
Multi-Source Anomaly Detection in Distributed IT
Systems

Jasmin Bogatinovski1,3 and Sasho Nedelkoski1,3

Distributed Operating Systems, TU Berlin, Berlin, Germany
{jasmin.bogatinovski, nedelkoski}@tu-berlin.de

Equal contribution

Abstract. The multi-source data generated by distributed systems, provide a
holistic description of the system. Harnessing the joint distribution of the different
modalities by a learning model can be beneficial for critical applications for
maintenance of the distributed systems. One such important task is the task of
anomaly detection where we are interested in detecting the deviation of the current
behaviour of the system from the theoretically expected. In this work, we utilize the
joint representation from the distributed traces and system log data for the task of
anomaly detection in distributed systems. We demonstrate that the joint utilization
of traces and logs produced better results compared to the single modality anomaly
detection methods. Furthermore, we formalize a learning task - next template
prediction NTP, that is used as a generalization for anomaly detection for both logs
and distributed trace. Finally, we demonstrate that this formalization allows for the
learning of template embedding for both the traces and logs. The joint embeddings
can be reused in other applications as good initialization for spans and logs.

Keywords: multi-source anomaly detection · multi-modal · logs · distributed
traces.

1 Introduction

The complexity of the multi-layered IT infrastructures such as the Internet of Things,
distributed processing frameworks, databases and operating systems, is constantly in-
creasing [10]. To meet the consumers’ expectations of fluent service with low response
times guarantees and availability, the service providers highly rely on the high volumes
of monitoring data. The massive volumes of data lead to maintenance overhead for the
operators and require introducing of data-driven tools to process the data.

A crucial task for such tools is to correctly identify the symptoms of deviation of the
current behaviour system from the expected one. Due to the large volumes of data, the
anomaly detector should produce a small number of false-positive alarms, thus reducing
the efforts of the operators, while at the same time producing a high detection rate.
The benefit of timely detection allows prevention of potential failures and increases
the opportunity window for conducting a successful reaction from the operator. This is
especially important if urgent expertise and/or administration activity is required. The
symptoms often are notified whenever there are performance problems or system failures
and usually manifests as some fingerprints within the monitored data: logs, metrics or
distributed traces.

ar
X

iv
:2

10
1.

04
97

7v
1

 [
cs

.L
G

]
 1

3
Ja

n
20

21

2 Bogatinovski J. Nedelkoski S. et al.

The monitored system data represent the state of the system at any time point. They
are grouped into three categories-modalities: metrics, application logs, and distributed
traces [12]. The metrics are time-series data that represent the utilization of the available
resources and the status of the infrastructure. Typically they involve measuring of the
CPU, memory and disk utilization, as well as data as network throughput, and service
call latency. Application logs are print statements appearing in code with semi-structured
content. They represent interactions between data, files, services, or applications contain-
ing a rich representative structure on a service level. Service, microservices, and other
systems generate logs which are composed of timestamped records. Distributed traces
chains the service invocations as workflows of execution of HTTP or RPC requests. Each
part of the chain in the trace is called an event or span. A property of this type of data is
that it preserves the information for the execution graph on a (micro)service level. Thus,
the information for the interplay between the components is preserved.

The log data can produce a richer description on a service level since they are
fingerprints of the program execution within the service. On the other side, the traces do
not have much information on system-level information but preserve the overall graph
of request execution. Referring to the different aspects of the system, the logs and traces
provide orthogonal information for the distributed systems behaviour. Building on this
observation in this work, we introduce an anomaly detection multi-source approach
that can consider the data from both the traces and logs, jointly. We demonstrate the
usability of time-aligned log and tracing data to produce better results on the task of
anomaly detection as compared to the single modalities as the main contribution to this
work. The results show that the model build under the joint loss from both the logs
and trace data can exploit some relationship between the modalities. The approach is
trainable end-to-end and does not require the building of separate models for each of the
modalities. As a second contribution, we consider the introduction of vector embeddings
for the spans within the trace. The adopted approach allows the definition of the span
vectors as a pooling over the words they are composed of. We refer to these vector
embeddings as span2vec.

