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Abstract

In the usual aim of discrete tomography, the reconstruction of an un-
known discrete set is considered, by means of projection data collected
along a set U of discrete directions. Possible ambiguous reconstructions
can arise if and only if switching components occur, namely, if and only if
non-empty images exist having null projections along all the directions in
U. In order to lower the number of allowed reconstructions, one tries to
incorporate possible extra geometric constraints in the tomographic prob-
lem, such as the request for connectedness, or some reconstruction satisfy-
ing special convexity constraints. In particular, the class P of horizontally
and vertically convex connected sets (briefly, hv-convex polyominoes) has
been largely considered.

In this paper we introduce the class of hv-convex switching compo-
nents, and prove some preliminary results on their geometric structure.
The class includes all switching components arising when the tomographic
problem is considered in P, which highly motivates the investigation of
such configurations, also in view of possible uniqueness results for hv-
convex polyominoes.

It turns out that the considered class can be partitioned in two dis-
jointed subclasses of closed patterns, called windows and curls, respec-
tively, according as the pattern can be travelled by turning always clock-
wise (or always counterclockwise), or points with different turning direc-
tions exist. It follows that all windows have a unique representation, while
curls consist of interlaced sequences of sub-patterns, called Z-paths, which
leads to the problem of understanding the combinatorial structure of such
sequences.

We provide explicit constructions of families of curls associated to some
special sequences, and also give additional details on further allowed or
forbidden configurations by means of a number of illustrative examples.
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1 Introduction

Discrete Tomography is a part of the wider area of Computerized Tomography,
which relates to a huge number of applications where image reconstruction from
X-ray collected data is required. While Computerized Tomography involves ana-
lytical techniques and continuous mathematics (see, for instance [2} [I]), Discrete
Tomography is mainly concerned with discrete and combinatorial structures, it
works with a small number of density values, in particular with homogeneous ob-
jects, and usually allows very few X-rays directions to be considered (see [19} 20]
for a general introduction to the main problems of Discrete Tomography).

The reconstruction problem is usually ill-posed, meaning that ambiguous
reconstructions are expected. To limit the number of allowed configurations,
further information is usually incorporated in the tomographic problem, which
sometimes leads to a unique solution (see for instance [15]) in the case of convex
reconstructions), or to the enumeration of the allowed solutions (an example
with two projections is [3]).

In case different discrete sets Y7 and Y, are tomographically equivalent with
respect to a set U of directions, namely Y7, Y5 can be reconstructed by means
of the same X-rays with respect to U, then there exist specific patterns, called
switching components which turn Y7 into Y5. Understanding the combinatorial
and the geometric structure of the switching components is a main issue in
discrete tomography (see, for instance [5, [6], [, [0} [12], 13 T4l 15 17, [16] 18]).

A largely investigated case concerns the class P of hv-convex polyominoes,
i.e., finite connected subsets of Z? that are horizontally and vertically convex.
Early results for two projections can be found in [6], where a uniqueness con-
jecture has been also stated, later disproved in [II]. On this regard, a main role
is played by switching components with resgect to the horizontal and to the
vertical directions, respectively denoted by h and 7. In [T7], such switching
components have been studied from an enumerative and an algorithmic point
of view, which provided a very interesting and illustrative presentation of their
connection with the complexity of the reconstruction problem. In this paper we
also focus on such switching components, but we follow a different approach,
based on a special geometrical condition (see Definition , which defines a class
of patterns called hv-conver switching components. It includes the classes of reg-
ular and of irregular switching components considered in [I7], that we redefine
in terms of hv-convex windows and hv-convex curls, respectively.

The geometric condition in Definition[2)is always satisfied when the switching
component is determined by a pair of sets Y7, Y both internal to the class P.
This motivates a deep investigation of the structure of hv-convex switching
components, in view of possible uniqueness results for hv-convex polyominoes.

We give a geometric characterization of hv-convex windows (Theore,
and a necessary condition for a curl to be a hwv-convex switching component
(Theorem . In general, the condition is not sufficient, but it provides a basic
information concerning the geometric structure of hv-convex curls, which leads
to the problem of understanding their geometric and combinatorial structure.



