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Abstract. Alarm root cause analysis is a significant component in the
day-to-day telecommunication network maintenance, and it is critical for
efficient and accurate fault localization and failure recovery. In practice,
accurate and self-adjustable alarm root cause analysis is a great chal-
lenge due to network complexity and vast amounts of alarms. A popular
approach for failure root cause identification is to construct a graph with
approximate edges, commonly based on either event co-occurrences or
conditional independence tests. However, considerable expert knowledge
is typically required for edge pruning. We propose a novel data-driven
framework for root cause alarm localization, combining both causal in-
ference and network embedding techniques. In this framework, we design
a hybrid causal graph learning method (HPCI), which combines Hawkes
Process with Conditional Independence tests, as well as propose a novel
Causal Propagation-Based Embedding algorithm (CPBE) to infer edge
weights. We subsequently discover root cause alarms in a real-time data
stream by applying an influence maximization algorithm on the weighted
graph. We evaluate our method on artificial data and real-world telecom
data, showing a significant improvement over the best baselines.

Keywords: Network Management · Root Cause Analysis · Alarm Cor-
relation Analysis · Influence Maximization.

1 Introduction

Recent years have seen rapid development in cellular networks, both in increas-
ing network scale and complexity coupled with increasing network performance
demands. This growth has made the quality of network management an even
greater challenge and puts limits on the analysis methods that can be applied.
In cellular networks, anomalies are commonly identified through alarms. A large-
scale network can generate millions of alarms during a single day. Due to the
interrelated network structure, a single fault can trigger a flood of alarms from
multiple devices. Traditionally, to recover after a failure, an operator will ana-
lyze all relevant alarms and network information. This can be a slow and time-
consuming process. However, not all alarms are relevant. There exists a subset
of alarms that are the most significant for fault localization. We denote these as
root cause alarms, and our main goal is to intelligently identify these alarms.

* These authors contributed equally to this work.
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There exist abundant prior research in the areas of Root Cause Analysis
(RCA) and fault localization. However, most proposed methods are highly spe-
cialized and take advantage of specific properties of the deployed network, ei-
ther by using integrated domain knowledge or through particular design deci-
sions [2–4]. A more general approach is to infer everything from the data itself.

In our proposed alarm RCA system, we create an influence graph to model
alarm relations. Causal inference is used to infer an initial causal graph, and then
we apply a novel Causal Propagation-Based Embedding (CPBE) algorithm to
supplement the graph with meaningful edge weights. To identify the root cause
alarms, we build upon ideas in how influence propagates in social networks and
view the problem as an influence maximization problem [10], i.e., we want to
discover the alarms with the largest influence. When a failure transpires, our
system can automatically perform RCA based on the sub-graph containing the
involved alarms and output the top-K most probable root cause alarms.

In summary, our main contributions are as follows:

– We design a novel unsupervised approach for root cause alarm localization
that integrates casual inference and influence maximization analysis, making
the framework robust to causal analysis uncertainty without requiring labels.

– We propose HPCI, a Hawkes Process-based Conditional Independence test
procedure for causal inference.

– We further propose CPBE, a Causal Propagation-Based Embedding algo-
rithm based on network embedding techniques and vector similarity to infer
edge weights in causality graphs.

– Extensive experiments on a synthetic and a real-world citywide dataset show
the advantages and usefulness of our proposed methods.

2 Related work

Root cause alarms. There are various ways to discover alarm correlations and
root cause alarms. Rules and experience of previous incidents are frequently used.
In more data-driven approaches, pattern mining techniques that compress alarm
data can assist in locating and diagnosing faults [24]. Abele et al. [1] propose to
find root cause alarms by combining knowledge modeling and Bayesian networks.
To use an alarm clustering algorithm that considers the network topology and
then mine association rules to find root cause alarms was proposed in [21].