2 Related Work

The literature recognizes various approaches concerned with anomaly detection in
distributed systems from single modalities. We review the single modalities approaches
for both logs and traces. We also provide an overview of the existing multi-modal
approaches, however, none of them jointly considers both traces and logs.

The most common approaches for anomaly detection from log data roughly follows
a two-step composition - log parsing followed by a method for anomaly detection.
The first step allows for an appropriate log representation. One challenge during this
procedure is the reduction of the noise in the log data. This noise in a log message is
present due to the various parameters parts of the log can take during execution. To this
end, there are many proposed techniques for log parsing [3, 7, 14]. A detailed overview
and comparison across benchmarks of these techniques are given in [18]. After the
template extraction, there are two general approaches to represent the logs. The first one
is based on word frequencies and metrics derived from the logs (e.g TF-IDF) [2,5,15,17]

Multi-Source Anomaly Detection in Distributed IT Systems 3

or reusing word representation of the logs, based on corpora of words. The second
approach aims at translating the templates into sequences of templates - most often
represented as sequences of integers or sequences of vectors. Such representation allows
modelling the sequential execution of a program workflow. One of the most commonly
utilized approaches is RNN-based(e.g LSTM, GRU) [1]. They often are coupled with an
additional mechanism such as attention to allow for better preservation of the semantic
information inside the logs [6]. Depending on the data representation, various methods
are utilized from both the supervised and unsupervised domains of machine learning.
However, due to easier practical adoption and the absence of labels, the unsupervised
methods are preferred.

The available approaches for anomaly detection from tracing data are scarce. They
usually model the normal execution of a workload, represented within the trace by
utilizing history h of recent trace events as input. They decompose the trace in its
building blocks, the events/spans, and predict the next span in the sequence. The anomaly
detection is done with imposing thresholds on the number of errors the LSTM is making
for the corresponding trace predicted [9, 10]. Further approaches aim to capture the
execution of a complete workload into a finite state automata (FSA) [16]. However,
the FSA approaches are dependent on specific tracing implementation systems. The
unification of this approach with other types of modalities such as the log data due to the
assumed homogeneous structure of the states building the FSA is harder.

Several works on multi-modal learning for anomaly detection demonstrate the feasi-
bility of using different modalities of data for anomaly detection [11, 13]. In the context
of large scale ICT systems, the authors in [10] consider the joint exploitation of traces
and the corresponding response times of the spans within the trace. More specifically,
a multi-modal LSTM-based method, trained jointly on both modalities is introduced,
showing the additional value added by the shared information, improves the anomaly
detection scores. In [4] a Multimodal Variational Autoencoder approach is adopted for
effectively learning the relationships among cross-domain data which provide good
results for anomaly detection build on the logs and metrics as modalitites. However, they
do not preserve the information for the overall microservice architecture.

To the best of our knowledge, the literature does not yet recognize methods for
joint consideration of logs and traces as fundamentally complementary data sources
describing the distributed IT systems. Hence in this work, we propose an approach on
how to jointly consider the complement information within the logs and traces.

3 Multimodal approach for anomaly detection from heterogeneous
data

In this section, we describe the multi-source approach towards anomaly detection using
logs and tracing data. First, we describe the logs and traces as generated by the system.
We present their specifics that are exploited for the definition of the Next Template
Prediction (NTP) pseudo-task. Second, we describe the NTP pseudo-task for anomaly
detection. Thirdly, we describe one way to address the NTP task utilizing deep learning
architecture on a single modality description of the system state. Next, we provide a
solution that enables us to efficiently solve the NTP problem as a pseudo task for joint

4 Bogatinovski J. Nedelkoski S. et al.

detection of anomalies from both logs and traces. Finally, we present an approach that
uses the results from the NTP task and performs anomaly detection.

3.1 Data Representation

The raw logs and traces as generated by the system, contain various information about the
specific operation being executed. Since some of the information is a sporadic description
of the operations, proper filtering and representation should be done. Due to the specifics
of the two modalities, we address them separately.

