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Abstract. Topology preservation is a property of rigid motions in R2, but not in
Z2. In this article, given a binary object X ⊂ Z2 and a rational rigid motion R,
we propose a method for building a binary object XR ⊂ Z2 resulting from the
application of R on a binary object X. Our purpose is to preserve the homotopy
type between X and XR. To this end, we formulate the construction of XR from X
as an optimization problem in the space of cellular complexes with the notion of
collapse on complexes. More precisely, we define a cellular space H by superim-
position of two cubical spaces F and G corresponding to the canonical Cartesian
grid of Z2 where X is defined, and the Cartesian grid induced by the rigid motion
R, respectively. The object XR is then computed by building a homotopic trans-
formation within the space H, starting from the cubical complex in G resulting
from the rigid motion of X with respect to R and ending at a complex fitting XR
in F that can be embedded back into Z2.

Keywords: rigid motions, Cartesian grid, homotopy type, binary images, cubical
complexes, cellular complexes.

1 Introduction

Rigid motions built by composition of rotations and translations are isometric transfor-
mations in the Euclidean spaces Rn (n ≥ 2). In particular, they are bijective and they
preserve geometric and topological properties between an object and its image. This is
no longer the case when rigid motions are considered in the Cartesian grids Zn.

Translations [4, 14], rotations [1, 2, 5, 9, 19, 20, 23, 25] and more generally rigid mo-
tions [16–18, 21, 24] in the Cartesian grids have been studied with various purposes:
describing the combinatorial structure of these transformations with respect to Rn vs.
Zn [4, 5, 14, 22, 26], guaranteeing their bijectivity [1, 2, 9, 19, 23–25] or transitivity [20]
in Zn, preserving geometrical properties [17] and, less frequently, ensuring their topo-
logical invariance [16, 18] in Zn. These are non-trivial questions, and their difficulty
increases with the dimension of the Cartesian grid [21]. Indeed, most of these works
deal with Z2 [1, 2, 4, 5, 9, 14, 16, 18–20, 24, 25]; fewer with Z3 [17, 23, 26].

? This work was supported by the French Agence Nationale de la Recherche (Grants ANR-15-
CE23-0009 and ANR-18-CE23-0025).
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In this preliminary study we investigate how it may be possible to preserve the
topological properties of a digital object defined in the Cartesian grid when applying
a rigid motion. In [18] a specific family of digital objects in Z2, called “regular”, was
proved to preserve their topology under any rigid motion. But all the digital objects in
Z2 are not regular, and the required modifications for generating a regular object from a
non-regular one induce asymmetric operations between the object and its background.
In [16] the putative topology preservation between an object and its image in Z2 by a
rigid motion was checked by searching a path in the combinatorial space of digital rigid
motions that corresponds to a point-by-point homotopic transformation between both.
But this process allows to assess the topological invariance, not to ensure it.

We propose a new, alternative way of tackling the problem of digital rigid motion
under the constraint of topological invariance. As in [16, 18], we consider the case of
digital objects in Z2. Since a digital object X and its usual digital image by a rigid motion
R are not guaranteed to present the same topology, our purpose is to compute a digital
object XR that (1) has the same topology as X and (2) is “as similar as possible” to the
usual digital image of X by R. To reach that goal, we embed our digital objects in the
Euclidean space and we process them in the (continuous but discrete) space of cellular
complexes. This allows us to model / manipulate these objects in a way compliant
with both their digital nature and their continuous interpretation (in particular from
a topological point of view), but also to carry out basic transformations at a scale finer
than that of Z2. The definition of XR from X and R is then formulated as an optimization
problem, which presents similarities with the topology-preserving paradigms developed
in the framework of deformable models.