2 Notations and preliminaries

We first introduce some notations and basic definitions. As usual, R? denotes
the Euclidean two-dimensional space, and Z2 C R? is the lattice of points having
integer coordinates. If A is a subset of R?, we denote by int(A) and by conv(A)
the interior and the convex hull of A, respectively. If A consists of two distinct
points v and w, then conv(A) is a segment, denoted by s(v, w). If A is a finite set
of Z2, then A is said to be a lattice set, and |A| denotes the number of elements
of A. A conver lattice set is a lattice set A C Z? such that A = (conv(A)) NZ2.

By ﬁ, o we mean the horizontal and the vertical directions, respectively.
For any point v € R?, we indicate by Ly, (v) and L,(v) the horizontal and the
vertical line passing through v, respectively.

Finally, we define horizontal (resp. vertical) projection of a finite set A C Z>
to be the integer vector H(A) (resp. V(A)) counting the number of points of A
that lie on each horizontal (resp. vertical) line passing through it. We underline
that such a notion of projection can be defined for a generic set of discrete lines
parallel to a given (discrete) direction.

In literature, the word polyomino indicates a connected finite discrete set
of points. In particular, a polyomino is hv-convex if each one of its rows and
columns is connected. As it is commonly assumed, a polyomino is composed
by rows and columns due to the habit of representing it by a binary matrix
whose dimensions are those of its minimal bounding rectangle. The class of all
hv-convex polyominoes is denoted by P.

Given a point v = (i,5) € Z2, the four following closed regions are defined
(with the same notations as in [8 [10]):

Zow) ={(,j) eR*:i' <i,j' <j}, Zi(v) ={(7,5") e R?:i' >, j <j},
Zo(w) ={({,j") eR*:i' >, j' > j}, Zs(v) ={(7,j/) e R* :4' <, j' > j}.

A set of points A is said to be Q-convex (quadrant convex) along the hori-
zontal and vertical directions if Z;(v) N A # () for all [ =0, 1,2, 3 implies v € A.

Lemma 1. Let P be a hv-conver polyomino, and consider a point v € Z2. If
w1, wo,ws € P exist such that Z;(v) N{wy,ws, w3} # O for alli =0,1,2,3, then
v € P.

Proof. By [8, Proposition 2.3], a hv-convex set is also Q-convex with respect to
the horizontal and to the vertical directions. The statement follows immediately
by the hv-convex property of P. O

2.1 Switching components and the uniqueness problem
Definition 1. A pair S = (5%, S) of sets of points is a hv-switching if:
- SN St =0 and |S°| = |SY|;

- H(SY) = H(SY) and V(S°) = V(SY), i.e., S° and S have the same
horizontal and vertical projections.

Each set S and S* is indicated as hv-switching component. We underline
that also the notion of switching can be extended to the projections along a



generic set of discrete directions (again refer to [19] [20] for these definitions and
the related main results).

A discrete set A contains a hv-switching component if S° C A and S'TNA = 0.
In this case, we consider A = Y US?, with Y being a (possibly void) discrete set;
we define the set A’ =Y U S! as the dual of A, and we say that the switching
S is associated to A and A’.

2.2 hv-convex switching

A classical result in [I8] states that if A; and A, are two discrete sets sharing
the same horizontal and vertical projections, then As is the dual of A; with
respect to a hv-switching. So, for any point v € S° (resp. v € S!), there exist
points wy,ws € St (resp. wy,ws € S°) such that wy € Ly (v) and wy € L, (v).

If the sets Ay and Ay are hv-convex polyominoes, then, due to Lemma [}
for any = € S there exists one and only one i € {0,1,2,3} such that Z;(x) NS
consists of points all belonging to the same component of S as z. The quadrant
Z;(x) is said to be the free region of x, or the S-free region of x in case we wish to
emphasize that the free region relates to the switching S. We denote by F(z) (or
by Fs(x)) the free region of x € S. Also, F;(S) denotes the subset of S consisting
of all points having free region Z;(x), namely F;(S) = {x € S, Fs(z) = Z;(z)},
i€{0,1,2,3}.

