&T=1

  7. Ebrahimi, E., Mollazade, K., Arefi, A.: Detection of greening in potatoes using image processing techniques. J. Am. Sci. 7(3), 243–247 (2011)

    Google Scholar 

  8. Grenander, U., Manbeck, K.M.: A stochastic shape and color model for defect detection in potatoes. J. Comput. Graph. Stat. 2(2), 131–151 (1993). https://doi.org/10.1080/10618600.1993.10474604

    Article  Google Scholar 

  9. Heinemann, P.H., Pathare, N.P., Morrow, C.T.: An automated inspection station for machine-vision grading of potatoes. Mach. Vision Appl. 9(1), 14–19 (1996). https://doi.org/10.1007/BF01246635

  10. Hofstee, J., Molema, G.: Machine vision based yield mapping of potatoes. In: 2002 ASAE Annual Meeting, p. 1. American Society of Agricultural and Biological Engineers (2002)

    Google Scholar 

  11. Horton, D.E., Anderson, J.L.: Potato production in the context of the world and farm economy. In: Harris, P.M. (eds.) The Potato Crop, pp. 794–815. Springer, Dordrecht (1992). https://doi.org/10.1007/978-94-011-2340-2_16

  12. Jana, S., Parekh, R., Sarkar, B.: Volume estimation of non-axisymmetric fruits and vegetables using image analysis. In: 2019 International Conference on Computing, Power and Communication Technologies (GUCON), pp. 628–633. IEEE (2019)

    Google Scholar 

  13. Marino, S., Beauseroy, P., Smolarz, A.: Deep learning-based method for classifying and localizing potato blemishes. In: ICPRAM 2019 - Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods, pp. 107–117. SciTePress, February 2019. https://doi.org/10.5220/0007350101070117. http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007350101070117

  14. Papa. http://minagri.gob.pe/portal/23-sector-agrario/cultivos-de-importancia-nacional/183-papa

  15. Moallem, P., Razmjooy, N., Mousavi, B.S.: Robust potato color image segmentation using adaptive fuzzy inference system. Iran. J. Fuzzy Syst. 11(6), 47–65 (2014). https://doi.org/10.22111/ijfs.2014.1748. https://ijfs.usb.ac.ir/article_1748.html

  16. Moallem, P., Razmjooy, N.: A multi layer perceptron neural network trained by invasive weed optimization for potato color image segmentation. Trends Appl. Sci. Res. 7(6), 445–455 (2012). https://doi.org/10.3923/tasr.2012.445.455

  17. Oppenheim, D., Shani, G.: Potato disease classification using convolution neural networks. Adv. Anim. Biosci. 8(2), 244 (2017)

    Article  Google Scholar 

  18. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  19. Patnaik, S., Yang, Y.M.: Soft Computing Techniques in Vision Science, vol. 395. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25507-6

  20. Su, Q., Kondo, N., Li, M., Sun, H., Al Riza, D.F.: Potato feature prediction based on machine vision and 3D model rebuilding. Comput. Electron. Agric. 137, 41–51 (2017). https://doi.org/10.1016/j.compag.2017.03.020

  21. Sudre, Carole H., Li, Wenqi., Vercauteren, Tom., Ourselin, Sebastien, Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  22. Tao, Y., Heinemann, P.H., Varghese, Z., Morrow, C.T., Sommer, H.J.: Machine vision for color inspection of potatoes and apples. Trans. Am. Soc. Agric. Eng. 38(5), 1555–1561 (1995). https://doi.org/10.13031/2013.27982

  23. Zhou, L., Chalana, V., Kim, Y.: PC-based machine vision system for real-time computer-aided potato inspection. Int. J. Imaging Syst. Technol. 9(6), 423–433 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Chicchón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chicchón, M., Huerta, R. (2021). Semantic Segmentation Using Convolutional Neural Networks for Volume Estimation of Native Potatoes at High Speed. In: Lossio-Ventura, J.A., Valverde-Rebaza, J.C., Díaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2020. Communications in Computer and Information Science, vol 1410. Springer, Cham. https://doi.org/10.1007/978-3-030-76228-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76228-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76227-8

  • Online ISBN: 978-3-030-76228-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics