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Abstract. Instead of synthesising a labelled transition system into a
weighted Petri net, we shall here consider the larger class of nets with
reset arcs, allowing to instanciate a larger class of transition systems.
We shall also target an extension of choice-free nets with reset arcs,
since choice-free nets appeared to be especially interesting in terms of
properties, synthesis and implementation. In addition to a general algo-
rithm, we shall analyse how to speed it up by reducing the number and
complexity of the linear systems of constraints to be solved and how to
set up a pre-synthesis phase. We shall also envisage how to implement
the result of such a synthesis as a concurrent program.
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1 Introduction

In order to validate a system, instead of analysing a model of the latter to check
if it satisfies a set of desired properties, the synthesis approach tries to build
a model “correct by construction” directly from those properties, and then to
implement it. In particular, if the behaviour of a system is specified by a finite
labelled transition system (LTS for short), more or less efficient algorithms have
been developed to build a bounded weighted Petri net with a reachability graph
isomorphic to (or close to) the given LTS [2,19]. It is also possible to target
some subclasses of Petri nets [6], in particular choice-free nets and some of their
specialisations [7,8, 4, 13] which present interesting features.

On the contrary, in order to extend a bit the power of the technique, we shall here
consider a superclass of the classical Petri nets, by allowing reset arcs [1]. When
one extends Petri nets, it is often the case that properties which are decidable
for the latter (albeit sometimes with a huge complexity) become undecidable.
And indeed, for reset nets, boundedness and reachability (in particular) are
undecidable [14]. This increases the interest to avoid analysis techniques in favour
of synthesis ones.

The paper is organised as follows. After recalling classical definitions, notations
and properties in Section 2, we present presynthesis phases in Section 3, and
then general algorithms to synthesise (choice-free) reset nets in Section 4. In the



next sections, we analyse how to speed up the synthesis and to implement the
resulting models. As usual, we conclude in the last section.

2 Classical Definitions, Notations and Properties

Definition 1. LTS, SEQUENCES AND REACHABILITY

A labelled transition system with initial state, LTS for short, is a quadruple
TS = (S,—,T,.) where S is the set of states, T is the set of labels, — C (SXT'x.S)
is the transition relation, and ¢ € S is the initial state.

A label ¢ is enabled at s € S, written s[t), if 3’ € S: (s,¢,8") €—, in which
case s’ is said to be reachable from s by the firing of ¢, and we write s[t)s’.
Generalising to any (firing) sequences o € T*, s[e) and s[e)s are always true,
with € being an empty sequence; and s[ot)s’, i.e., ot is enabled from state s and
leads to s’ if there is some s” with s[o)s” and s”[t)s’.

A state s’ is reachable from state s if 3o € T™*: s[o)s’. The set of states reachable

from s is noted [s). 01

Definition 2. SOME PROPERTIES OF LTS

TS = (S,—,T,¢) is fully reachable if S = [1), i.e., each state is reachable from
the initial one.

TS is forward deterministic if Vs € S,Vt € T : s[t)s’ A s[t)ys” = s = §".
It is backward deterministic if Vs € S,Vt € T : §'[t)s A s"[t)s = & = s". It is
deterministic if it is both forward and backward deterministic, i.e., the successors
or predecessors of a state are determined by the labels of the arcs.

TS is quasi-persistent if Vs, s1, 82 € SVa #b € T : s[aysy As[b)sa = s1[b) Asaa),
i.e., if there is a choice, it persists until both labels are performed

TS is persistent if Vs,s1,80 € S VYa # b € T : s[a)s1 A s[b)sa = s1[b)s” A
sola)s” for some s” € S, i.e., it is quasi-persistent and the resulting states are
the same.

TS is reversible if Vs € [1) : ¢ € [s), i.e., every reachable state allows to go back
to the initial state. a2

Definition 3. PETRI NETS AND REACHABILITY GRAPHS.

A (finite, place-transition) weighted Petri net, or weighted net, is a tuple N =
(P,T,W) where P is a finite set of places, T is a finite set of transitions, with
PNT =0, and W is a weight function W: ((P x T)U (T x P)) — N giving the
weight of each arc.