We have the following

Lemma 2. Let S = (5%, SY) be a hv-switching. Then, the following conditions
are equivalent

U Zi(8) = 8. (1)

v,w € Zi(S),i€{0,1,2,3},v e S°we St =v¢ Zi(w),w ¢ Z;(v),j = i+2(mod4).
(2)

Proof. Let v,w € S such that v,w € Z;(S), with v € S°,w € S*. Suppose that
v € Zj(w), with j = i+2(mod4). Then w € Z;(v), a contradiction. Analogously,
ifw e Zj(v), with j = i+2(mod4), then v € Z;(w), a contradiction. Therefore,
holds. Conversely, assume that holds. Let v € S, and suppose v € S°.
Since S is a hv-switching, then there exist three values of k € {0,1,2,3} such
that Zy(v) NSt # (). Suppose that w € S! exists such that w € Z;(v) for i # k.
Then v € Z;(w), where j = i+ 2 (mod 4), which contradicts . Therefore, v
has a free region, namely F(v) = Z;(v). With the same argument we get that
any w € S! has a free region. Therefore, each point of S has a nonempty free
region, and follows. O

Definition 2. Let S = (S°,S') be a hv-switching. Then, S is said to be a
hv-convex switching if one of the equivalent conditions of Lemma[9 holds.

Remark 1. By the above discussion, if S = (S°,S') is a hv-switching asso-
ciated to a pair of hv-convex polyominoes, then holds, so S is a hv-convex
switching. However, the converse is not necessarily true, namely it could ex-
ist two polyominoes Py and Py that are one the dual of the other with respect



to S and such that one or both of them are not hv-convex polyominoes. An
interesting case is Figure 23 in [T7], or Figure@ below.

2.3 Squared spirals

A closed polygonal curve K in R? is said to be a squared spiral if K consists
of segments having, alternatively, horizontal and vertical direction. Their end-
points form the set of vertices of the polygonal, denoted by V(K). Two squared
spirals are said to intersect in case some of (possibly all) their segments done.
Assume to travel K according to a prescribed orientation. A vertex v of K
is said to be a counterclockwise point if, crossing v, implies a counterclockwise
change of direction. Differently, v is a clockwise point. Of course, by reversing
the travelling orientation, clockwise and counterclockwise vertices mutually ex-
change. The bounding rectangle of K is the smallest rectangle Ry containing
K.

2.4 Windows and curls

We now introduce two classes of special squared spirals that provide a geometric
reformulation of the notions of regularity and of irregularity discussed in [I7],
which, in addition, constitute the main focus of our study. A squared spiral
W is said to be a window if it can be traveled by turning always clockwise,
or always counterclockwise. Differently, the squared spiral is said to be a curl.
Therefore, travelling a curl needs changes of turning direction.

Obviously a rectangle is a particular case of window that coincides with its
bounding rectangle.

Remark 2. Each window and each curl form a hv-switching S = (S°,S') by
considering the corresponding vertices alternatively belonging to S and S*.

2.5 Z-paths

A Z-path is a staircase shaped pattern consisting of a monotone sequence of
horizontal and vertical segments, whose vertices alternate between clockwise
and counterclockwise points. We say that the Z-path is of type SE-NW, or SW-
NE, according as it can be travelled moving from South-East to North-West (or
conversely), or from South-West to North-East (or conversely), respectively. A
simple, or one-level, Z-path consists of just three segments, horizontal-vertical-
horizontal, or vertical-horizontal-vertical, referred to as hvh, or vhv Z-path,
respectively. Excluding its endpoints, a simple Z-path exhibits a pair of ver-
tices having a specified orientation, clockwise-counterclockwise, or clockwise-
counterclockwise, according to the considered type, and moving from south to
north along the pattern. In general, for ¢ > 0, we have a g-level Z-path if, ex-
cluding its endpoints, it consists of ¢+ 1 vertices having alternating orientations.
Therefore, if g is odd, we have ¢ horizontal and ¢ — 1 vertical segments, or con-
versely, and we refer to the corresponding Z-path with the notation h(vh),—1
and v(hv)q_1, respectively. If ¢ is even, then the Z-path consists of ¢ horizontal
and of ¢ vertical segments, and we adopt the notation (hv),, or (vh)g, according
as the first segment is horizontal or vertical (see Figure . Any Z-path is a hv-
convex set. In a SE-NW Z-path, any vertex v, different from an endpoint, has



free region Zy(v) or Zz(v), while, in a SW-NE Z-path, the free region is Z;(v)
or Z3(v). In any case, the elements of the sets of free regions {Zy(v), Z2(v)},
or {Z1(v), Z3(v)} alternate along the Z-path. Since the vertices of a Z-path
are, alternatively, clockwise and counterclockwise oriented, then no g-level Z-
path, with ¢ > 0, can be found in a window, while any curl surely includes
some Z-paths. Differently, if ¢ = 0, we have an L-shaped path, consisting of an
horizontal and a vertical segment, with just one intermediate point. We refer
to such a path as a degenerate Z-path. Note that a window can be considered
as a consecutive sequence of degenerate Z-paths, while, in a curl, different Z-
paths (possibly degenerate) can appear. In what follows, we provide a precise
characterization of how these paths can be combined together.