Logs A log is a sequence of temporally ordered unstructured text messages L = {li :
i = 1, 2, ...}. Each text message li is generated by a logging instruction (e.g. printf(),
log.info()) within the software source code. Since the logging function is part of the
body of the whole program, it can serve as a proxy for the program execution workflow.
Hence one can infer the normal execution pattern within the program workflow.

The logs consist of a constant and a varying part, referred to as log template and log
parameters. Due to the large variability of the parameters, they can introduce a lot of
noise. To mitigate this problem common way to represent the logs is with the extraction
of the constant part through a log parsing procedure. It allows for the creation of a
dictionary of log templates from a given set of logs.

To unify the representations of the logs, the log templates are tokenized. A dictionary
from the tokens, representing the vocabulary of all of the tokens in the logs - Dlogs words

is created. Since the log templates can have a different number of tokens, for the uniform
representation of the log templates a special <SPECLOG> token is added, such that each
of the logs has an equal number of tokens. The maximal size of the log template is
limited by a parameter called max log size.

Li = {W i
0,W

i
1, . . . ,W

i
t } (1)

where each of the Wt is an extracted word mapped to index t ∈ Dlogs word indecies.

Distrubted traces Distributed traces are a request-centred way to describe behaviour
within the distributed system. It means that they follow the execution of the user issued
a request through the distributed system in a record referred to as spans. The spans
represent information (e.g. start time, end time, service name, HTTP path) about the
operations performed when handling an external request in service. Formally, a trace is
written as

Ti = {Si
0, S

i
1, . . . , S

i
m} (2)

, where i ∈ {1, . . . , N} is a trace as part of an observation set of traces, and m is the
length Ti or the number of spans in the trace.

One of the most characteristic properties of the spans is the function executed during
the event and a corresponding endpoint. They usually represent either HTTP or RPC calls,
denoting the interconnection between the spans within the trace. The HTTP calls are
described with path, scheme, method. The RPC calls are represented with the functions

Multi-Source Anomaly Detection in Distributed IT Systems 5

they are executing. Since these features represent the intra-service communication in a
trace, we assume that they are sufficient for structural analysis of possible anomalies. To
provide a richer representation of the traces, further augmentation of the traces can be
done. More specifically, two artificial spans (<START> and <END>) are added to the
beginning and the end of the trace, accordingly. It preserves the knowledge for the length
of the trace.

Represented in this form the spans have very similar representation as to the logs,
with additional constraints that the spans are further bounded by the operation executed
within the trace. It means that they also are facing the problem of the presence of
noise into the representation induced by the varying parameters. Similar as for the logs,
applying a template extraction technique produces a set of representative template spans.
It allows for each of the trace to be represented as a sequence of template spans. Formally,

Ti = {Sti0, Sti1, . . . , Stik} (3)

where each of the Stk is an extracted template mapped to index k ∈ Dtemplate indecies.
Observing that each function calls are sequences of characters, a dictionary of

the sequences of characters appearing inside the given set of traces is constructed
- Dspan words. It provides a unique language for the description of all of the spans
appearing in the observed traces. Formally a span is represented as

Stj = {W i
0,W

j
1 , . . . ,W

j
q } (4)

where Wq is a sequence of characters as extracted from the dictionary of span words
Dspan words. Since there are spans with a different number of words, to provide spans
in an appropriate representational format for later processing, each of the spans is
augmented with a <SPECSPAN> token.

3.2 NTP: Pseudo-task for Anomaly Detection

Representation of both traces and logs in the previously described manner, allow us to
take a unified approach towards their modelling. The appearance of the next log message
is conditioned on the appearance of the history of the previous logs. Similarly, within
a trace, the appearance of the next span is conditioned on the previous ones. Thus the
modelling problem can be conceptualized formally as

P (ATwin:T) =

T∏
t=Twin

P (At|A<t) (5)

where A<t denotes the templates traces or logs from At−win to At, with win denoting
the size of the preserved history. Hence we refer to this task as the next template
prediction (NTP).

3.3 Single Modality Anomaly Detection

Fig. 1 depicts the proposed end to end architecture to solve the NTP task for single
modalities. We use the same architecture for both the logs and the traces.

