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Abstract. In recent works we proposed a lazy algorithm for reachability
analysis in networks of automata. This algorithm is optimistic and tries
to take into account as few automata as possible to perform its task.
In this paper we extend the approach to the more general settings of
reachability analysis in unbounded Petri nets and reachability analysis
in bounded Petri nets with inhibitor arcs. We consider we are given a
reachability algorithm and we organize queries to it on bigger and bigger
nets in a lazy manner, trying thus to consider as few places and transi-
tions as possible to make a decision. Our approach has been implemented
in the Romeo model checker and tested on benchmarks from the model
checking contest.
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1 Introduction

In recent works [8,9] we proposed an algorithm for reachability analysis in net-
works of automata. This algorithm is called lazy as it tries to use as few automata
as possible to complete its task. To that extent, it is a non-trivial instance of
a general principle that has been implemented in many approaches (e.g. pro-
gram slicing [21]). In practice, on many benchmarks this approach proved to be
efficient: the LaRA tool (which implements our approach) used only a small
portion of the automata in the network to conclude about reachability. Runtime
comparisons with LoLA [22] (in a non-timed setting [8]) and Uppaal [2] (in a
timed setting [9]) were also frequently in favor of LaRA.

Networks of automata are in fact a subclass of Petri nets as they can be
syntactically transformed into safe Petri nets. Extending our lazy reachability
algorithm to larger classes of Petri nets is thus a natural next step in our work.
Moreover, it is of particular interest for us as it will allow to implement lazy
reachability in the Romeo model checker [16], developed in our research team.
In fact, Romeo works on models even more expressive than Petri nets, where
reachability is not always decidable. In this paper we focus on unbounded Petri



nets and bounded Petri nets with inhibitor arcs, two subclasses of these models
for which reachability is decidable.

Reachability analysis in Petri nets (or equivalent models such as vector addi-
tion systems) has been widely studied. The problem is known to be decidable in
general [17,12,13,15]. Efficient techniques exist for performing it in the particular
case of bounded nets, that is nets with a finite state space. One can notice, for
example, Petri net unfolding [18,6] or variations around it [3,4], partial order
techniques [7], and decision diagram based approaches [5,19].

Here we follow a different approach and do not propose a standalone reacha-
bility algorithm but rather, given such an algorithm, we propose a scheme to use
its results on subnets that are built incrementally from the reachability prop-
erty by adding only places and transitions that are required to make a decision.
This is why we call the approach lazy. Compared to [8], the main challenges we
address here are (1) that the components of the system are less well-defined in
a Petri net than in a network of finite automata, and (2) that the state-space is
infinite in general. Note also that even if a net is bounded, its subnets might not
be. We propose an algorithm for reachability in plain Petri nets, and also show
how to deal with inhibitor arcs in the bounded case.

This paper is organized as follows. We start by giving some definitions and
notations in Section 2. Then we present our algorithm for lazy reachability anal-
ysis in Petri nets in Section 3 and show its validity. After that, we show how
this approach can be transposed to perform reachability analysis for the class
of bounded Petri nets with inhibitor arcs in Section 4. Finally, in Section 5 we
report on an implementation of our algorithm in the model checker Romeo and
give experimental results obtained from a run of our tool on all the benchmarks
from the 2020 edition of the model checking contest [11,10].

2 Definitions and notations

We define Petri nets and their semantics, as well as the central notion of reach-
ability of markings in Petri nets. Then, we define the notion of subnets and
partial markings, that we use later to perform reachability analysis on a Petri
net without considering it in its entirety.

2.1 Petri nets

Definition 1 (Petri net). A Petri net is a tuple N = (P, T, F,m0) where P and
T are disjoint finite sets of places and transitions respectively, F : P×T∪T×P →
N is a flow function, and m0 : P → N is called the initial marking.

In a net N, for any x ∈ P ∪ T , we define •x = {y : F (y, x) ̸= 0} the preset
of x and x• = {y : F (x, y) ̸= 0} the postset of x. We can extend this postset
(resp preset) concept to subsets of P or T by doing the union of the postsets
(resp presets) of each element of the considered subset.