A Petri net system, or system, is a tuple S = (N, My) where N is a net and M,
is the initial marking, a marking being a member of P — N (hence a member of
NP) indicating the number of tokens in each place.

A transition ¢t € T is enabled by a marking M, denoted by M]|t), if for all places
p € P, M(p) > W(p,t). If t is enabled at M, then ¢ can occur (or fire) in M,



leading to the marking M’ defined by M'(p) = M (p) — W (p,t) + W (¢, p); this is
denoted by M[t)M'. A marking M’ is reachable from M if there is a sequence of
firings leading from M to M’. The set of markings reachable from M is denoted
by [M). The reachability graph of S is the labelled transition system RG(S)
with the set of vertices [Mj), the set of labels T, initial state My and transitions
{(M,t, M) | M, M" € [My) N M[t)M'}. O3

A reset net (RPN for short) or system is an easy extension of the classical Petri
nets and system, defined as follows:

Definition 4. RESET NETS AND SYSTEMS.

A (finite, place-transition, weighted) reset net is a tuple N = (P, T, W, R) where
(P, T,W) is a Petri net and R C P x T is a set of (undirected) reset arcs. A reset
system is a reset net provided with an initial marking My: (P, T, W, R, My).

A transition ¢t € T is enabled by a marking M, denoted by M][t), if for all places
p € P, M(p) > W(p,t), i.e., it is enabled in the underlying Petri net. If ¢
is enabled at M, then t can occur (or fire) in M, leading to the marking M’
defined by M'(p) = M(p) — W(p,t) + W(t,p) if (p,t) € R and M'(p) = W (t,p)
otherwise, denoted by M[t)M’. The latter case may be interpreted as follows:
first, ¢ absorbs W (p, t) tokens from p, then erases the rest of the tokens in p, and
finally produces W (t,p) new tokens in p.

Like for Petri nets, a marking M’ is reachable from M if there is a sequence
of firings leading from M to M’ and the set of markings reachable from M is
denoted by [M). The reachability graph of a reset system S = (P,T,W, R, My)
is the labelled transition system RG(S) with the set of vertices [M), the set of
labels T, initial state My and transitions {(M,t,M") | M, M’ € [My) ANM[t)M'}.
A (reset) net is pure if Vp € Pt € T : W(p,t) - W(t,p) = 0, i.e., no transition
both checks the presence of tokens in a place and produces tokens in that place.
For any place p € P, we shall denote p* = {t € T|W(p,t) > 0} (the set of
transitions collecting tokens from p, also called successors or outputs of p) and
R(p) = {t € T|(p,t) € R} (the set of transitions resetting p). 0 4

Definition 5. BOUNDEDNESS

A (reset or Petri net) system S is bounded if I3k € N Vp € P VM € [My) :
M(p) < k. It is k-bounded if Vp € P VM € [My) : M(p) < k. ab5

A classical (and easy) result is that

Corollary 1. BOUNDED SYSTEM

A (reset or Petri net) system S is bounded iff its reachability graph RG(S) is
finite. O1

Among the very numerous subclasses of Petri net systems that have been con-
sidered in the literature, choice-free ones!' (meaning there is no true choice to be

! not to be confused with free-choice nets [9]



performed when two or more transitions are enabled [20]; they have also been
called output-nonbranching [5]) appeared very interesting in terms of properties,
synthesis and implementation [8]. We shall thus introduce a similar subclass for
reset nets.

Definition 6. CHOICE-FREE SUBCLASSES

A Petri net is said choice-free if Vp € P : |p®| < 1.

A reset net will be said choice-free if Vp € P : (|p®* U R(p)| < 1). That is, each
place has at most one successor transition and at most one resetting transition,
and if they are both present they must be the same. 06

In graphical representations, reset arcs will be drawn as (undirected) dotted
lines, and as usual arcs with null weight are omitted. Figure 1 presents a reset
net and the corresponding reachability graph for some initial marking. It is not
choice free, while each place has a single output transition and a single reset arc,
but not always the same: for instance ps has output a and is reset by c.

(2,0,0,1,1)

RG,

Fig. 1. A reset net system and its (finite) reachability graph for the initial marking
specified in bold.