6 Bogatinovski J. Nedelkoski S. et al.

Model

Template embedding layer

Word embedding

T1 embedding

W1 W2 Wn-1 Wn...

T2 embedding Tk-1 embedding Tk embedding...

LSTM LSTM LSTM

TRACES

LSTM LSTM LSTM

P(T(s+1))

Fig. 1: Proposed architecture for single modality. The same approach can be utilized also
for the logs data.

At the input, we provide the dictionary of the words as appearing in Dlogs words and
Dspan words. We perform initialization with random vectors for each of the words with
a specific size. This is a parameter of the method referred embedding size Nembedding.
The template embedding layer uses the representations of the words to create the corre-
sponding sequences of templates. These sequences are fed through an autoregressive
deep learning LSTM method that is modelling the sequential dependence between the
input samples represented with f(x). Its output is used to calculate the softmax between
the real next template and the output of the network. The softmax is calculated as

P (f(x)) =
ef(x)

A∑
i=1

efi(x)
(6)

It calculates a distribution over the all possible templates. The one with the maximal
probability is considered the most likely template to appear given the input sequence of
templates.

LSTM architecture is a deep learning neural network method used for efficiently
modelling sequential data. The representation of the system state is given via a single
vector, refer to as a hidden state. The assumption the method is making, builds on top of
the Markov property. It states that the state of the system at any particular point in time
can be determined just from the previous state. To achieve this goal, it utilizes a selection
mechanism build on abstractions of input, output and forget gates. This mechanism
allows the network to selectively choose how much information from the previous inputs
it should preserve and distribute towards the output. Hence it can model short and long
term dependencies within a sequence and the structure appearing into the sequence of

Multi-Source Anomaly Detection in Distributed IT Systems 7

Model

Template embedding layer

Word embedding

T1 embedding

W1 W2 Wn-1 Wn...

T2 embedding Tk-1 embedding Tk embedding...

LSTM LSTM LSTM
Template embedding layer

Word embedding

L1 embedding

W1 W2 Wn-1 Wn...

L2 embedding Lk-1 embedding Lk embedding...

LSTM LSTM LSTM

concatenation

TRACESLOGS

predict:
Tk+1

predict:
Tk+1

LOGS TRACES

Fig. 2: Proposed architecture for joint analysis of logs and traces.

state events. Thus it is a handy solution for modelling our problem. Stacking of multiple
LSTM cells provides greater representational power of the architecture.

3.4 Multimodal LSTM

To account for both modalities and enable end to end learning system for anomaly
detection, we propose the method as given on Fig. 2. It is composed of two models
described in the previous section. On the inputs provided are the dictionary of logs and
spans, simultaneously, to each of the two models. However, the output of both LSTMs
is concatenated to one another and fed through an additional linear layer. It gives an
advantage of including the information from both of the modalities, to improve the
predictive performance. The shared information from the concatenation is then passed
through two linear layers, one accounting for the traces and the other for the logs.

To account for both modalities the cost function is also changed. We calculate it
as a joint cross-entropy loss of the most likely span and log to appear, given the joint
information in a particular period. We calculated the joint loss as follows:

L((s, l), f(x, y)) = L(f(x), s) + L(f(y), l) (7)

where L(·, ·) account for the categorical-cross entropy loss, and s and l for the ground
truth span and log templates that should appear as the next relevant templates. Because the
loss function includes the information from both modalities when the back-propagation
step is done the gradients are calculated based on the information from both of the
modalities.

One important detail for joint training the two modalities is providing the information
from the same time intervals to the model from both of the modalities. The granularity
representation of a log message is on a single time interval, on one side, and the spans
span across multiple time stamps. To address this challenge we address block of logs
of varying size. The size of a block of log messages is dependent on the corresponding
spans within the trace appearing during the particular time interval. To create a block
of log messages we stack multiple logs together to pair up with the corresponding time
intervals determined by the spans. Such an approach requires the introduction of a
maximal number of logs that are considered at once.