In a net N, any function m : P → N is called a marking of N. A transition
t ∈ T is fireable from a marking m if and only if ∀p ∈ •t,m(p) ≥ F (p, t). In this



case, firing t from m leads to the new marking m′ such that ∀p ∈ P,m′(p) =

m(p)−F (p, t)+F (t, p). We denote it by m
t−→ m′. Given a sequence ω = t1, . . . , tn

of transitions, we define m
ω−→ m′ if there exist markings m1, . . .mn−1 such that

m
t1−→ m1, ∀2 ≤ i ≤ n− 1,mi−1

ti−→ mi, and mn−1
tn−→ m′.

Definition 2 (Reachability). A marking m is said to be reachable in N if
and only if there exists a sequence of transitions ω such that m0

ω−→ m.

Definition 3 (Boundedness). A Petri net is said to be k-bounded, for a given
k, if for every reachable marking m and every place p, we have m(p) ≤ k. A Petri
net is said to be bounded, if there exists a k such that it is k-bounded.

2.2 Subnets and partial markings

In the following, we will perform reachability analysis on parts of a Petri net:
not all the places and transitions of the net will be considered. This is formalized
through the notion of subnet.

Definition 4 (Subnet). A Subnet N ′ of a Petri net N = (P, T, F,m0) is a
tuple (P ′, T ′, F ′,m′

0) such that P ′ ⊆ P , T ′ ⊆ T , F ′ = F|P ′,T ′ , and m′
0 = m0|P ′ .

Given a subnet N ′ of a net N, and for any x ∈ P ′ ∪ T ′, we define •Nx =
{y : F (y, x) ̸= 0)} and xN• = {y : F (x, y) ̸= 0} (that is, intuitively, the preset
and postset taken in N rather than in N ′).

We introduce two notions of completeness with respect to a net N for a
subnet N ′. They will be central in our algorithms and their proofs. The notion
of P-completeness expresses that N ′ contains all the places from N that are used
as preconditions for enabling transitions in N ′.

Definition 5 (P-completeness). A subnet N ′ of a net N is said to be P-
complete when ∀t ∈ T ′, •Nt ⊆ P ′.

In the other way around, the notion of T-completeness expresses that N ′

contains all the transitions from N that can add tokens on places in N ′.

Definition 6 (T-completeness). A subnet N ′ of a net N is said to be T-
complete when ∀p ∈ P ′, •Np ⊆ T ′.

Partial marking will be used to express reachability objectives that do not
concern all the places in a net.

Definition 7 (Partial marking). For a Petri net N = (P, T, F,m0), any func-
tion mp : P → N ∪ {⋆} is called a partial marking of N.

Intuitively, a partial marking is a marking which is not fully specified: when
mp(p) = ⋆ for some p ∈ P it means that this value is left unspecified. For a
partial marking mp of a net N, we define supp(mp) = {p ∈ P : mp(p) ̸= ⋆}.
A marking m such that m(p) = mp(p) for any p ∈ supp(mp) is said to realize



mp. We can notice that a every marking m of a net N is a partial marking such
that supp(m) = P . For a net N with a subnet N ′, and a (partial) marking m of
N, we denote by m′ the (partial) marking of N ′ such that m′ = m|P ′ and call it
the submarking of m in N ′.

Definition 8 (Reachability). A partial marking mp is said to be reachable in
N if and only if there exists a marking m that realizes mp and is reachable in
N.

Finally, a third notion of completeness, m-completeness, is defined for par-
tial markings. It expresses the fact that, for a given marking m of N ′, all the
transitions from N that can affect this marking by reducing its value for some
place are included in N ′.

Definition 9 (m-completeness). A subnet N ′ of a net N is said to be m-
complete with m a marking of N ′ when ∀p ∈ supp(m), pN• ⊆ T ′.

3 Lazy reachability analysis in Petri nets

In this section we propose an algorithm which, given a Petri net N and a marking
m in N, decides whether or not m is reachable in N. However, this algorithm
consists in a heuristic way to perform reachability queries on smaller nets, which
proves more efficient in some cases than a query on the full net. It therefore
requires an algorithm to perform reachability on Petri nets, used as a black-
box. The technique works on unbounded nets, provided that the reachability
black-box handles them.