On the contrary, Figures 2 and 3 present bounded choice-free reset net systems,
and their reachability graphs (the initial markings are still respresented in bold).

e [a] (2) -—(»0-)@

N2 RG2

Fig. 2. A simple choice-free reset net and its reachability graph
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Fig. 3. Another bounded choice-free reset net and its reachability graph

Markings may be considered as a kind of vectors with indices in P, but we shall
also consider vectors of transitions.

Definition 7. T-VECTORS

A T-vector is an element of N7

The support of a vector is the set of the indices of its non-null components.

A vector is called prime if the greatest common divisor of its components is one
(i.e., its components do not have a common non-unit factor).

The Parikh vector ¥ (o) of a finite sequence o € T* of transitions is a T-vector
counting the number of occurrences of each transition in o, and the support of
o is the support of its Parikh vector, i.e., supp(c) = supp(¥ (o)) = {t € T |
U(o)(t) > 0}. ov



Definition 8. SYNTHESIS

Two LTS T'S1 = (S1,—1,T, 1) and TSy = (Sa, —2, T, 12) are isomorphic if there
is a bijection ¢: S; — Sz with ¢(t1) = t2 and (s,¢,8") €—=1 < ({(s),t,((s")) €=,
for all s,s" € Sj.

If an LTS TS is isomorphic to the reachability graph RG(S) of some system
S, we say that S solves TS (or X-solves it, if X is the class of ). A LTS is
X-solvable if a system of class X solves it.

A synthesis is a procedure aimed at finding a solution from TS (when possible);
it thus consists to keep the structure of the reachability graph of a system (drop-
ping the exact values of the markings) in order to obtain a given LTS. 08

3 Presynthesis

The presynthesis phase consists in checking that the given LTS satisfies some
structural properties common to all the reachability graphs of the target class.
These properties need of course to be easy to check. If a check fails, we may
immediately reject the synthesis and produce a reason, easy to understand in
general.

For a reset net synthesis, we may use the following:

Proposition 1. GENERAL PROPERTIES OF RESET NETS

The reachability graph of a bounded reset net system is finite, totally reachable
and forward deterministic.

Proof: Finiteness results from Corollary 1. Forward determinism results from
the firing rule, and total reachability from the definition of a reachability graph.
O1

Hence, if a LTS is not finite, or not totally reachable, or not forward deterministic
(easy to check if the LTS is given explicitely), there is no reset net solution (and
we know why). Note however that, contrary to what happens for usual Petri
nets, it may happen that the reachability graph of a reset net is not backward
deterministic. This may be observed on Figure 2 for instance (N is even a
choice-free reset net): there are two arcs labelled a arriving at node (0).

For a choice-free reset net synthesis, we may use the following;:

Proposition 2. GENERAL PROPERTIES OF CHOICE-FREE RESET NETS

The reachability graph of a bounded choice-free reset net system is finite, totally
reachable, forward deterministic and quasi-persistent.

Proof: The first three properties result from Proposition 1.
Quasi-persistence results from the observation that, in a reset net system, for any
place p € P, the marking of p may only be decreased when firing t if ¢ € p* UR(p).



Hence, if the system is choice-free, the marking of p may only be decreased by a
single transition. As a consequence, if ¢ is enabled by some marking, it remains
so at least until ¢ is fired. a2

However, contrary to what happened for usual Petri nets, it may happen that
the reachability graph of a choice-free reset net system is not persistent: this is
illustrated by Figure 3, where N3 is a choice-free reset net system, a and b are
initially enabled, but My[ab) and My[ba) lead to different markings.

Many general properties of choice-free net system have been discovered and
proposed for a pre-synthesis phase (see [8]). However, very few of them remain
valid for choice-free reset net systems.

For instance, it is known that bounded choice-free nets always have home states
in their reachability graphs, i.e., states that remain reachable whatever the evo-
lution of the system (this is due to Keller’s theorem [18]). This is not true for
choice-free reset nets, as illustrated by Figure 4.

Fig. 4. A choice-free reset system and its reachability graph without home state

Next, if the reachability graph of a bounded choice-free net is acyclic, all paths
between two reachable markings have the same Parikh vector: Figure 3 shows
that this is no longer true for choice-free reset nets since there are two paths ab
and bab from (1,1) to (0,0).