2 Problem Statement

Let X ⊂ Z2 be a digital object. Let X ⊂ R2 be the continuous analogue of X, defined
as X = X ⊕ � where ⊕ is the usual dilation operator and � is the structuring element
[ 1

2 ,
1
2 ]2 ⊂ R2. In other words, X is the union of the pixels (i.e. closed, unit squares)

centered at the points of X. We note � : 2Z
2
→ 2R

2
the function that defines this

continuous analogue, i.e. such that �(X) = X ⊕ � = X.
Let R : R2 → R2 be a rigid motion, defined as the composition of a rotation and a

translation. Usually, the image of the digital object X ⊂ Z2 by the rigid motion R, noted
XR is a digital object of Z2 defined as XR = XR∩Z2, with XR = R(X) = {R(x) | x ∈ X} ⊂
R2. In other words, XR is defined as the Gauss digitization of the continuous object XR.
We note � : 2R

2
→ 2Z

2
the function that defines the Gauss digitization of a continuous

object, i.e. such that �(Y) = Y ∩ Z2. The usual overall process is exemplified in Fig. 1.
Our purpose is that XR be as similar as possible to X, up to the rigid motion R.

Reaching the best similarity can be formalized as solving the following optimization
problem:

XR = argY∈2Z2 minDR,X(Y) (1)

whereDR,X : 2Z
2
→ R+ is an error measure (parameterized byR and X) that allows us to

estimate the (dis)similarity between two digital objects. For instance, when considering
the Gauss digitization we setD�

R,X(Y) = | � (R(�(X))) \ Y | + | Y \ �(R(�(X))) | and the
unique solution XR is reached whenD�

R,X(XR) = 0.
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Fig. 1. Digitized rigid motion (here, by Gauss digitization). From left to right: X ⊂ Z2, X =

�(X) ⊂ R2, R(�(X)) ⊂ R2 and the result �(R(�(X))) = XR ⊂ Z2. (Dots: points of Z2; grey zones:
parts of R2). This transformation does not preserve the topology between X and XR.

However, in this work, we also want to guarantee that XR has the same topology as
X. In other words, we now want to solve the optimization problem (1) under an addi-
tional constraint that excludes the candidates Y ⊂ Z2 that have a different topology from
X. Still considering the Gauss digitization policy, a solution XR may then be reached for
D�
R,X(XR) > 0, i.e. without fully satisfying the minimality requirements on the error

measure. Our purpose is to solve this constrained optimization problem, i.e. to develop
a method for computing the homotopic images of digital objects under rigid motions.

3 Hypotheses

Digital topology, adjacency – The digital objects of Z2 are considered in the usual
framework of digital topology. In this framework, an object X has to be considered with
the 8- (resp. 4-) adjacency, whereas its background Z2 \X is considered with the dual 4-
(resp. 8-) adjacency, in order to avoid topological paradoxes related to the Jordan the-
orem. Without loss of generality, we choose to consider X ⊂ Z2 with the 8-adjacency
(otherwise, it is sufficient to consider the complementary of X instead of X as the object).

Cellular / cubical complexes – In order to handle the digital-continuous analogy be-
tween the objects of Z2 and those of R2, we consider the (intermediate) framework of
cellular complexes, formalized in [11] in the case of cubical complexes induced by the
Cartesian grid and proved compliant with both digital and continuous topologies [12,
15]. The cellular complexes can be generalized, without loss of generality to non-cubic
partitions (see e.g. [6]), and in particular to partitions of R2 made of convex polygons.

Homotopy type, simple points / cells – By “same topology”, we mean that the objects
we manipulate should have the same homotopy type. This choice is relevant for two rea-
sons. First, in dimension 2, the homotopy type is equivalent to most of the other usual
topological invariants. Second, there exist efficient topological tools that allow one to
modify an object whereas preserving its homotopy type. In particular, we will rely on
the notion of simple points / simple cells that are defined in the framework of digital
topology and cubical complexes [8], and which can be extended without difficulty to
any cellular complex thanks to the atomic notion of collapse.

Rational rigid motions – We define our rigid motions such that their parameters have
rational values. In particular, the translation vectors will be defined on Q2 whereas the
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sine and cosine of the rotation angles will be defined from Pythagorean triples. This will
allow us to handle a family of rigid motions sufficiently dense for actual applications
[3], but with discrete parameters that will lead to exact calculus.

4 Rigid Motions

In the sequel, a point of R2 is noted in bold (p); its coordinates are noted with subscripts
(p = (px, py)t). The transpose symbol is omitted by abuse of notation (p = (px, py)).