SRR T ey

Figure 1: Different types of Z-paths. From left to right: A simple hvh SE-NW
Z-path, a v(hv)s SE-NW Z-path, a (hv)s SW-NE Z-path, and a v(hv)y SW-NE
Z-path.

3 Characterization of hv-convex windows

We give a necessary and sufficient condition for a window to be hv-convex. This
leads to a geometric characterization of the hv-convex switchings that have the
structure of a hv-convex window.

Theorem 1. Let W be a window of sizen > 1 and {wy,wa, ..., way, } be the set of
its vertices. Then W is a hv-convex switching if and only if a point x € R? exists
such that w; € Zy(x) U Zy(x) for all the odd indices, and w; € Zy(x)U Z3(x) for
all the even indices.

Proof. Assume that a point x € R? exists such that w; € Zy(z)UZz(z) for all the
odd indices, and w; € Z;(x)U Z3(x) for all the even indices. Then, by definition
of window, W has the same number of vertices in each Z;(z), ¢ = 0,1,2,3,
namely, w; € Zy(x), for i = 1(mod4), w; € Z1(x), for i = 2(mod4), w; € Zy(x),
for i = 3 (mod 4), and w; € Zz(x), for i = 0 (mod 4). Therefore, if W° and
W1 are, respectively, the set of the even and of the odd labeled vertices of W,
then each point of W9 has a horizontal and a vertical corresponding in W' and
conversely. This implies that the free regions of all points in W° are contained
in Z;(x) or in Z3(x), and the free regions of all points in W' are contained in
Zo(x) or in Zy(x). Therefore, W is hv-convex.

Conversely, suppose that W is a hv-convex switching. Without loss of gen-
erality we can assume that W is traveled counterclockwise, starting from w;.
Also, up to a rotation (which does not change the argument) we can always as-
sume that the free region of w; is Zo(wy). Then the free region of w; is Z;(w;)
where i — j =1 (mod 4). For j =0,1,2,3, let H; be the set

Hj = U Zj(wz)

i=j+1 (mod 4)



Due to the hv-convexity of W, the sets H; are mutually disjointed. Consider
the strip bounded by the two horizontal lines supporting Hyo U H; and Ho U Hs,
and the strip bounded by the two vertical lines supporting HyU H3 and Hy U Ho

(see Figure [2)).
_

Figure 2: The four regions H;, i € {0,1,2,3} related to a hv-convex window.
The rectangle R, contains all the points having the property stated in Theo-
rem [I1

The intersection of such strips forms a rectangle R, having horizontal and
vertical sides, and with no points of W belonging to the internal int(R) of R.
Let = be any point such that @ € int(R). Then H; C Z;(z) for all j =0,1,2,3,
and the statement follows. O

Remark 3. The property stated in Theorem[]] is not restricted to a single point,
but it involves all the points belonging to the interior of the rectangle R.

For any hv-convex window W, and point z € R? as in Theorem all
quadrants Z;(x), ¢ € {0,1,2,3} contain the same number of points of W, which
is said the size of the window. Note that a window can be a switching component
with respect to the horizontal and vertical directions without being hv-convex.

4 Characterization of hv-convex curls

Moving to curls, a deeper analysis is required, as it has been pointed out in [I7] in
terms of irregular switching components. Here we push the study a step ahead,
by investigating the geometric nature and the main features of those curls that
form hwv-convex switching. As a first result, we prove a necessary condition for
a curl to be a hv-convex switching, say hv-convex curl. In general, the given
condition is not sufficient, but it spreads light on the geometric structure of the
hv-convex curls, and leads to their characterization in terms of Z-paths. As a
consequence, the class of hv-convex curls will be partitioned into two subclasses.

Theorem 2. Let C be a curl that forms a hv-switching, and let v and w be
two points in V(C) with the same orientation. If precisely 2n > 0 consecutive
vertices between v and w exist, and having their opposite orientation, then C is
not a hv-convex curl.