8 Bogatinovski J. Nedelkoski S. et al.

Given this coupling between the traces and logs, the question to ask is ”What is the
learning task for the joint method?”. Since the time spanning of the spans determine
the size of log blocks, just a window size parameter on the traces imposed is. This
parameter determines the number of spans the method should use to produce the next
one. The block of log messages is created in a way that, the log messages that come
from the start time of the first and the end time of the last span in the window of spans
are joined into one block. The target is to predict the next expected log. An additional
complication that can arise is the absence of logs in a particular time frame. To address
this, we denote those windows that have a missing target and drop them from the learning
set.

3.5 Anomaly Detection

NTP is utilized for anomaly detection for logs, however, the anomaly detection in the
traces require additional anomaly detection procedure. We further provide a simple and
effective method that acts on the output from the NTP solver to detect if there is an
anomaly or not. The anomaly detection procedure for the single modality log model
considers a log as normal if the prediction for the log is in the next top k logs. Otherwise,
it is predicted as an anomaly.

For the detection of anomalous trace, the decision procedure should take into consid-
eration the correct prediction among all of the spans in the trace subject to prediction.
A span is correctly predicted if, for a given input sequence of spans, the true span is in
the top k span ranked spans. For each trace, this procedure creates an accumulation of
the correctly predicted spans. The ratio of incorrectly predicted spans (span error rate)

num err
length(trace) is considered as an anomaly score for the trace. Setting a threshold on this
score can be used for anomaly detection. Finally, for the joint multimodal method, a
combination of the previously described techniques is utilized.

4 Experiments and results

In this section, we first describe the experimental design we used for evaluation. Second,
we provide a detailed analysis of the results from the experiments to justify the improve-
ments the joint information provides. Finally, we discuss the span2vec embedding as a
consequence and further contribution of this work.

4.1 Experiments

Dataset preprocessing details In the experiments we used the publicly available dataset
1 covering the trace and logs as monitoring components in overlapping time intervals.
To the best of our knowledge, this is the only available dataset suited for multi-modal
anomaly detection in distributed systems and as such it is utilized.

The experiments are generated from an OpenStack deployment testbed. We used the
concurrent execution scenario, with 3 execution workloads: create an image, create a
server, create a network, as described in [8]. As such we demonstrate the usefulness of
our method in scenarios as close to real-world execution.

1 https://zenodo.org/record/3549604

https://zenodo.org/record/3549604

Multi-Source Anomaly Detection in Distributed IT Systems 9

Table 1: Results from the experimental evaluation.
score Logs-joint Trace-joint Single logs Single traces

accuracy 0.976 0.990 0.974 0.955

precision 0.904 0.992 0.897 0.992

recall 0.996 0.984 0.996 0.909

f1 0.948 0.988 0.944 0.949

Train test split The training dataset is composed of the traces appearing up to a
particular time point, such that 70 % of the normal traces are contained. The anomalous
traces during this time-window are discarded. The logs that belong in the corresponding
time intervals as generated by the trace are also preserved in the training set. We aim
of modelling the normal behaviour of the system with preserving the normal traces and
normal logs. To evaluate our model, the test set is composed of all of the remaining logs
and traces appearing after the split time point.

Baselines The main aim of this work is to demonstrate that the shared information
between the logs and traces can improve anomaly detection in comparison to anomaly
detection methods build from single modalities. As baselines we use the single modality
LSTM method build separately for the traces and logs. The models are built on the
same dataset as the multi-modal model and tested on the same test set to allow for a fair
comparison.

Implementation details The first step of the data preprocessing requires settings the
values for the Drain parser. The values for the similarity and depth were set to 0.5, 0.4
and 4, 4, for the logs and traces accordingly. These values provide a concise template as
evaluated by the domain expert. The N embedding is set to 256. For the window size
parameter for the traces the value is set to 3. For optimization of the cost functions for
the single and multiple modalities methods, we use SGD solver with standard values
for the learning rate = 0.001 and momentum = 0.9. The batchsize is set to 256 as
a commonly chosen values. The number of epochs is 100 for all of the tested methods.

For the anomaly detection procedure we further require the logs top k and
trace top k parameters. They are set to 20 and 1 accordingly. For the error thresh-
old on the anomaly score, the best value between 0.05 and 1 with a step of 0.05 chosen
is.