We start by demonstrating the concept of our algorithm – in particular, in
which way it is lazy – on two examples, then we formalize the algorithm, and
finally we prove its validity.

3.1 Preliminary example

Consider the Petri net of Figure 1 – the places are represented by circles, the
transitions by squares, the flow function by arrows, the initial marking by black
dots. We look at two reachability questions on this net: (Q1) is it possible to
reach a partial marking m1 so that m1(p2) = 1, and m1(p3) = 1? (Q2) is it
possible to reach a partial marking m2 so that m2(p4) = 3?

Let us focus on (Q1) first. To this end, consider the subnets N1 and N2 of
Figure 2. These two subnets were built from N by considering exactly the places
in the support of m1. If the initial marking of each of these subnets had been a
submarking of m1, then the answer to (Q1) would immediately be a yes. This is
not the case however, so we cannot conclude yet.

Consider N1 first. Our objective with this subnet is to find whether or not it
is possible to reach some marking m so that m(p2) = 1. As this is not the case
initially, one needs to find how to increase the marking of p2. This can only be
done by using transitions t so that p2 ∈ t•. We thus add these transitions to our
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Fig. 2. Six subnets incrementally built from p2 and p3.

subnet, leading to N ′
1 (which is T-complete). Now, some m so that m(p2) = 1 is

reachable, however, we cannot yet conclude that this is the case in the full net
N because we do not have all the presets of the transitions we use. So we add
the places in these presets, leading to the new subnet N ′′

1 (which is P-complete).
From this subnet, one can conclude that some m so that m(p2) = 1 is reachable
in N.

A similar process allows to build N ′′
2 and prove that some m so that m(p3) = 1

is reachable in N. However, having obtained these two results does not guarantee
that m1 is reachable in N because N ′′

1 and N ′′
2 overlap (the place p1 appears

in both), which may lead to conflicts between the transition sequences found in
these two subnets. We thus merge the subnets (on common places and transi-
tions, here only p1), which leads to the subnet of Figure 3. In this subnet m1 is
reachable. Moreover – as we prove later – because this subnet is P-complete, m1

is also reachable in N.
The place p4 and the transition t3 were never included in the subnets consid-

ered. This is why we call our algorithm lazy: it omits the places and transitions
that are not useful for its analysis.

Let us now focus on (Q2). In this case our analysis will start from the subnet
N3 of Figure 4. For similar reasons as before, we first add the transitions that can
put tokens in p4, leading to N ′

3. In this subnet, no marking m so that m(p4) = 3
is reachable (because there is always an even number of tokens in p4). However,
markings with m(p4) ≥ 3 are reachable. Hence, we add the transitions that can
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remove tokens from p4, leading to N ′′
3 . In this subnet, such an m is reachable

(for example by firing t2 three times and then t3 one time). As before, in order
to conclude one needs to verify that (at least some of) the sequences allowing
to reach such an m are fireable in the original net. For that, the places in the
presets of t2 and t3 need to be added, leading to N ′′′

3 . In this subnet it is not
possible to fire t2 three times. Moreover, this subnet is T-complete and so, as
we prove later, if no m such that m(p4) = 3 is reachable in N ′′′

3 , no such m is
reachable at all in N .

3.2 An algorithm for lazy reachability analysis in Petri nets

The formalization of the ideas presented in the above examples leads to Algo-
rithm 14. It is a lazy algorithm that, given a net N and a (partial) marking m,
tells whether or not m is reachable in N . This algorithm works on subnets of N .
These subnets are identified by their sets of places and transitions.

Algorithm 1 starts with subnets built from a partition of the set of places
involved in m. This allows to handle each part of the objective separately as
long as they do not interact. Initially, each element of the List LNets is a pair
(P, T ) representing one of these subnets. The algorithm does two main tasks:
concretisation (addition of places and transitions to subnets) and merging (union
of interacting subnets). At each iteration of its main loop it does at least one of
those two tasks.