4.1 Basics on Rigid Motions

Let θ ∈ [0, 2π). Let t ∈ R2. The rigid motion R(θ,t) : R2 → R2 is defined, for any p ∈ R2

as:

R(θ,t)(p) = R(θ) · p + t where R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(2)

is the rotation matrix of angle θ and t is the translation vector.
As stated in Sec. 3, we only consider rotation angles within the subset of [0, 2π)

that contains values built from Pythagorean triples [3], called rational rotations. More
precisely, for any such θ, there exists a triple (a, b, c) ∈ Z3 such that a2 + b2 = c2, that
satisfies cos θ = a/c and sin θ = b/c. In other words, we have the guarantee that cos θ
and sin θ are rationals. In addition, we will also assume that t ∈ Q2.

From now on, we will set α = cos θ = a/c and β = sin θ = b/c ∈ [−1, 1] ∩ Q and
the rotation matrix of Eq. (2) is rewritten as:

R(θ) = R(α, β) =

[
α −β
β α

]
=

1
c

[
a −b
b a

]
(3)

The rigid motion R(θ,t) of Eq. (2), simply noted R from now on, can then be expressed
from (α, β, tx, ty) ∈ Q4, with α2+β2 = 1, and is called rational rigid motion. In particular,
for any p ∈ Q2, we have:

R(p) =

(
αpx − βpy + tx

βpx + αpy + ty

)
∈ Q2 (4)

4.2 Rigid Motion of a Digital Object

Let X ⊂ Z2 be a digital object. Let R : Q2 → Q2 be a rational rigid motion such as de-
fined by Eq. (4). Our purpose is to compute a digital object XR ⊂ Z2 that corresponds to
the image of X by R, with regards to our two constraints: the preservation of the homo-
topy type between X and XR; and the optimality of XR with respect to the optimization
problem (1).

In general, the object R(X) = {R(x) | x ∈ X} does not fulfill the required properties.
Indeed, by definition, we have R(X) ⊂ Q2, but in general we do not have R(X) ⊂ Z2.
A usual solution consists of applying the rigid motion R on a continuous analogue of
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X. This continuous analogue is often chosen as X = �(X), i.e. by associating to each
x ∈ X the pixel centered on x. We then obtain a continuous object X ⊂ R2, and we can
relevantly build XR = R(X) = {R(x) | x ∈ X}. This object XR has the same topology as
X and thus as X [12, 15] but it is not defined in Z2. To define a digital object XR from
XR, we generally rely on a digitization. But then, we can no longer guarantee that XR
has the same topology as XR, X and X.

To tackle this issue, once XR = R(X) = R(�(X)) ⊂ R2 has been built, we propose
to transform it into another continuous object Y ⊂ R2, with three constraints: (1) the
transformation between XR and Y has to be homotopic; (2) Y may be the continuous
analogue of a digital object of Z2, i.e. Y = �(�(Y)); and (3) the digital object Y =

�(Y) ⊂ Z2 associated to Y may satisfy the optimality in Eq. (1) for the chosen measure
DR,X.

To reach that goal, we propose to work in the space of cellular complexes, that al-
lows to model the continuous space R2 in a discrete way, but also to carry out homotopic
transformations.

5 Cellular Complexes

5.1 Basics on Cellular Complexes

Let P ⊂ R2 be a closed, convex polygon. Let P̊ be the interior of P and ∂P = P \ P̊ the
boundary of P. We note P(P) = {P̊}. Let E ⊂ ∂P be a maximal, closed line segment
of ∂P. Let E̊ be the interior (i.e. the open line segment) of E, and ∂E = E \ E̊ be the
boundary of E. The open line segment E̊ is called an edge of P. We note E(P) the set of
all the edges of P. Let v ∈ ∂E be a point of ∂E; the singleton set V = {v} is called a vertex
of P. We noteV(P) the set of all the vertices of P. The set F (P) = P(P)∪E(P)∪V(P)
is a partition of P.

Let Ω ⊂ R2 be a closed, convex polygon. LetK be a set of closed, convex polygons
such that Ω =

⋃
K and for any two distinct polygons P1, P2 ∈ K , we have P̊1∩ P̊2 = ∅.

We set K(Ω) =
⋃

P∈K F (P). It is plain that K(Ω) is a partition of Ω. We call K(Ω), or
simply K, a cellular space (associated to Ω).