Graph-based root cause analysis. Some previous works depend on system
dependency graphs, e.g., Sherlock [2]. A disadvantage is the requirement of exact
conditional probabilities, which is impractical to obtain in large networks. Other
systems are based on causality graphs. G-RCA [4] is a diagnosis system, but its
causality graph is configured by hand, which is unfeasible in large scale, dynamic
environments. The PC algorithm [19] is used by both CauseInfer [3] and [11] to
estimate DAGs, which are then used to infer root causes. However, such graphs
can be very unreliable. Co-occurrence and Bayesian decision theory are used
in [13] to estimate causal relations, but it is mainly based on log event heuristics
and is hard to generalize. Nie et al. [16] use FP-Growth and lag correlation to
build a causality graph with edge weights added with expert feedback.
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3 Preliminaries

In this section, we shortly review the two key concepts that our proposed method
depends upon, Hawkes process [7] and the PC algorithm [20].

Hawkes Process. This is a popular method to model continuous-time event
sequences where past events can excite the probability of future events. The
keystone of Hawkes process is the conditional intensity function, which indicates
the occurrence rate of future events conditioned on past events, denoted by
λd(t), where u ∈ C = {1, 2, ..., U} is an event type. Formally, given an infinitely
small time window [t, t+∆t), the probability of a type-u event occurring in this
window is λd(t)∆t. For U -dimensional Hawkes process with event type set C,
each dimension u has a specific form of conditional intensity function defined as

λu(t) = µu +
∑
v∈C

∑
ti<t

kuv(t− ti), (1)

where µu ≥ 0 is the background intensity for type-u events and kuv(t) ≥ 0 is a
kernel function indicating the influence from past events. An exponential kernel
is most frequently used, i.e., kuv(t) = αuve

−βuv(t), where αuv captures the degree
of influence of type-v events to type-u events and βuv controls the decay rate.
The parameters are commonly learned by optimizing a log-likelihood function.
Let µ = (µu) ∈ RU be the background intensities, and A = (αuv) ∈ RU×U

the influence matrix reflecting the certain causality between event types. For
a set of event sequences S = {S1, S2, ..., Sm}, where each event sequence Si =
{(aij , tij)}ni

j=1 is observed during a time period of [0, Ti], and each pair ((aij , tij))
represents an event of type aij that occurred at time tij . The log-likelihood of a
Hawkes process model with parameters Θ = {µ,A} can then be expressed as

L(µ,A) =

m∑
i=1

(

ni∑
j=1

log λaij (tij)−
U∑
u=1

∫ Ti

0

λu(t)dt). (2)

The influence matrix A is generally sparse or low-rank in practice, hence, adding
penalties into L(µ,A) is common. For instance, Zhou [25] used a mix of Lasso
and nuclear norms to constrain A to be both low-rank and sparse by using

min
µ≥0,A≥0

−L(µ,A) + ρ1||A||1 + ρ2||A||∗, (3)

where || · ||1 is the L1-norm, and || · ||∗ =
∑rankA
i=1 σi is the nuclear norm. The

parameters ρ1 and ρ2 controls their weights. A number of algorithms can be
applied to solve the above learning problem, more details can be found in [22].

PC Algorithm. This algorithm is frequently used for learning directed acyclic
graphs (DAGs) due to its strong causal structure discovery ability [23]. Condi-
tional Independence (CI) tests play a central role in the inference. A significance
level p is used as a threshold to determine if an edge should be removed or re-
tained. Formally, given a variable set Z, if X is independent of Y , denoted as
X |= Y |Z, the edge between X and Y will be removed, otherwise it will be kept
in the causal graph. A rigorous description can be found in [9].



4 Zhang et al.

Alarms

Network 
Topology 

Preprocessing

Influence Graph  
Construction

Influence 
Graph

Influence
Ranking

Root Cause 
Alarm Predictions 

Online Process

Offline Process
Fig. 1. Architecture of the proposed system.

The G-square test and Fisher-Z test are two common realizations for condi-
tional independence testing in causal inference [18]. The G-square test is used
for testing independence of categorical variables using conditional cross-entropy
while the Fisher-Z test evaluates conditional independence based on Pearson’s
correlation. CI tests assume that the input is independent and identically dis-
tributed. In our alarm RCA scenario, the size of the time window depends on
the network characteristics and needs to be selected to ensure that causal alarms
exist in one window and the data between different windows are independent.

4 System Overview

Our proposed framework consists of two main procedures: influence graph cre-
ation and alarm ranking. A system overview can be found in Figure 1. The alarm
preprocessing module is shared and handles alarm filtering and aggregation with
consideration to the network topology.