Moreover, it is known that, in the reachability graph of a bounded choice-free
net, cycles are propagated Parikh-equivalently: if s[a)s and s[a)s’ for some a € T
and a € T*, then §'[8)s’ with ¥(«) = ¥(3) for some [ € T*. This is no longer
true when we add reset arcs, as illustrated by Figure 5. We may observe in this
example that, while the initial cycle (a simple loop a) is not transported on the
next state, it is however transported on the last state. We may then wonder
if any cycle is eventually transported if we go further enough. This is not true
however, as illustrated by Figure 6: the initial cycle babc is not transported if we
perform the path ab since this leads to a dead end.

Finally, many interesting properties of bounded choice-free net systems are linked
to the minimal Parikh vectors of non-empty cycles (a cycle with such a minimal
Parikh vector is called small). However, when there are reset arcs, Parikh vectors
are no longer characteristic of cycles. For instance, in Figure 2, RG2 has two
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Fig. 5. A bounded choice-free reset net and its reachability graph, where cycles are
not always pushed forward
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Fig. 6. A bounded choice-free reset net and its reachability graph, where a cycle is not
at all pushed forward



paths a (hence with the same Parikh vector), but only one of them defines a
cycle (in Figure 5, there are three paths b, but only two of them are cycles).
Hence we may suspect that the properties of small cycles will be different for
reset net systems.

For instance, in a bounded choice-free net system, any cycle has a Parikh vector
which is a sum of Parikh vectors of small cycles, but this is no longer true if
we add reset arcs, as illustrated in Figure 7: the cycles which do not visit twice
some state are abc (and acbh), babc and bacabe, of which only the first one is
small, but the Parikh vector (1,2,1) of babe is not a multiple of the minimal
Parikh vector (1,1,1) (note also that this example shows a bounded system
where it is possible to reach a strictly larger marking: (1,2, 0,0) may be reached
from the initial marking (1,1,0,0); this explain why the classical Karp-Miller
procedure [17] does not work for reset nets and reset arcs make boundedness
undecidable).

RG~

Fig. 7. A bounded choice-free reset net and its reachability graph, where cycles do not
have a base of small cycles



The status of other classical properties of the reachability graphs of bounded
choice-free nets is uncertain. For instance, it is not known if the Parikh vectors
of small cycles remain prime, nor if they are either equal or disjoint.

4 General Algorithms

A classical technique to perform a Petri net synthesis is to start from a net
with transitions only, then to add progressively new places in order to constrain
the evolutions to get closer and closer to what is specified by the given LTS.
Each added place must allow all the evolutions permitted by the specification,
and exclude some forbidden situations that were allowed by the previously added
places. The process leaves some freeness in the way these new places are added, so
that the result is usually not unique, and it may happen that some additions are
not possible, meaning there is no solution to the considered synthesis problem.

Let TS = (S,—,T,t) be a given labelled transition system. The theory of re-
gions [2] characterises the solvability of an LTS through the solvability of a set
of separation problems. In case the LTS is finite, we have to solve 3:|5|-(|S|-1)
states separation problems and up to |S|-|T| event/state separation problems,
as follows:

Definition 9. SEPARATION PROBLEMS

e A (Petrinet) regionof (S, —,T,¢)is atriple (M,B,F) € (S —- N, T — N, T —
N) such that for all s[t)s’ €—, M(s) > B(¢) and M(s") = M(s) —B(¢) +F(t). A
region models a place p, in the sense that B(¢) models W(p,t), F(t) models
W (t,p), and M(s) models the token count of p at the marking corresponding
to s (and in particular, M(+) models the initial marking of p).

o A states separation problem (SSP for short) consists of a set of states {s, s’}
with s # ¢/, and it can be solved by a region (or place) distinguishing them,
i.e., has a different number of tokens in the markings corresponding to the
two states: M(s) # M(s’). There are |S]| - (]S] — 1)/2 such problems.

o An event/state separation problem (ESSP for short) consists of a pair (s,t) €
SxT with —st). For every such problem, one needs a region (or place) such
that M(s) < B(t). There are |S| - |T| — | — | such problems. 09

If the LTS is infinite, also the number of separation problems (of each kind)
becomes infinite, but we need to find a finite set of regions solving all of them.
Other techniques must then be searched for, instead of considering each separa-
tion problem separately, but here we shall restrict our attention to finite LTSs,
i.e., to bounded solutions. Then, [10] showed that a Petri net synthesis problem

10



is solvable iff each separation problem has a solution, and a possible solution to
the synthesis problem is obtained by gathering all the places corresponding to
those separation problem solutions.