Each element f2 (resp. f1, resp. f0) of K which is the interior (resp. an edge, resp.
a vertex) of a polygon P ∈ K is called a 2-face (resp. 1-face, resp. 0-face). We set Kd

(0 ≤ d ≤ 2, d ∈ Z) the set of all the d-faces of K. More generally, each element of K is
called a face.

Let f ∈ K be a face. The cell C(f) induced by f is the subset of faces of K such that⋃
C(f) is the smallest closed set that includes f. If f0 is a 0-face, then C(f0) = {f0}. If
f1 is a 1-face, then C(f1) = {f1, f

1
0, f

2
0} with f10, f

2
0 the two vertices bounding f1, such that⋃

C(f1) is a closed line segment. If f2 is a 2-face, then C(f2) = {f2, f
1
1, . . . , f

k
1, f

1
0, . . . , f

k
0}

(k ≥ 3) and
⋃

C(f2) is the closed polygon of interior f2 with k edges f?1 and k vertices
f?0 . For any cell C(f), the face f is called the principal face of C(f), and C(f) is also called
the closure of f. The star S (f) of a face f is the set of all the faces f′ such that f ∈ C(f′).

Remark A face f and its induced cell C(f) are characterized by the list of the 0-faces in
C(f). By abuse of notation, we will sometimes assimilate f and C(f) to the sorted (e.g.
clockwise) series of the k points vi (1 ≤ i ≤ k) that correspond to these 0-faces {vi}.
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A complex of K is a subset K ⊂ K defined as a union of cells of K. The embedding
of K into R2 is the set noted ΠR2 (K) ⊂ R2 defined by ΠR2 (K) =

⋃
K. Let X ⊂ R2.

If there exists a complex K ⊂ K such that X = ΠR2 (K), then we say that K is the
embedding of X into K and we note K = ΠK(X).

5.2 The Initial Cubical Space F

The initial digital object X is defined in Z2, and so is the final digital object XR that
we aim to build. Both have a continuous analogue in R2. The continuous analogue X
of X is defined as X = �(X). The continuous analogue Y of XR is characterized by
Y = �(XR) (see Sec. 4.2). In other words, both are defined as unions of unit, closed
squares (i.e. pixels) centered on the points of X and XR, respectively. In order to model
/ manipulate these two continuous objects X and Y of R2 as complexes, we build the
cellular (actually, cubical) complex space F as follows.

Let ∆ = Z + 1
2 = {k + 1

2 | k ∈ Z}. Let δ ∈ ∆. We define the vertical line Vδ ⊂ R
2 and

the horizon line Hδ ⊂ R
2 by the following equations, respectively:

(Vδ) x − δ = 0 (5)
(Hδ) y − δ = 0 (6)

We set V∆ = {Vδ | δ ∈ ∆}, H∆ = {Hδ | δ ∈ ∆} and G∆ = V∆ ∪H∆. This set G∆ is the
square grid that subdivides R2 into unit squares centered on the points of Z2. In other
words, G∆ generates the Voronoi diagram of Z2 in R2.

The induced cellular complex space F(R2), simply noted F, is then composed of:

– the set of 0-faces F0 = {{d} | d ∈ ∆2};
– the set of 1-faces F1 = {]d,d + ex[ | d ∈ ∆2} ∪ {]d,d + ey[ | d ∈ ∆2}; and
– the set of 2-faces F2 = {]d,d + ex[ × ]d,d + ey[ | d ∈ ∆2};

where ex = (1, 0) and ey = (0, 1). In particular, we have
⋃
F0 = V∆ ∩ H∆,

⋃
F1 =

G∆ \ (V∆ ∩H∆) and
⋃
F2 = R2 \ G∆.