Concretisation. Concretisation consists in expanding one subnet. If the partial
objective is not reachable one adds new transitions to add new ways to reach it.
If the partial objective is reachable, one needs to add new places to ensure that

4 It uses the classical list data structure. The length of a list L is given by length(L).
The kth element of L is L[k].



Algorithm 1 Lazy algorithm checking if a marking m is reachable in a Petri
net N = (P, T, F,m0)

1: choose a partition {P1, ..., Pp} of supp(m)
2: LNets← [(P1, ∅), ..., (Pp, ∅)]
3: Complete← false
4: Consistent← true
5: while not Complete or not Consistent do
6: Complete← ∀k, LNets[k] is complete
7: if not Complete then
8: optional unless Consistent
9: mayHaveSol← Concretise(LNets,m)

10: if not mayHaveSol then
11: return false
12: end if
13: end option
14: end if
15: Consistent← LNets is consistent
16: if not Consistent then
17: optional unless Complete
18: Merge(LNets)
19: end option
20: end if
21: end while
22: return true

the transitions used in the subnet can also be used in the original net (i.e. to
ensure that their full preset is taken into account).

More formally, the objective of the concretisation is to ensure that each
subnet verifies the completeness notion of definition 10. If this is the case, then
m is reachable in N (provided that there is not interaction with other subnets,
which is ensured by the notion of consistency described below). If at least one
subnet cannot be made complete, then it is granted that m is not reachable in
N .

Definition 10. Let N = (P, T, F,m0) be a Petri net and m a marking. A subnet
N ′ of N is complete (with respect to N and m) if N ′ is P -complete and the
submarking m′ is reachable in N ′.

Remark that completeness can be effectively checked provided reachability
can be checked. The rest of the conditions is syntactic.

Concretisation can be implemented as described in Algorithm 2, which al-
ternately adds places and transitions to a subnet.

Merging. Merging consists in replacing two subnets in LNets by a single subnet
obtained by union of places and transitions sets. Merging is needed when two
subnets share places, as in this case the solutions to the reachability problem



Algorithm 2 Auxiliary function Concretise(LNets,m) for Algorithm 1
1: choose k such that LNets[k] is not complete
2: (Pk, Tk)← LNets[k]
3: m′ ← m|Pk

4: if not Reachable(LNets[k],m′) then
5: choose T ′

k such that Tk ⊂ T ′
k ⊆ supp(m′)

N• ∪ •NPk

6: if not possible then
7: return false
8: else
9: LNets[k]← (Pk, T

′
k)

10: end if
11: else
12: choose P ′

k such that Pk ⊂ P ′
k ⊆ •NTk

13: LNets[k]← (P ′
k, Tk)

14: end if
15: return true

found in these subnets can interfere. For the same interference reason, merging is
also needed when one of the subnets contains a transition whose postset contains
a place involved in the submarking of m (the reachability objective) in another
subnet. The fact that two subnets may interfere is formalised through the notion
of consistency in Definition 11.

Definition 11. The list of subnets LNets = [(P1, T1), ..., (Pn, Tn)] is consistent
if

1. ∀k ̸= ℓ, (Pk ∩ Pℓ) = ∅, and
2. ∀k ̸= ℓ, Tk

N• ∩ supp(m|Pℓ
) = ∅.

Remark that the definition of consistency is completely syntactic and can
therefore be checked effectively.

3.3 Proof of the algorithm

We now prove the correctness of Algorithm 1. Propositions 1 and 2 together prove
the soundness of Algorithm 1, while proposition 3 proves its completeness. The
proofs of these propositions are based on lemma for which proofs are presented
in this part.

Proposition 1. If Algorithm 1 returns false, then m is not reachable in N .

Proof. The only way for Algorithm 1 to return false is at line 11. It implies that
the previous call to the Concretise function (Algorithm 2) returned false. This
can only occur at line 7 of Algorithm 2.

In this case, it must not be possible to choose T ′ such that T ⊂ T ′ ⊆
supp(m′)

N• ∪ •NP (line 5). In other words, the subnet LNets[k] considered is
m′-complete (Definition 9) and T -complete (Definition 6). Moreover, the current



marking m′ must not be reachable in the subnet LNets[k] (line 4) and is a
submarking of m (line 3). Hence, by applying Lemma 1 below, m is not reachable
in N . ⊓⊔

Lemma 1. Let N ′ be a subnet of a Petri net N . Assume that N ′ is T -complete.
Let m′ be a marking of N ′, that is not reachable. If N ′ is m′-complete, then no
marking m of N such that m′ is the submarking of m in N ′ is reachable in N .