For reset net synthesis problems, the situation is similar, but we need to consider
reset regions:

Definition 10. RESET REGION

A reset region (RPN-region for short) of (S,—,T,¢) is a tuple (M,R,B,F) €
(S — N,2TT — N,T — N) such that for all s[t)s’ €—, M(s) > B(t) and
M(s") = M(s) — B(t) + F(t) if ¢ € R, F(t) otherwise. A region models a place p
(see Figure 8), in the sense that B(¢) models W(p,t), F(¢) models W (¢, p), M(s)
models the token count of p at the marking corresponding to s, and R specifies
which transitions belong to R(p). O 10

F(b1) ]
Bl
: . : )

B(am) B(bn)
H_/
R

Fig.8. A general reset region (pictured as a place p). T = {a1,...,am,b1,...,bn}
and R = {b1,...,bn}. M(4) is the initial marking of p, and more generally M(s) is the
marking of p corresponding to state s.

The proofs of [10] may be immediately adapted so that a finite, totally reachable,
forward deterministic LTS admits a RPN-solutions iff each separation problem
has a RPN-region solution, and a possible solution to the synthesis problem is
obtained by gathering all the places corresponding to those separation problem
solutions.

For each separation problem, we thus have to solve a system of (1+2-| — |)
linear constraints: 1 to express the separation problem to consider ( i.e., either
M(s) # M(s’) or M(s) < B(t)), | — | constraints expressing that a transition
is possible, and the same number to express the resulting marking. There are
(|S|+2-|T) variables in N: |S| variables M(s), |T| variables B(t) and |T'| variables
F(t). But for each case we may have to consider up to 2!7! configurations for R,
as illustrated by Figure 8.

11



For the synthesis of choice-free reset nets, instead of considering 2!”! configu-
rations, we only have to consider 2 - |T| of them, as illustrated® on Figure 9,
each one having 1+ |T'| + |S| variables. Note however that, for each event/state
separation problem (s, t), we only have to consider 2 configurations since b must
be t in this case. On the contrary, for a states separation problem (s,s’), b is
not prescribed and we may need to consider all the possible configurations (in
particular when the problem has no solution).

Fig.9. The two general choice-free reset regions (pictured as a place p). T =
{a1,...,am,b} and R is either empty or {b}. M(:) is the initial marking of p, and
more generally M(s) is the marking of p corresponding to state s.

For each separation problem and each configuration for R(p), the system of
linear constraint to be solved is polynomial in the size of the LTS to be solved,
and it is homogeneous (no independent term), so that instead of searching a
solution in the integer domain we may work in the (non-negative) rational one
and afterwards apply a multiplicative factor to get integer solutions. We may
thus use a polynomial procedure, like the Karmarkar’s one [16]. This may no
longer be true if we add other constraints; for instance, if we search for a k-
bounded solution, we may add |S| constraints M(s) < k (for each state s € S):
the size of the system remains polynomial, but it is no longer homogeneous, and
the problem is NP-complete (see also [3, 21]).

5 Acceleration

Since the complexity of a reset net synthesis may be quite high (still worse than
for usual Petri net synthesis), it may be beneficial to use a divide and conquer
strategy [11,12] and decompose the given LTS as a product or an articulation
of simpler components: those decompositions were developed in the context of
Petri net synthesis, but they apply as well to reset nets.

2 Note however that, since B(b) may be null, several configurations of the left kind
may intersect.
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Concerning the choice-free case, several accelerations have been exploited in [7]
for instance, based on the analysis of their reachability graphs. Unfortunately,
most of them are no longer valid when we add reset arcs.