For a digital object X ⊂ Z2 and its continuous analogue X = �(X), we define the
associated complex F = ΠF(X) as:

F =
⋃
x∈X

C(�(x)) = {f ∈ F | f ⊂ X} (7)

where � : Z2 → F2 is the bijective function that maps each p ∈ Z2 to the unit, open
square (i.e. 2-face) �(p) = p ⊕ ] − 1

2 ,
1
2 [2. We set Fd(F) (0 ≤ d ≤ 2) the set of all the

d-faces of F. In particular, we have:

X = �(X) =
⋃

ΠF(X) = ΠR2 (F) (8)

X = �(X) = �−1(F2(F)) (9)
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5.3 The Cubical Space G Induced by the Rigid Motion R

The rigid motion R is applied on the continuous analogue X ⊂ R2 of X. The new
continuous object XR ⊂ R2 is defined as XR = R(X) = {R(x) | x ∈ X} (see Eq. (4)).

Similarly to X, that can be modeled by a complex F in the cubical space F defined
in Sec. 5.2, the object XR can also be modeled by a complex G in a cubical space G.
This second cubical space G is the image of F by the rigid motion R. In particular, R
trivially induces an isomorphism between these two cubical spaces.

More precisely, G derives from the square grid R(G∆) which subdivides R2 into
unit squares centered on the points of R(Z2). We have R(G∆) = R(V∆) ∪ R(H∆), with
R(V∆) = {R(Vδ) | δ ∈ ∆} and R(H∆) = {R(Hδ) | δ ∈ ∆}. For each δ ∈ ∆, the lines R(Vδ)
and R(Hδ) are defined by the following equations, respectively:

(R(Vδ)) αx + βy − αtx − βty − δ = 0 (10)
(R(Hδ)) − βx + αy + βtx − αty − δ = 0 (11)

The induced cubical spaceG is then composed of the three sets of d-facesGd = R(Fd) =

{R(f) | f ∈ Fd} (0 ≤ d ≤ 2).
The continuous object XR ⊂ R2 is then modeled by the complex G = ΠG(XR) ⊂ G:

G = R(F) = R(ΠF(X)) = {R(f) | f ∈ ΠF(X)} (12)

We set Gd(G) (0 ≤ d ≤ 2) the set of all the d-faces of G.

5.4 The Cellular Space H Refining the Cubical Spaces F and G

Although XR presents good topological properties with respect to X, it cannot be directly
used for building the final digital object XR. Indeed, XR is the continuous analogue of a
digital object defined on R(Z2) but not Z2. In other words, the complex G that models
XR is defined on G and not on F.

At this stage, our purpose is to build from the complex G in G, a new cubical com-
plex H in F, that will be used to finally define the resulting digital object XR. In order
to guarantee the preservation of the homotopy type between X and XR, it is indeed nec-
essary that G and H also have the same homotopy type, i.e. we have to build H from G
via a homotopic transformation. This requires that both of these complexes be defined
in the same cellular space.

Then, we build a new cellular space H that refines both F and G. This space H is
not cubical; its 2-faces are convex polygons (with 3 to 8 edges). Practically, H is built
from the subdivision of the Euclidean plane R2 by the union of the two square grids G∆
and R(G∆). In particular, for each 2-face h2 of H, there exists exactly one 2-face f2 of
F and one 2-face g2 of G such that h2 = f2 ∩ g2. Based on this property, we define the
two functions φ : H2 → F2 and γ : H2 → G2, such that φ(h2) = f2 and γ(h2) = g2.
Reversely, we build the two functions Φ : F2 → 2H2 and Γ : G2 → 2H2 such that for
any f2 ∈ F2 and g2 ∈ G2, we have Φ(f2) = φ−1({f2}) = {h2 ∈ H2 | φ(h2) = f2} and
Γ(g2) = γ−1({g2}) = {h2 ∈ H2 | γ(h2) = g2}.

Due to space limitations, we do not present here the (exact calculus) algorithmic
process for building H from F and G.
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Fig. 2. Proposed framework for homotopy type preserving rigid motion. Following the flowchart:
X ⊂ Z2, �(X) = X ⊂ R2, R(X) = XR ⊂ R2, ΠG(XR) = G ⊂ G, ΠH(G) = H ⊂ H, H(H) = Ĥ ⊂ H,
ΠF(Ĥ) = F̂ ⊂ F, ΠR2 (F̂) = Y ⊂ R2 and �(Y) = XR ⊂ Z2.