Proof. Let m be a reachable marking of N , with m0
ω−→ m. Denote by n the

number of transitions in ω. We prove by induction on n that m′ is reachable in
N ′. By the contrapositive, this proves the Lemma.

Induction hypothesis for all n, if m is reachable in N and there is a sequence
ω of n transitions such that m0

ω−→ m, then the submarking m′ of m in N ′ is
reachable in N ′.

Initialisation when n = 0, the only possible m is m0 (it must be reachable
with 0 transitions). Thus, simply take m′ = m′

0, which is, by construction the
submarking of m0 in N ′ and is obviously reachable in N ′.

Induction Let us consider some n > 0 and assume that the induction hypothesis
is verified for n− 1. First, remark that ω can always be split in two parts: ω′ of
length n−1 and tn (a single transition) such that m0

ω′

−→ m̃
tn−→ m in N for some

marking m̃. From the induction hypothesis, the submarking m̃′ of m̃ is reachable
in N ′. Four cases are then possible. (1) tnN• ∩P ′ = ∅ and •N tn ∩ supp(m′) = ∅,
in which case m̃′ = m′ and so m′ is reachable in N ′. (2) tn

N• ∩ P ′ ̸= ∅ and
•N tn ∩ supp(m′) = ∅, in which case, as N ′ is T − complete, tn must be in T ′.
Moreover, as tn is fireable in N from m̃, it must be fireable as well in N ′ from m̃′.
The effects of tn on the places of P ′ are the same in N and N ′, so m̃′ tn−→ m′ in N ′.
Hence, m′ is reachable in N ′. (3) tnN•∩P ′ = ∅ and •N tn∩supp(m′) ̸= ∅, in which
case, as N ′ is m′-complete, tn must be in T ′. Then, using the same arguments as
in case (2), m′ is reachable in N ′. (4) tnN•∩P ′ ̸= ∅ and •N tn∩ supp(m′) ̸= ∅, in
which case, as N ′ is T -complete and m′-complete, tn must be in T ′. Again, using
the same arguments as in case (2), m′ is reachable in N ′. In each case, m′ is
reachable, and so the induction hypothesis is also verified for n, which concludes
the induction. ⊓⊔

Proposition 2. If Algorithm 1 returns true, then m is reachable in N .

Proof. The only way for Algorithm 1 to return true is at line 22. This implies
that it goes out of the while loop. It means that both Complete and Consistent
are true (line 5). So, each element of the list LNets is complete according to Def-
inition 10 (line 6). Hence, for any k, LNets[k] is P -complete and the submarking
mk of m in LNets[k] is reachable in LNets[k]. By Lemma 2, the partial marking
of N whose support is exactly the same as the support of mk is reachable in
N , using the same sequence of transitions ωk as in LNets[k]. Moreover, the list
LNets is consistent according to Definition 11 (line 15). Hence, for any k, ℓ the



sets of places of LNets[k] and LNets[ℓ] are disjoint (part 1. of Definition 11), as
LNets[k] is P -complete, this implies that no transition from LNets[k] can reduce
the marking of a place from LNets[ℓ]. Moreover, no transition from LNets[k]
can increase the marking of a place from the support of mℓ (part 2. of Defini-
tion 11). As a consequence, the concatenation of all the ωk allows to reach the
objective marking m in N . ⊓⊔

Lemma 2. Let N ′ be a P -complete subnet of a Petri net N . Let m′ be a partial
marking of N ′ and let m be a partial marking of N so that supp(m) = supp(m′)
and for all p ∈ supp(m), m(p) = m′(p). If there exists a sequence of transitions
ω such that m′

0
ω−→ m′ in N ′, then m0

ω−→ m in N .

Proof. We proceed by induction.