4.2 Results

Table 1 summarize the results from the experiments. Firstly, one can observe that the
results from the single modalities methods show that for the logs and traces, individually
the approach can provide good results. It shows that the assumption made by the NTP
task solver is sufficient for successful modelling of the normal state of the system.

10 Bogatinovski J. Nedelkoski S. et al.

300 200 100 0 100 200 300 400
First TSNE component

300

200

100

0

100

200

300
Se

co
nd

 T
SN

E
co

m
po

ne
nt

S T A R T

G E T r o o t

P O S T v 3 a u t h t o k e n s

P O S T v 2 . 0 n e t w o r k s

G E T v 3 a u t h t o k e n s

D E L E T E v 2 . 0 n e t w o r k s

S T O P
P O S T v 2 . 1 s e r v e r s G E T v 2

P O S T v 2 i m a g e s
P U T v 2 i m a g e s f i l e D E L E T E v 2 i m a g e s

G E T v 2 . 0 G E T v 2 . 0 q u o t a s

G E T v 2 . 1 s e r v e r s P O S T v 2 . 1 s e r v e r s a c t i o n

G E T v 3

G E T v 2 i m a g e s 5 d d b 8 b a 7 - 7 6 0 9 - 4 4 3 e - a b 6 0 - 0 2 b 3 6 5 6 b 3 3 4 b f i l e 1 7 1
Visualisaiton of the embeddings of each of the traces.

Fig. 3: Span2Vec embedding of the events in the tracing data from the whole vocabulary
of spans for the three different workloads.

Comparison of the results from the columns Trace-joint and Trace-single suggest
that there is an improvement of the results for the traces for the multimodal method.
More specifically, there can be observed improved value on the recall for the joint model
for the traces in comparison to the single one. This suggests that the addition of the
additional information from the logs can increase the number of correct predictions for
the anomalous traces. The improvement is further depicted in the increased value for the
F1 score on the joint traces. The results on the logs do not seem that change too much.
One explanation of this behaviour is that the granularity of the information from the
logs is truncated on the level of the data source with a lower frequency of generation
- the trace is harder for the information in the trace to be transferred to the logs. The
information that the multimodal method is receiving from the logs when it is aiming to
predict the next relevant span complements the information as obtained just from the
sequence of spans individually.

4.3 Span2Vec and Log2Vec

One element of the method is the ability to learn to embed both the logs and spans. The
logs and spans are composed of words represented as vectors. The vectors are learned
during the optimization procedure. Hence are optimized for the specific NTP task. Since
the logs and spans are linear combinations from these words, pooling over the words
belonging to the same span/log can be used to provide a unique vector mapping for them.

Fig. 3 depicts a two-dimensional representation of the vector space of the spans
embeddings. Three operations are executed. Close observation reviles that spans that are
specific for a workload occur close to one another, while the ones that are shared co-occur
in groups of their owns. For example, the spans GET /v2.0/images/, PUT /v2.0/image/,

Multi-Source Anomaly Detection in Distributed IT Systems 11

GET /v2/images/ and POST /v2.0/networks/ are unique for create delete image workload.
As it can be observed, these spans are very close to one another in comparison to the
other spans like the pair POST /v2.0/networks and DELETE /v2.0/network/. On the other
side, the artificially added spans like START and STOP or the authentication span each
of the workloads is utilizing are grouped, separated from the workload-specific spans.
Close inspection of the Euclidean distance between the spans confirms the observations
from the TSNE vector representation. The importance of these embeddings is the most
emphasised in their future reuse for warm starting the methods. This can reduce the
adoption time and the difficulty when a new machine model is deployed in production.

5 Conclusion

In this work, we presented a novel method for multi-source anomaly detection in dis-
tributed systems. It uses data from two complementary different modalities describing
the behaviour of the distributed system - logs and traces. We utilize the next template pre-
diction (NTP) task as a pseudo task for anomaly detection. It is based on the assumption
that the relevant information from the program execution workflow can be preserved into
one vector. Then it uses the corresponding vector to predict the most relevant template
to appear. To detect the anomaly, a post-processing step that acts on the predictions of
the NTP task is used.