The influence graph is constructed using historical alarm transactions and is
periodically recreated. It is comprised of alarm types as nodes and their inferred
relations as edges. To create the graph, we first exploit causal inference method-
ology to infer an initial alarm causality graph structure by applying HPCI, a
hybrid method that merges Hawkes process and conditional independence tests.
We further apply a network embedding technique, CPBE, to infer the edge
weights. The alarm stream is monitored in real-time. When a failure transpires,
the system attempts to discover the underlying root cause alarms. The related
alarms are aggregated with the created influence graph and are ranked by their
influence to determine the top-K most probable root cause alarm candidates.
The alarm candidates are then given to the network operators to assist in han-
dling the network issue.

5 Methodology

This section introduces the key components in our system; alarm preprocessing,
the influence graph construction, and how the influence ranking is done. We start
by presenting the data and its required preprocessing and aggregation steps.
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5.1 Data and Alarm Preprocessing

Network Topology. This is the topological structure of the connections be-
tween network devices. Connected network devices will interact with each other.
If a failure occurs on one device, then any connected devices can be affected,
triggering alarms on multiple network nodes.

Alarms. Network alarms are used to identify faults in the network. Each alarm
record contains information about occurrence time, network device where the
alarm originated, alarm type, etc. In practice, any alarms with missing key in-
formation are useless and removed. Furthermore, alarm types that are either
systematic or highly periodical are also removed. These types of alarms are ir-
relevant for root cause analysis since they will be triggered regardless if a fault
occurred or not.

Alarm Preprocessing. We partition the raw alarm data into alarm sequences
and alarm transactions in three steps as follows.

1. Devices in connected sub-graphs of the network can interact, i.e., alarms from
these devices can potentially be related to the same fault. Consequently, we
first aggregate alarms from the same sub-graph together.

2. Alarms related to the same failure will generally occur together within a
short time interval. We thus further partition the alarms based on their
occurrence times. Alarms that occurred within the same time window wi are
grouped and sorted by time. The window size can be adjusted depending on
network characteristics. We define each group as an alarm sequence, denoted
as Si = {(aij , tij)}ni

j=1, where wi is the window, aij ∈ A is the alarm type,
tij ∈ wi is occurrence time, and ni the number of alarms.

3. Each alarm sequence is transformed into an alarm transaction denoted by
Ti = {(a, t, n)|a ∈ Ai}, where a, t, n indicates the alarm type, the earliest
occurrence time and the number of occurrences, respectively. Different from
Si, Ai contains a single element for each alarm type in window wi.

5.2 Alarm Influence Graph Construction

In this section, we elaborate on the construction of the alarm influence graph.
The graph has the alarm types as nodes and their relation as the edges. First,
an initial causal structure DAG is inferred by a hybrid causal structure learning
method (HPCI). Subsequently, edge weights are inferred using a novel network
embedding method (CPBE).

HPCI. A multi-dimensional Hawkes process can capture certain causalities be-
hind event types, i.e., the transpose of the influence matrix A can be seen as
the adjacency matrix of the causal graph for event types. However, redundant
or indirect edges tend to be discovered since the conditional intensity function
can not perfectly model real-world data and due to the difficulty in capturing
the instantaneous causality.

To reduce this weakness, we propose a hybrid algorithm HPCI that is based
on Hawkes process and the PC algorithm. HPCI is used to discover the causal
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structure for the alarm types in our alarm RCA scenario. The main procedure
can be expressed in three steps. (1) Use multi-dimensional Hawkes process with-
out penalty to capture the influence intensities among the alarm types. We use
the alarm sequences S = {Si} as input and obtain an initial weighted graph.
The weights on an edge (u, v) is the influence intensity αuv > 0, reflecting the
expectation of how long it takes for a type-u event to occur after an type-v
event. All edges with positive weights are retained. (2) Any redundant and in-
direct causal edges are removed using CI tests. We use the alarm transactions
T = {Ti} as input and for each alarm ai the sequence of alarm occurrences
Ni = {n|Tk ∈ T , (a, t, n) ∈ Tk, a = ai} is extracted. Note that n can be 0 if an
alarm type is not present in a window wi. For each pair of alarm types (ai, aj),
the CI test of their respective occurrence sequences is used to test for indepen-
dence and remove edges. The output is a graph with unwanted edges removed.
(3) Finally, we iteratively remove the edge with the smallest intensity until the
graph is a DAG. Our final causal graph is denoted as GC .