Based on the above functions, each complex F on F (resp. G ofG) can be embedded
into H be defining a complex ΠH(F) (resp. ΠH(G)) as ΠH(F) =

⋃
f2∈F2(F)

⋃
h2∈Φ(f2) C(h2)

(resp. ΠH(G) =
⋃
g2∈G2(G)

⋃
h2∈Γ(g2) C(h2)), and we say that ΠH(F) (resp. ΠH(G)) is the

embedding of F (resp. G) in H. For any complex H on H, if there exists a complex F
on F (resp. G on G) such that H = ΠH(F) (resp. H = ΠH(G)), then we write F = ΠF(H)
(resp. G = ΠG(H)) and we say that F (resp. G) is the embedding of H in F (resp.
G). In such case, we have in particular ΠF(H) =

⋃
h2∈H2(H) C(φ(h2)) (resp. ΠG(H) =⋃

h2∈H2(H) C(γ(h2))).

6 Optimization-Based Rigid Motion

By contrast to the process depicted in Fig. 1 that does not handle topological constraints,
our approach (Fig. 2) aims to guarantee that X and XR will have the same topology.

The first four steps of this process (from X to H) and the last three ones (from Ĥ to
XR) can be dealt with by considering Secs. 4 and 5 (keep in mind that all these steps are
topology-preserving). The only part that remains to be described is the construction of
the transformation H from H to Ĥ. In particular, it is mandatory that:

– H be a homotopic transformation (to preserve the topology between X and XR);
– Ĥ can be embedded into F, i.e. F̂ = ΠF(Ĥ) exists; and
– the digital analogue �(ΠR2 (Ĥ)) ⊂ Z2 of Ĥ be (as close as possible to) the exact

solution of the optimization problem (1).

The space CH of all the complexes H of H has a size 2|H2 |. Some of these complexes
H are such that ΠF(H) exists, i.e. they can be embedded as complexes F of F, and then
in Z2. These complexes form a supbspace SH of CH of size 2|F2 |. We can endow CH
with a graph structure, by defining the following adjacency relation _: for any distinct
complexes H1 and H2 of H, we have H1 _ H2 iff H1 = H2 ∪ C(f) or H2 = H1 ∪ C(f)
for a 2-face f ∈ H2, and if the associated cell C(f) is simple for H1 and H2. The graph
(CH,_) is composed of connected components, each one corresponding to a family of
complexes that have the same homotopy type. In particular, the connected component
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C?
H that contains H is the set of all the complexes of H that can be obtained from H by

a homotopic transformation H. This subspace C?
H can be built with a time complexity

Θ(|C?
H|). The solution of Eq. (1) lies in C?

H, and more precisely in the subspace S?H =

C?
H ∩ SH. In theory, it is then possible to solve Eq. (1) by building C?

H and by finding
in S?H the complex that optimizes the chosen error measure. Although this process ends
in finite time, it is generally not tractable in practice, since the time Θ(|C?

H|) may be
exponentially high.

In the next sections, we deal with two points. On the one hand, we show how to
guarantee that we search the solution within C?

H, i.e. that the transformation H we build
is indeed homotopic. On the other hand, we discuss heuristic strategies for computing a
solution fairly close to the true optimum relatively to Eq. (1) whereas avoiding to carry
out an exhaustive search within C?

H which would require an exponential time cost.

6.1 Homotopic Transformations and Simple Cells in the Cellular Space

To guarantee that H is a homotopic transformation, it is built as a sequence of addi-
tions / removals of simple cells. This notion of simple cell is directly derived from that
considered in [8] which relies on the notion of collapse in complexes.

Let K be a complex defined in a cellular space K on R2. Let f2 be a 2-face of K.
Let D0(f2) (resp. D1(f2)) be the subset of C(f2) composed by the 0- (resp. 1-) faces f
the star of which intersects K only within C(f2), i.e. S (f) ∩ K = S (f) ∩ C(f2). We say
that C(f2) is a simple 2-cell (for K) if |D1(f2)| = |D0(f2)| + 1 (which is equivalent to
say that the intersection of the border of C(f2) and K is connected and with a Euler
characteristics of 1). In such case, the detachment of this 2-cell C(f2) from K, i.e. the
operation that transforms K into K �C(f2) = K \ ({f2} ∪D1(f2)∪D0(f2)) corresponds to
a collapse operation from K to K �C(f2), and both complexes have the same homotopy
type. Reversely, if f2 is a 2-face of K \ K, and if C(f2) is a simple 2-cell for the complex
K∪C(f2), then the operation of attachment that transforms K into K∪C(f2) corresponds
to the inverse collapse operation from K into K ∪ C(f2), and both complexes also have
the same homotopy type.