Induction hypothesis. For all n, if a partial marking m′ is reachable in N ′ by
a sequence ω of n transitions, then there exists a partial marking m so that
supp(m) = supp(m′), for all p ∈ supp(m), m(p) = m′(p) and m is reachable in
N by the sequence ω.

Initialisation. When n = 0, any partial marking m′ reachable by an empty
sequence of transitions must realize m′

0, hence the partial marking m such that
∀p ∈ P ′,m(p) = m′(p) and ∀p ∈ P \P ′,m(p) = ⋆ must also be realized by m0 and
is thus reachable. This marking m is obviously such that supp(m) = supp(m′),
which concludes the initialisation.

Induction. Let consider some n > 0 and assume that the induction hypothesis is
verified for n−1. First remark that ω can always be split in two parts: ω′ of length
n − 1 and tn (a single transition) such that m′

0
ω′

−→ m̃′
c

tn−→ m′
c in N ′ for some

marking m̃′
c (not a partial one) and some marking m′

c that realizes m′. From the
induction hypothesis the only partial marking m̃ so that supp(m̃) = supp(m̃′

c)
is reachable in N by the sequence ω′, so there exists m̃c a marking that realizes
m̃ and is reached by ω′. Moreover, as N ′ is P -complete, if tn is fireable from
m̃′

c in N ′, then tn is fireable from m̃c in N (all the preconditions of tn appear
in N ′). Firing tn in N leads to a marking mc so that ∀p ∈ P ′,mc(p) = m′

c(p),
by definition of a subnet. Hence, taking for m the partial marking such that
∀p ∈ supp(m′),m(p) = mc(p) = m′

c(p) = m′(p) and ∀p ∈ P \supp(m′),m(p) = ⋆
concludes the induction. ⊓⊔

Proposition 3. Algorithm 1 always terminates and returns true or false.

In order to prove Proposition 3 we define a relation over the lists LNets
involved in an execution of Algorithm 1. We show that this relation is an order
relation and use this fact to conclude about the termination of the algorithm.

Definition 12. Let LNets1 and LNets2 be two lists involved in an execution
of Algorithm 1. We write LNets1 <ℓ LNets2 if and only if:

– length(LNets1) < length(LNets2) or



– length(LNets1) = length(LNets2) and ∃1 ≤ k ≤ length(LNets2) such that
∀1 < i < k,LNets1[i] = LNets2[i] and LNets1[k] <n LNets2[k],

where, for two subnets N1 and N2 of a net N, we have N1 <n N2 if and only if:

– P1 ⊃ P2 or
– P1 = P2 and T1 ⊃ T2.

If LNets1 <ℓ LNets2 or LNets1 = LNets2 we write LNets1 ≤ℓ LNets2.

Lemma 3. The relation ≤ℓ of Definition 12 is an order relation.

Proof. We prove that ≤ℓ is reflexive, antisymmetric, and transitive.

Reflexive. This is a direct consequence of the fact that equality is reflexive.

Antisymmetric. Assume that LNets1 ≤ℓ LNets2 and LNets2 ≤ℓ LNets1.
Suppose that LNets1 <ℓ LNets2. If length(LNets1) < length(LNets2), then
length(LNets1) ̸= length(LNets2) and length(LNets2) < length(LNets1) can-
not be true, so neither LNets2 <ℓ LNets1 nor LNets2 = LNets1 can be true,
so LNets2 ≤ℓ LNets1 cannot be true. If length(LNets1) = length(LNets2) and
LNets1[k] < LNets2[k] for some k with LNets1[i] = LNets2[i] for any i < k,
then either (1) P1 ⊂ P2 or (2) P1 = P2 and T1 ⊂ T2. In case (1), then P2 ̸= P1

and P2 ⊂ P1 cannot be true, moreover length(LNets2) < length(LNets1) can-
not be true. So LNets2 <ℓ LNets1 nor LNets2 = LNets1 can be true, so
LNets2 ≤ℓ LNets1 cannot be true. In case (2), then P2 = P1 but T2 ̸= T1

and T2 ⊂ T1 cannot be true, moreover length(LNets2) < length(LNets1) can-
not be true. So LNets2 <ℓ LNets1 nor LNets2 = LNets1 can be true, so
LNets2 ≤ℓ LNets1 cannot be true. In all cases if LNets1 <ℓ LNets2 then
LNets2 ≤ℓ LNets1 cannot be true. Thus, as LNets1 ≤ℓ LNets2, one necessar-
ily gets LNets1 = LNets2. This proves that ≤ℓ is antisymmetric.