We select CI tests to enforce sparsity in the causal graph in the second step.
Compared to adding penalty terms such as L1-norm, the learning procedure is
more interpretable, and our experiments show more robust results.

Edge Weights Inference. The causal graph GC learned by HPCI is a weighted
graph, however, the weights do not account for global effects on the causal in-
tensities. Hence, to encode more knowledge into the graph, we propose a novel
network embedding-based weight inference method, Causal Propagation-Based
Embedding (CPBE). CPBE consists mainly of two steps; (1) For each node u,
we obtain a vector representation Zu ∈ RL using a novel network embedding
technique. (2) Use vector similarity to compute edge weights between nodes.

The full CPBE algorithm is shown in Algorithm 1. CPBE uses a new proce-
dure to generate a context for the skip-gram model [15] (lines 1-9). This proce-
dure is also illustrated in Figure 2. In essence, for each historical alarm trans-
action Ti ∈ T , we use the learned causality graph GC and extract a causal
propagation graph GPCi , where only the nodes corresponding to alarm types in
Ti are retained. Starting from each node in GPCi , we traverse the graph to gener-
ate a node-specific causal context. During the traversal for a node u, only nodes
that have a causal relation with u are considered. There are various possible
traversing strategies, e.g., depth-first search (DFS) and RandomWalk [6]. The
skip-gram model is applied to the generated contexts to obtain an embedding
vector Zu ∈ RL for each node u. Finally, the edge weight between two nodes is
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Algorithm 1 Causal Propagation-Based Embedding (CPBE)

Input: Alarm Transactions T = {Ti}; Causal Graph GC = (V,E);

1: C = {}, Ew = {};
2: for Ti ∈ T do:
3: GPCi = ConstructPropagationGraph(Ti, G

C)
4: for alarm node ∈ Ti do:
5: Calarm node = GraphTraversing(GPCi , alarm node)
6: C = C ∪ Calarm node

7: end for
8: end for
9: Z ← skip-gram(C) to map nodes to embedding vectors

10: for (u, v) ∈ E do:
11: w = Cosine(Zu, Zv)
12: Ew = Ew ∪ (u, v, w)
13: end for

Output: Alarm Influence Graph GI = (V,Ew);

set to be the cosine similarity of their associated vectors. We denote the final
weighted graph as the alarm influence graph GI .

5.3 Root Cause Alarm Influence Ranking

This section describes how the alarm influence graph GI is applied to an alarm
transaction to identify the root cause alarms. For each alarm transaction Ti ∈ T ,
an alarm propagation graph GPIi is created with the relevant nodes v ∈ Ti and
applicable edges {(u, v, w)|u, v ∈ Ti}. Any nodes corresponding to alarms not
present in Ti are removed. The process is equivalent to how GPCi is created from
the causal graph GC . The alarms in each propagation sub-graph are then ranked
independently. The process is illustrated in Figure 3.

We consider the problem of finding the root cause alarm as an influence
maximization problem [10]. We want to discover a small set of K seed nodes that
maximizes the influence spread under an influence diffusion model. A suitable
model is the independent cascade model, which is widely used in social network
analysis. Following this model, each node v is activated by each of its neighbors
independently based on an influence probability pu,v on each edge (u, v). These
probabilities directly correspond to the learned edge weights. Given a seed set
S0 to start with at t = 0, at step t > 0, u ∈ St−1 tries to activate its outgoing
inactivated neighbors v ∈ N out(u) with probability pu,v. Activated nodes are
added to St and the process terminates when |St| = 0, i.e., when no nodes further
nodes are activated. The influence of the seed set S0 is then the expected number
of activated nodes when applying the above stochastic activation procedure.

There are numerous algorithms available to solve the influence maximization
problem [12]. In our scenario, each graph GPIi is relatively small and the actual
algorithm is thus less important. We directly select the Influence Ranking Influ-
ence Estimation algorithm (IRIE) [8] for this task. IRIE estimates the influence
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r(u) for each node u by deriving a system of n linear equations with n variables.
The influence of a node u comprises of its own influence, 1, and the sum of the
influences it propagates to its neighbors.