Proof. Suppose that C is hv-convex. Without loss of generality, we can assume
that travelling C from v to w the vertices v and w are counterclockwise oriented.
Up to a rotation we can also assume that Zy(v) is the free region of v, so that
a vertex v; € Zo(v) N Z3(v) exists, with v, vy in different components of C. Let



1, ..., Lo, be the 2n > 0 clockwise oriented vertices of C' that are crossed when
moving from v to w.

The segment s(v, 1) is horizontal. The same holds for the segment s(x2,,, w),
and also for all segments s(xog,Zorr1), for 1 < k < n — 1. Analogously, all
segments s(ak—1,%2k), for 1 < k < n are vertical. Then Zs(x;) is the free
region of x1, Z1(x2) is the free region of x4, Zy(x3) is the free region of x3, and,
in general, the free region of x; is the quadrant Z;(«;) such that i+j = 3(mod4).
Therefore, the free region of xay, is Z1(22,) if n is odd, and Z3(x2,) if n is even,
which implies that the free region of w is, respectively, Z3(w) and Z;(w) (see
Figure |3} where the case F(w) = Z;(w) is represented).

ow:

w

X2

Figure 3: Positions of consecutive vertices having a same orientation in a curl.

Now, all the vertices zp, with h odd, belong to a component different from
that v, so they do not lie in F(v) = Zy(v). Since z7 € Z1(v) N Zz(v), then
x2 € int(Z1(v)). If n =1, then w € int(Z1(v)), and F(w) = Zs(w), so that
v € F(w), a contradiction, since v and w belong to different components of
C. So, the statement follows for n = 1. If n > 1, then a3 € int(Z1(v)), so
x4 € Z1(v)UZy(v). However, x4 ¢ Z1(v), since, otherwise v1 € F(z4) = Z3(x4),
a contradiction, being v and v; in different components of C'. By iterating the
argument, we get that all the vertices of the form x5, with £ < n and k
even must belong to Z3(v). Analogously, all the vertices of the form gy, with
k < n and k odd must belong to Z;(v), since, differently, xo; would belong to
F(xz1) = Z3(x1), or conversely, x1 € F(xar) = Z1(x2x), a contradiction, since
1 and xo belong to different components of C. This implies that the vertices
Zog—1 with 2 < k < n and k even belong to Z;(v), while the vertices xar_1 with
1 <k <nand k odd belong to Zz(v). Consequently, also w € Z;(v) U Z3(v).

Suppose that w € Z;(v). Since the segment s(x2,,w) is horizontal, then
Zan also belongs to Z;(v). As shown above, this implies that n is odd, so
F(w) = Z3(w), and consequently v € F(w), a contradiction.

Hence w € Z3(v), then x4, also belongs to Z3(v), which implies that n is
even, and consequently F(x2,) = Z3(x2,), and F(w) = Z;(w). Therefore, w
must belong to Zz(x2), otherwise w € Zs(x2), and consequently zy € F(w) =
Z1(w), a contradiction. From w € Zs(xs), and w € Zs(v), it follows that
w € Zs(x1). Since C is a switching with respect to the vertical direction, then
there exists a vertex wy € Zs(w)NZ3(w), with w and w; in different components,
and consequently also x1 and w; belong to different components of C' (see Figure
[B). Since w € Zy(x1), then also wy € F(x1) = Zs(21), a contradiction.

Consequently, the assumption that C' is hv-convex always leads to a contra-
diction, and the statement follows. O



5 On some sequences associated to hv-convex
switchings

Let S be a squared spiral. We associate to S an integer sequence (k1, ka, ..., ky,),
say hv-sequence, where each k; represents the i-th maximal sequence of k; ver-
tices that can be travelled clockwise or counterclockwise, with ¢ = 1,2,...,n.
The starting vertex is not indicated, so the sequence can be considered up to
circular shifts. If the sequence (k1, ka2, ..., k) is periodic, then we adopt the nota-
tion (k1, ..., kns )n, to represent the h time repetition of the sequence (k1, ..., kn/),
with n = n'-h; if h = 1, we choose to omit it. We are interested in characterizing
the hv-sequences that admit a hv-convex switching, say hv-convex sequences.
Therefore, we are led to the following general problem.

Problem 1. For which ki,....kn,h € N there exists a hv-convex sequence
(K1y .oy kn)n?