6.2 Optimization Problem: Heuristics

Even if we consider a finite part of Z2 (which is the case in digital imaging), the induced
finite space of the solutions of the optimization problem (1) is huge, and the topological
constraints induced by the homotopy type equivalence between X and XR are not suf-
ficient to reduce this space to a tractable size allowing for an exhaustive investigation.
Thus, we do not aim at solving exactly the optimization problem (1) (although we will
sometimes succeed), but to find a solution reasonably close to the optimum. In partic-
ular, we only explore a part of the space of solutions. Our purpose is then to make this
exploration as relevant as possible. We briefly discuss hereafter a non-exhaustive list of
ideas that can be relevant to reach that goal.

Border processing – In general, the complex H (resp. its complement) cannot be di-
rectly embedded into F. However, some parts of H (resp. its complement) already cor-
respond to 2-cells of F. In most cases, these parts that constitute the “internal” (resp.
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“external”) part of H will not be modified during the optimization process. More for-
mally, this means that in most application cases, the addition / removal of simple 2-cells
to / from H will occur for 2-faces f2 such that Φ(f2) intersects—but is not included in
(resp. excluded from)—H. In other words, it is generally sufficient to work on the “bor-
der” of H to build Ĥ and thus F̂.

Measure separability and gradient climbing – Most error measures aim to emulate
the behaviour of usual digitization policies. For instance the two ones considered in
our experiments (Sec. 7) correspond to the Gaussian (Eq. (13)) and the majority vote
(Eq. (14)) digitizations. From these very definitions, it is plain that it is possible to
process the 2-cells of F (in particular the “border” ones) one after another, either by
addition or removal of 2-cells of H. In this context, it may be relevant to process them
by giving the highest priority to the cells that induce the lowest increase of the error
measure, following a (reverse) gradient climbing paradigm.

Homotopic transformations in F – Once a first candidate complex Ĥ belonging to S?H
has been built, it can be associated to a complex F̂ = ΠF(Ĥ) of F. Then, some next
candidate complexes can be sought in S?H by “starting” from Ĥ, or more precisely from
F̂ by considering the search space S?F of F (defined the same way as S?H) instead of
S?H. This is motivated by the fact that F is much smaller that H, whereas the candidate
complexes have to be defined in F.

Termination issues – For most objects, the optimization process based on the above
heuristics will converge directly towards the true optimum for Eq. (1). For other objects,
in particular those presenting complex details, it may be required to explore the search
space in a less straightforward way, and in particular to go backward in the putative
path built from H in the graph (S?H,_). Such forward–backward steps may potentially
lead to non-termination issues of the optimization process. To deal with this difficulty,
a solution may consist of storing the different complexes already explored, in order to
guarantee that they will not be processed many times.

Non-existence of solutions – For complex objects, a solution (with a reasonably low
error measure) may not exist. This may be caused by the non-existence of a solution,
under the topological constraints, in the context of a finite support image. For instance,
this may happen for a checkerboard configuration with 1-pixel-sized squares. This prob-
lem may be tackled by multigrid paradigm, for instance by considering ( 1

2Z)2 instead
of Z2 as output space.

7 Experiments

We implemented a first algorithm (Alg. 1) that builds upon some of the heuristics dis-
cussed above. This algorithm, although very simple, actually works in most cases. We
process only the 2-faces at the border of the complex (B2, line 2). We sequentially deal
with these faces in order to fully include or fully exclude them from the final complex.
Depending on the induced increasing of the considered error metric DR,X, we aim at
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Algorithm 1: Definition of Ĥ by construction of H.
Input: H ⊂ H,DR,X : 2Z

2
→ R+

Output: Ĥ ⊂ H
1 Ĥ ← H
2 B2 ← {f2 ∈ F2 | Φ(f2) * H2(H) ∧Φ(f2) ∩ H2(H) , ∅}
3 while B2 , ∅ do
4 choose f2 ∈ B2 wrt DR,X
5 B2 ← B2 \ {f2}

6 (I2,O2)← (Φ(f2) ∩ H2(Ĥ), Φ(f2) \ H2(Ĥ)) (the roles of O2 and I2 may be reversed, depending on the
priority of either removing or adding the face f2.)