For instance, it has been shown that, for choice-free synthesis, states separation
problems are irrelevant: if a LTS satisfies the pre-synthesis checks and all the
event-state separation problems, then the states separation problems are auto-
matically satisfied too. This is no longer the case for choice-free reset synthesis,
as illustrated by Figure 2: there is no event-state separation problems since there
is a single label (a), enabled at each state; however, we need to separate the two
states of the corresponding LTS.

Let us first consider the solution of the event-state separation problems for some
event b € T. It is not necessary to consider all of them in general, and it is
sometimes possible to slightly simplify the systems of linear constraints to be
solved.

Indeed, if we consider the two forms of places/regions detailed in Figure 9, we
may see that, if there is a cycle in the given LTS without the label b, all the
labels a; occurring in it must have a weight F(a;) = 0 (otherwise, the marking
of p strictly increases around the cycle). As a consequence, if C(b) denotes the
set of labels occurring in cycles without b, Va € C(b) : F(a) = 0. Moreover, if
sla)s’ for a € C(b), we have M(s) = M(s"). If C(b) # 0, both properties reduce
the number of variables to find when searching a region of the kinds exhibited
in Figure 9 (and it may happen that none is found, in which case the synthesis
has no solution).

Now, if s[a)s’ and s[b) with a # b, from the quasi-persistence (satisfied if the given
LTS passed succesfully the presynthesis phase), we also have s'[b), so that we do
not have to separate b from s’ if we do not have to do it from s. If a € C(b) and
sla)s’, since M(s) = M(s") for any region of the two kinds illustrated in Figure 9,
if —s[b) any place separating s from b will also separate s’ from b; we may deduce
that if s'[b), the synthesis by a choice-free reset net is then impossible (this could
then be incorporated in the presynthesis phase). If a € C(b), —s[b) and —s'[b), it
is equivalent to separate b from s and to s’. Let us thus define the equivalence
relation s1 ~yp so generated by Ja € C(b) : s[a)s’. If s; ~p so and —s1[b), we
must also have —s5[b), but we only have to separate a single state from b in each
equivalence class where b must be excluded. Moreover, it is not always necessary
to separate all such equivalence classes from b.

Indeed, if sfa)s’ with @ € T'\ ({b} UC(b)) and —s'[b), M(s) < M(s") for any region
of the two kinds illustrated in Figure 9. As a consequence, any place separating
b from s’ will also separate it from s. Let us thus consider the graph whose nodes
are the equivalence classes of ~; which do not enable b, with an arc from ¢; to
o if there is s1[a)se with s; € ¢1, s2 € c2 and a € T'\ ({b} U C(b)). From the
discussion above, we only have to consider the event-state separation problems
separating a member of a rightmost class (in this graph) from b.

13



More easily, when considering an event-state separation problem for b, it is always
advisable to first look if some place previously devised for another separating
problem for b does not already solve the present problem.

Let us now consider a states separation problem for s # s’. Again, we may first
look if some of the regions constructed before does not already solve it.

From the discussion above, it occurs that if s ~; s’ for some b € T, we should not
search for a separating region with output or reset b, since then M(s) = M(s'):
this reduces the burden of finding an adequate region, if any. And in particular,
if s ~ s’ for any b € T, it is not possible to separate s from s’ and the synthesis
fails (again, this could be incorporated in the presynthesis phase).

When a given LTS is reversible, it is known [5] that it has a classical choice-free
solution iff it has a pure one, which reduces the number of unknowns in each
linear system to be solved. We shall now see that this extends immediately when
we add reset arcs.

Proposition 3. PREFIXED LTS

If each label occurring in some LTS occurs on a cycle around the initial state,
then this LTS has a choice-free reset solution iff it has a pure one. Moreover, in
the general schemes illustrated in Figure 9, we may always assume F(b) = 0.

Proof: First, we may observe that, if t € T but ¢ does not occur as a label in
the LTS, this may be obtained by a (pure) place without input, without (initial)
token, and with a unique output transition ¢. Hence, in the following, without
loss of generality we shall assume that each transition labels some arc in the
given LTS.

Now, let b € T and let us consider a reset region (M, R, B, F) of the kind illustrated
in Figure 9, so that either R = ) (non-resetting region) or R = {b} (region
resetting b).