6 Evaluation

In this section, we present the experimental setup and evaluation results. We
perform two main experiments, one to verify the correctness of our causal graph
and a second experiment to evaluate the root cause identification accuracy. The
first experiment is performed on both synthetic and real-world data, while the
second is completed on the real-world dataset. The datasets and code are avail-
able at https://github.com/shaido987/alarm-rca.

Synthetic Data Generation. The synthetic event sequences are generated in
four steps. (1) We randomly generate a DAG G with an average out-degree d
with N event types. We set d to 1.5 to emulate the sparsity property of our
real-world dataset. (2) For each edge (u, v), a weight αuv is assigned by uniform
random sampling from a range r ∈ [(0.01, 0.05), (0.05, 0.1), (0.1, 0.5), (0.5, 1.0)].
(3) For each event type u ∈ U , we assign a background intensity µu by uniform
random sampling from (0.001, 0.005). (4) Following Ogata [17], we use αuv and
µu as parameters of a Multi-dimensional Hawkes process and simulate event
sequences. We generate event sequences of length T = 14 days while ensuring
that the total number of events is greater than 10,000.

Real-world Dataset. The dataset was collected from a major cellular carrier in
a moderate-sized city in China between Aug 4th, 2018 and Oct 24th, 2018. After
preprocessing, it consists of 672,639 alarm records from 3,818 devices with 78
different alarm types. Due to the difficulty of labeling causal relations, we only
have the ground-truth causal relations for a subset of 15 alarm types, 44 directed
edges in the graph. Furthermore, we have also obtained the ground-truth root
cause alarms in a random sample of 6,000 alarm transactions. These are used to
evaluate the root cause localization accuracy.

6.1 Causal Graph Structure Correctness

We evaluate our proposed HPCI method and the accuracy of the discovered
causal graphs. We use four frequently used causal inference methods for sequen-
tial data as baselines.
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Table 1. F1-scores on the synthetic dataset for different number of event types and α.

α N PS-GS PS-FZ PCTS HPADM4 HPCI

(0.01,0.05)
10 0.286 0.174 0.283 0.566 0.200
20 0.133 0.321 0.156 0.306 0.604
30 0.216 0.267 0.104 0.229 0.357

(0.05,0.1)
10 0.500 0.529 0.283 0.500 0.867
20 0.367 0.585 0.155 0.323 0.806
30 0.265 0.484 0.227 0.227 0.756

(0.1,0.5)
10 0.467 0.811 0.278 0.517 0.933
20 0.621 0.889 0.151 0.306 0.984
30 0.495 0.845 0.103 0.227 0.967

(0.5,1.0)
10 0.800 0.722 0.272 0.517 0.929
20 0.708 0.906 0.151 0.302 0.983
30 0.433 0.845 0.103 0.227 0.967

– PC-GS: PC algorithm with G-square CI test.
– PC-FZ: PC algorithm with Fisher-Z CI test.
– PCTS: Improved PC algorithm for causal discovery in time series [14].
– HPADM4: Multi-dimensional Hawkes process with exponential parameteri-

zation of the kernels and a mix of L1 and nuclear-norm [25].

The significance level p in the conditional independence tests included in the
methods are all set to 0.05. The size of time window w for aggregating event
sequences is set to 300 seconds, the maximum lag τmax = 2 in PCTS, and the
penalization level in HPADM4 is set to the default 1,000. Furthermore, the decay
parameter β in Hawkes process is set to 0.1, and we select Fisher-Z as the CI
test in our HPCI algorithm. For evaluation, we define three metrics as follows.

Precision =
|P ∩ S|
|P |

, Recall =
|P ∩ S|
|S|

, F1-score = 2 · Precision ·Recall
Precision+Recall

,

where P is the set of all directed edges in the learned causal graph GC and S is
the set of ground-truth edges.