Concerning windows, Problem [I| has an easy solution.

Theorem 3. For each n > 0, (4n) is a hv-conver sequence if and only if the
associated square spiral is a window.

Proof. By Theorem [2] the hv-sequence associated to a curl is of the form
(K1, .., kns)n, where ky, ..., k, are odd. Therefore, (4n) cannot be the hv-sequence
associated to a curl. Let W be a window. By Theorem [I| € R? exists such
that all quadrants Z;(z), i € {0, 1, 2, 3} contain the same number of points of W.
Then, W has 4n vertices, for some n > 0, which implies that the hv-sequence
associated to W is (4n). O

Differently, Problem [I| seems to require a deeper investigation of the geo-
metrical and combinatorial structure of the set of vertices of a curl. In this
view, we give here some preliminary remarks. First of all, note that, having
a (ki,...,kn)n curl, is in general not sufficient to get hv-convexity, since the
conditions in Lemma [2| do not automatically hold.

A vertex v of a curl whose turning direction differs from that of the previous
encountered point, is said to be a changing point. In order to improve our knowl-
edge on the hv-sequences allowed for curls, it is worth focusing on the possible
Z-paths that can be included in a hv-convex curl, which reflects in the under-
standing of how changing points can occur. As already observed, the simplest
hv-convex curl is the (3,3); curl shown in Figure [4] (a). Its vertices consists of
six points x1,...,xs, where F(z1) = Z1(x1), F(x2) = Zo(x2), F(x3) = Z3(x3),
F(xy) = Z1(x4), F(xs) = Za(xs), F(xg) = Zs(xg). The (3,3)1 curl can also
be considered as the join of two simple hvh and vhv SW-NE Z-paths (see Sec-
tion having x5 and x5 in common. This means that z;, x4 are changing
points (or x3, g, depending on the starting choice for the walking direction).
Figure [4] (b) shows a (3,3)2 hv-convex curl, consisting of two different pairs of
intersecting simple SW-NE Z-paths (analogous constructions can be performed
by using SE-NW Z-paths). Analogously, for any integer number h > 1, a curl
C can be constructed having h pairs of intersecting SW-NE Z-paths. These
can be consecutively arranged, or, differently, connected by means of L-shaped
paths, as described above. See Figure [4] (¢) for an example where h = 4.

Of course, curl containing Z-paths of higher level can be also constructed.
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X3,1 > o

X2 Xa1
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Figure 4: (a) A (3,3);1 hv-convex curl C, corresponding to a SW-NE vertex-
gluing of two rectangles. (b) A (3,3)2 hv-convex curl with two pairs of in-
tersecting simple Z-paths. (¢) Example of curl associated to the hv-sequence
(37 3)4

However, different Z-paths of a same curl are not necessarily consecutive.
For instance, Figure [5|shows how to insert degenerate Z-paths (L-shaped paths)
between the bottom-left endpoint of a Z-path and the upper-right endpoint of
a different Z-path, so transforming a (3, 3); curl into a (5,5); curl.

Figure 5: Including L-shaped paths in a given curl. (a) The starting curl. (b)
The split of the two constituent simple Z-paths. (c) The connection of the two
simple Z-paths by joining their extremal vertices with two degenerate Z-pats.

Further constructions also exist having associated hv-convex sequence of
type (k1,k2)n, with k; # ko. Figure |§| shows a curl associated to the hv-convex
sequence (3,5)2.

Figure 6: The hv-convex curl associated to the hv-convex sequence (3,5)s.

6 Conclusion and remarks
We have introduced the class of hv-convex switching components, which includes

all switching components associated to a pair of tomographically equivalent hov-
convex polyominoes. We have separated the class in two disjointed subclasses
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of closed patterns, the windows and the curls, respectively. We have given geo-
metrical results on both subclasses, which leads to the problem of characterizing
them in terms of hv-convex sequences. While windows provide a complete and
easy solution, deeper investigation is required for curls. We have discussed a
few preliminary allowed or forbidden hwv-sequences, which provide partial an-
swers to Problem [I]in the case of curls. For a complete solution to Problem [I]it
becomes relevant to understand how, in general, different Z-paths can be con-
nected between them in a same curl. In particular, it would be worth exploring
possible connections between the allowed levels of the Z-paths in a same curl,
and the degree of convexity of L-convex sets [3]. We wish to investigate in these
directions in separated further works
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