For any arc s[b)s’ in the LTS, we may observe that M(s") > F(b) in the non-
resetting case, and M(s") = F(b) in the resetting case. Moreover, if s'[o)s” with
o € (T\{b})*, M(s”) > M(s'). Since we assumed that, for some s € S, o € T* :
s[bo)e, we deduce M(¢) > F(b). And since Vs € S 3o € T* : i[o)s, we also have
Vs €S : M(s) > F(b).

Now, let & = min(F(b), B(b)). Let us consider the object obtained from (M, R, B, F)
by subtracting k from each M(s) as well as from B(b) and from F(b). It is easy
to see from the previous property that this object is still a choice-free reset re-
gion, and that if the original region solves a (states or event/state) separation
problem, the same is true for the new one. Since in the new region we may not
have both B(b) > 0 and F(b) > 0, this leads to a pure solution if we apply this
procedure to each region of a choice-free reset solution of the given LTS.

Finally, let us consider a pure non-resetting region for b (left of Figure 9). If
F(b) > 0, we have B(b) = 0, but then we cannot have a cycle with b (the
marking would increase indefinitely while following the cycle), which contradicts

14



the hypotheses. For a pure resetting region (M, R, B, F) for b (right of Figure 9), if
F(b) > 0, we have B(b) = 0 and (from the argument above) Vs € S : M(s) > F(b).
Let us then consider the object obtained by subtracting F(b) from each M(s) and
replacing F(b) by 0. It is easy to see that this object is still a choice-free reset
region for b, and that if the original region solved a states separation problem
(it cannot solve an event/state separation problem since B(b) = 0), the same is
true for the new one. We thus may assume in any case that F(b) = 0. 03

For instance, any LTS isomorphic to RG¢ in Figure 6 has a pure choice-free
reset solution, for instance Ng. The same is true for RG7 in Figure 7, and more
generally we have the following corollary:

Corollary 2. PURE SOLUTIONS

If an LTS is reversible, it has a choice-free reset solution iff it has a pure one.
a2

6 Net Implementation

Synthesis may be considered as a simple step in an implementation process. From
a behavioural specification (for instance in the form of a LTS), it allows to find
(if possible) a model of a certain class, which may be considered as a structural
specification presenting the adequate behaviour. It then remains to implement
this model in a practical device, either hardware or software, or mixed.

In our case, since Petri nets and their extensions are especially devised to de-
scribe a distributed application, we may try to obtain a program, where each
place corresponds to data structures (giving in particular the number of to-
kens in the place, but each token may provide other informations that will be
used by the absorbing agent) and parallel processes for each transition. Since
we consider models with ‘black’ tokens, the control flow will not rely on the
information carried by the tokens, but this information may be exploited by the
transition-process when it absorbs the needed tokens and fires. After or during
the processing of these informations, the agent will produce some tokens in some
places, possibly carrying some information that will be available in the future
(but not for the control flow).

In general, a classical problem may occur when the agents check the availability of
their needed tokens in a distributed way: it may happen that an agent observes
that some input place (or all of them) has the needed tokens, but before the
firing takes place and absorbs them, another agent does the same and absorbs
the tokens before, disabling the first agent. In order to avoid this, a solution is
to lock all accesses to memory when an agent tries to get its tokens, but this
is not very distributed. Another solution is that each agent progressively locks
all its input places, in some order compatible with the orders used by the other
agents (putting all these local orders together must yield a — possibly partial —
global order, to avoid deadlocks), but fixing this order is not exactly distributed
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either. During this locking, the transition may observe if the needed tokens are
available, and if it is not the case it will be necessary to unlock all the locked
places and retry later (this may induce some starvation phenomenon).