Results. The F1-scores using synthetic data with N ∈ [10, 15, 20] are shown
in Table 1. As shown, HPCI outperforms the baselines for nearly all settings of
N and α. However, HPADM4 obtains the best result for N = 10 and low α,
this is due to the distribution of event occurrence intervals being sparse which
makes the causal dependency straightforward to capture using a Hawkes process.
However, for higher N or α the events will be denser. Thus, Hawkes process has
trouble distinguishing instantaneous causal relations, especially when events co-
occur. The use of CI tests in HPCI helps to distinguish these instantaneous
causal relations by taking another perspective in which causality is discovered
based on distribution changes in the aggregated data without considering the
time-lagged information among events. HPCI thus achieves better results. The
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Table 2. Results of the causal graph structure evaluation on the real-world dataset.

Method Precision Recall F1-score

PC-GS 0.250 0.159 0.194
PC-FZ 0.452 0.432 0.442
PCTS 0.220 0.864 0.350
HPADM4 0.491 0.614 0.545
HPCI 0.634 0.591 0.612

use of time aggregation is disadvantageous for PCTS due to its focus on time
series, which can partly explain its comparatively worse results.

The results on the real-world data are shown in Table 2. HPCI performs
significantly better than all baselines in precision and F1-score, while PTCS ob-
tains the highest recall. PTCS also has significantly lower precision, indicating
more false positives. PCTS is designed for time series, however, those may be
periodic, which can give higher lagged-correlation values leading to more redun-
dant edges. HPCI instead finds a good balance between precision and recall.
The competitive result indicates that the causality behind the real alarm data
conforms to the assumptions of HPCI to a certain extent.

6.2 Root Cause Alarm Identification

We evaluate the effectiveness of CPBE and the root cause alarm accuracy on the
real-world dataset. We use the causal graph structure created by HPCI as the
base and augment it with the 44 known causal ground-truths. The causal graph
is thus as accurate as possible. CPBE is compared with four baseline methods,
all used for determining edge weights.

– IT, directly use the weighted causal graph discovered by HPCI with the
learned influence intensities as edge weights.

– Pearson, uses the aligned Pearson correlation of each alarm pair [16].
– CP, the weights of an edge (u, v) is set to Auv

Au
where Auv is the number of

times u and v co-occur in a window, and Au is the total number of u alarms.
– ST, a static model with maximization likelihood estimator [5]. It is similar

to CP, but Auv represents the number of times u occurs before v.

For each method, IRIE is used to find the top-K most likely root cause alarms
in each of the 6,000 labeled alarm transactions. For IRIE, we use the default
parameters. We attempt to use RandomWalk, BFS, and DFS for traversal in
CPBE, as well as different Skip-gram configurations with w ∈ [1, 5] and vector
length L ∈ [10, 30]. However, there is no significant difference in the outcome,
indicating that CPBE is insensitive to these parameter choices on our data.
The results for different K when using RandomWalk are shown in Table 3. As
shown, CPBE outperforms the baselines for all K. For K = 1, CPBE achieves
an accuracy of 61.8% which, considering that no expert knowledge is integrated
into the system, is an excellent outcome. Moreover, the running time of CPBE is
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Table 3. Root cause alarm identification accuracy using different edge weight inference
strategies together with IRIE for alarm ranking at different K.

Method K=1 K=2 K=3 K=4 K=5

IT 0.576 0.590 0.672 0.810 0.900
Pearson 0.407 0.435 0.456 0.486 0.486
CP 0.474 0.640 0.730 0.790 0.840
ST 0.439 0.642 0.750 0.785 0.814
CPBE 0.618 0.752 0.851 0.929 0.961

around 10 seconds and IRIE takes 325 seconds for all 6,000 alarm transactions.
This is clearly fast enough for system deployment.

7 Conclusion

We present a framework to identify root cause alarms of network faults in
large telecom networks without relying on any expert knowledge. We output
a clear ranking of the most crucial alarms to assist in locating network faults.
To this end, we propose a causal inference method (HPCI) and a novel network
embedding-based algorithm (CPBE) for inferring network weights. Combining
the two methods, we construct an alarm influence graph from historical alarm
data. The learned graph is then applied to identify root cause alarms through
a flexible ranking method based on influence maximization. We verify the cor-
rectness of the learned graph using known causal relation and show a signifi-
cant improvement over the best baseline on both synthetic and real-world data.
Moreover, we demonstrate that our proposed framework beat the baselines in
identifying root cause alarms.
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