7 while ∃h2 ∈ I2 s.t. C(h2) is simple for Ĥ do
8 Ĥ ← Ĥ � C(h2)
9 (I2,O2)← (I2 \ {h2},O2 ∪ {h2})

10 if I2 , ∅ then
11 while ∃h2 ∈ O2 s.t. C(h2) is simple for Ĥ do
12 Ĥ ← Ĥ ∪C(h2)
13 (I2,O2)← (I2 ∪ {h2},O2 \ {h2})

14 if O2 , ∅ then Failure of the process

removing (or adding) all the 2-faces in H that compose the current 2-face of B2 (while
loop, line 7). If this attempt fails (line 10), we alternatively aim at adding (or removing)
all the 2-faces in H that compose the current 2-face of B2 (while loop, line 11). If this
second attempt also fails, the algorithms is not able to provide a solution, and it stops.
The process ends when B2 is empty, i.e. when all the border 2-faces have been fully
included in / excluded from X̂. Of course, many other—more sophisticated–algorithms
may be proposed, but such study is beyond the scope of this article.

We consider the two following error measures:

D�R,X(Y) = | � (R(�(X))) \ Y | + | Y \ �(R(�(X))) | (13)

D�R,X(Y) = | R(�(X)) \ �(Y) | + | �(Y) \ R(�(X)) | (14)

where | · | is the cardinal for discrete sets (Eq. (13)), and the area for continuous objects
(Eq. (14)). The first (resp. the second) corresponds to the Gauss (resp. majority vote)
digitization. This will allow us to compare the results obtained by our method with these
two usual digitization policies.

Results are illustrated in Fig. 3. They are proposed for small, yet complex objects.
Indeed, we focus on objects that present details which are the most likely to be topologi-
cally altered by a rigid motion, namely small connected components and thin structures.

The first image (ellipse) illustrates the fact that in the most simple cases (here, no
complex details and a globally smooth border), our method provides the same results
as usual transformations-by-digitization approaches. Indeed, when such methods do
not alter the topology, our method has the same behaviour. Without surprise, we also
observe that the results with Eq. (14) have smoother boundaries than with Eq. (13).

In the other three examples (head, circles and DGMM logo), the transformations-
by-digitization (second and fourth columns) fail to preserve the topology, leading to
broken or merged connected components. By contrast, our method (third and fifth
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Fig. 3. From left to right: input image X ⊂ Z2; Gaussian digitization of R(�(X)) and its analogue
version with our method (Eq. (13)); majority vote digitization of R(�(X)) and its analogue version
with our method (Eq. (14)). From top to bottom, the used rigid motion paramaters (α, β, tx, ty) ∈
Q4 (Eq. (3)) are: ( 22

25 ,
7
25 , 0, 0), ( 5

13 ,
12
13 ,

1
5 ,

2
3 ), ( 3

5 ,
4
5 ,

1
3 ,

1
3 ), ( 3

5 ,
4
5 ,

1
5 ,

1
4 ).

columns) succeed in preserving the topology, whereas leading to results with as few
as possible differences with the transformations-by-digitization results.

8 Conclusion

The proposed approach of digital rigid motion allows us to ensure topological invari-
ance between the initial object and its image. It relies on an optimization strategy under
topological constraints. Since the definition of the final object is obtained by a construc-
tive process, these topological constraints may lead to a non-convergence of the method
when the structure of the object is too close to the resolution of the grid. A short term
perspective will consist of considering multigrid strategies to handle such cases.

As mid-term perspectives, we will also investigate our approach with other kinds
of topological models (e.g. the well-composed sets), but also with non-binary images.
Longer-term perspectives will consist of investigating transformations in higher dimen-
sions and/or for richer families of transformations [7, 10, 13]. It would be also interest-
ing to combine topological and geometric constraints, such as perimeter or curvature
minimization, convexity preservation, etc.
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