For choice-free nets, the situation is much more sympathetic, since there is no
conflict in accessing the input places of each agent. Hence, if a transition observes
that there are enough tokens in some place, this may not be changed by other
transitions: the latter may only increase the set of tokens in the considered
place. Note however that we could have problems if a transition is duplicated in
several processes in order to implement some form of auto-concurrency [15]: we
shall thus assume that auto-concurrency is not allowed in our systems. It may be
necessary to lock accesses to each place however, in order to avoid intermixing
absorptions and productions of tokens in the place by different parallel processes
(classical problem when performing additions and/or subtractions in parallel,
with local copies of the variables), but this may be done in a distributed way.
Moreover, if a transition observes that there are not enough tokens in some
input place, it is necessary to unlock the place and retry later, but it is never
necessary to restart from the beginning. It is even possible to absorb needed
tokens when their presence is observed, even if not all of them are there: it is
never necessary to give back the absorbed tokens if the transition is blocked
at some point, and starvations are equivalent to blockings. The productions
and absorptions may be done concurrently in any order, provided the places
are protected against simultaneous accesses, since additions and subtractions
commute (+i—j+k = —j + k+1). This does not create problems and does not
perturb the evolutions of the underlying Petri net (but spurious intermediate
markings may be created).

For general reset nets, since this generalises Petri nets, we encounter the same
problems, and the same non-distributed solutions.

For choice-free reset nets, we have the same separation of the input places as
for usual choice-free Petri nets, hence we have the same fact that checking in a
distributed way that the needed tokens are available is not destroyed by the other
agents. However, we have a problem with the production phase of each agent,
due to the fact that commuting a reset and a production is not innocuous.

(0,2) (1,0

) )
v T
(1’1) < b()a
a o b ;
(2,0) (0,1)

N RG

Fig. 10. A simple choice-free reset system and its reachability graph
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This is illustrated by the example on Figure 10. Initially, both a and b are
enabled. Let us assume they observe it simultaneously, absorb the needed tokens
and proceed as follows: a produces a token in pq, b resets py, b produces a token in
p2 and a resets pa; we get the marking (0, 0) which blocks the system, hence does
not allow to still perform infinitely often ab or ba as specified by the reachability
graph on the right.

Hence, for the reset and production phase of a transition, we must again either
lock all the places, or progressively all its reset-output and output places in some
well-defined order. However, in the latter case, when a place is locked by another
transition, one only has to wait for its unlocking to proceed: it is never necessary
to undo some modification, nor restart the phase, nor wait for an extra delay.
When all the needed places have been modified we may unlock them and restart
the input-phase.

The structure of each implemented transition could then be sketched as illus-
trated on Figure 11. There are variants of this schema however; for instance, the
absorption of the input tokens in some place may be performed progressively,
without waiting they are all present simultaneously.

repeat
for each input place p (i.e., such that W(p,t) > 0) in any order do
end-collect = false
repeat
lock place p
if there are not enough tokens (M (p) < W(p,t))
then unlock place p; wait for some time
else collect the needed tokens (M (p) = M(p) — W(p,t));
unlock place p; end-collect = true
until end-collect
process the action of the transition
(possibly using the hidden information of the black tokens)
for each output or reset place p (i.e., such that ¢ € R(p) or W (¢,p) > 0)
in an adequate order do
lock place p
if p is reset by ¢ (i.e., t € R(p))
then erase the remaining tokens of p, if any (then M (p) = 0)
if p is an output place for ¢
then produce W (t,p) tokens (possibly with adequate hidden
information, depending on the ones of the used tokens)
for each output or reset place p, in any order do unlock place p
until we want to stop

Fig. 11. Sketch of a parallel subprogram implementing transition ¢
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7 Concluding Remarks and Future Work

We succeeded in finding how to synthesise, when possible, a finite LTS into a
Petri net when we allow reset arcs, either in the general case or in the choice-free
case.

We explored how to realise a pre-synthesis phase, but some work has still to
be accomplished. In particular, the status of two important properties has to
be determined: the primality of small cycles and the disjointness of small cycles
with non-identical Parikh vectors.

Region theory has been extended to cope with the addition of reset arcs, and
the complexity of the separation problems has been delineated.

Some practical accelerations have been exhibited, but it is likely that some more
could be discovered.

Finally, the way to implement a structural specification with reset arcs as a
concurrent program has been analysed.

Of course, it should be possible to consider other superclasses of Petri nets
(like the ones with inhibitor arcs or transfer arcs or a mixture of those various
extensions), as well as other subclasses of those superclasses (similar to marked
graphs or free-choice nets for instance) but the region approach assumes that the
constraints are only linked to individual places, so the extensions may sometimes
be delicate.
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