The results show that the multimodal approach can improve the scores for anomaly
detection for multiple modalities in comparison to the single modalities of logs and
traces. The information that the logs and traces are preserving is complementary and the
model can exploit it. Furthermore, the method can produce vector representation for both
the logs and traces. These vector embeddings are used as a good bias for transferring
and reusing the accumulated knowledge for faster training and adaptation.

In future work, we would investigate how adding additional information from the
metric data can be incorporated into the model. It will allow for the creation of a unified
model of the whole system behaviour, making the further processes of AIOps life-cycle
easier. Additionally, we would investigate transfer learning approaches based on the
generated embeddings. Specifically, we are interested in investigating how the learned
embeddings can be reused for other types of workloads with a final aim to reduce the
deploy time of the machine learning model in production.

References

1. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1285–1298. Association for
Computing Machinery, New York, NY, United States (2017)

2. He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: Towards automated log parsing for large-scale log
data analysis. IEEE Transactions on Dependable and Secure Computing 15, 931–944 (2018)

3. He, P., Zhu, J., Zheng, Z., Lyu, M.: Drain: An online log parsing approach with fixed depth tree.
In: IEEE International Conference on Web Services (ICWS). pp. 33–40. Curran Associates,
Red Hook, NY, USA (2017)

4. Ikeda, Y., Ishibashi, K., Nakano, Y., Watanabe, K., Kawahara, R.: Anomaly detection and
interpretation using multimodal autoencoder and sparse optimization (2018)

12 Bogatinovski J. Nedelkoski S. et al.

5. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for system
problem detection. In: Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference. p. 24. USENIX Association, USA (2010)

6. Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y., Chen, Y., Zhang, R., Tao, S., Sun, P.,
Zhou, R.: Loganomaly: Unsupervised detection of sequential and quantitative anomalies in
unstructured logs. In: Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. pp. 4739–4745. International Joint Conferences on Artificial
Intelligence Organization (2019)

7. Nedelkoski, S., Bogatinovski, J., Acker, A., Cardoso, J., Kao, O.: Self-supervised log parsing
(2020)

8. Nedelkoski, S., Bogatinovski, J., Mandapati, A.K., Becker, S., Cardoso, J., Kao, O.: Multi-
source distributed system data for ai-powered analytics. In: Service-Oriented and Cloud
Computing. pp. 161–176. Springer International Publishing, Cham (2020)

9. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection and classification using distributed
tracing and deep learning. In: 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). pp. 241–250. IEEE Computer Society, Los Alamitos,
CA, USA (2019)

10. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection from system tracing data using
multimodal deep learning. In: 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD). pp. 179–186. IEEE Computer Society, Los Alamitos, CA, USA (2019)

11. Park, D., Erickson, Z., Bhattacharjee, T., Kemp, C.C.: Multimodal execution monitoring for
anomaly detection during robot manipulation. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA). pp. 407–414. Curran Associates, Red Hook, NY, USA
(2016)

12. Sridharan, C.: Distributed Systems Observability: A Guide to Building Robust Systems.
O’Reilly Media (2018)

13. Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep boltzmann machines. Journal
of Machine Learning Research 15, 2949–2980 (2014)

14. Tang, L., Li, T., Perng, C.S.: Logsig: Generating system events from raw textual logs. In:
Proceedings of the 20th ACM International Conference on Information and Knowledge
Management. p. 785–794. Association for Computing Machinery, New York, NY, USA
(2011)

15. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale system problems
by mining console logs. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles. p. 117–132. Association for Computing Machinery, New York, NY, USA
(2009)

16. Yang, Y., Wang, L., Gu, J., Li, Y.: Transparently capturing request execution path for anomaly
detection (2020)

17. Zhang, Y., Sivasubramaniam, A.: Failure prediction in ibm bluegene/l event logs. Seventh
IEEE International Conference on Data Mining (ICDM 2007) pp. 583–588 (2007)

18. Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., Lyu, M.R.: Tools and benchmarks for
automated log parsing (2018), http://arxiv.org/abs/1811.03509

http://arxiv.org/abs/1811.03509

	Multi-Source Anomaly Detection in Distributed IT Systems