Transitive. Assume that LNets1 ≤ℓ LNets2 and LNets2 ≤ℓ LNets3. We show
that LNets1 ≤ℓ LNets3. If LNets1 = LNets2 or LNets2 = LNets3, this
is clearly true. Thus, assume LNets1 <ℓ LNets2 and LNets2 <ℓ LNets3. If
length(LNets1) < length(LNets2), then, as length(LNets2) ≤ length(LNets3),
one gets length(LNets1) < length(LNets3), thus LNets1 ≤ℓ LNets3. In the
case where length(LNets1) = length(LNets2), two cases are possible : (1)
length(LNets2) < length(LNets3), then length(LNets1) < length(LNets3) is
clearly true, and so LNets1 ≤ℓ LNets3, (2) length(LNets2) = length(LNets3).
In this second case, there exists k such that LNets1[k] <n LNets2[k] with
∀i < k, LNets1[i] = LNets2[i] and k′ such that LNets2[k

′] <n LNets3[k
′] with

∀i < k′, LNets2[i] = LNets3[i]. We need to distinguish three cases: (a) k < k’,
(b) k = k’, and (c) k > k’. In case (a), one gets LNets1[k] <n LNets3[k] and
∀i < k, LNets1[i] = LNets3[i], thus LNets1 ≤ℓ LNets3. In case (b), one gets
∀i < k, LNets1[i] = LNets3[i] and LNets1[k] <n LNets2[k] <n LNets3[k]. The
transitivity of <n (immediately obtained by transitivity of ⊂) is sufficient to



conclude that LNets1[k] <n LNets3[k], and thus LNets1 ≤ℓ LNets3. In case
(c), one gets LNets1[k

′] <n LNets3[k
′] and ∀i < k′, LNets1[i] = LNets3[i], thus

LNets1 ≤ℓ LNets3. ⊓⊔

Proof (of Proposition 3). The only return statements in Algorithm 1 are at
line 22 and line 11. At line 22 the algorithm returns true and at line 11 it
returns false. This implies that the only possible return values are true and
false. It remains to prove that the algorithm terminates.

We prove that the successive values of LNets in Algorithm 1 are strictly
decreasing with respect to the order relation ≤ℓ. As there exists a minimal
element (the empty list) with respect to this relation, this suffices to prove the
termination.

Assume that an iteration of the main loop (while loop at line 5) starts. This
results in, at least, one call to Concretise or one call to Merge. Thus, if we show
that LNets strictly decreases with respect to ≤ℓ after a call to either of these
functions, the termination is given by the above argument.

A call to Merge strictly decreases the length of LNets. So, by the first point
of Definition 12, LNets strictly decreases with respect to ≤ℓ.

A call to Concretise does not modify the length of LNets and modifies ex-
actly one element e of LNets (or returns false, in which case Algorithm 1 ter-
minates). The modified element is chosen so that its set of transitions is strictly
increased (line 5 of Algorithm 2) or its set of places is strictly increased (line 12
of Algorithm 2). In either case, the modified element e′ is such that e′ <n e.
This ensures that LNets strictly decreases with respect to ≤ℓ and concludes the
proof. ⊓⊔

4 Lazy reachability analysis with inhibitor arcs

We now transpose the previous results from Petri nets to Petri nets with inhibitor
arcs. In such nets, places – when marked – can prevent transitions from being
fired. The results of the previous section were correct in all Petri nets, bounded
or not. In this section, this will no longer be the case as reachability is known
for not being decidable in unbounded Petri nets with inhibitor arcs [20,1].

4.1 From Petri nets to Petri nets with inhibitor arcs

We start by formally defining Petri nets with inhibitor arcs.

Definition 13 (Petri net with inhibitor arcs). A Petri net with inhibitor
arcs is a tuple NI = (P, T, F, I,m0) where (P, T, F,m0) is a Petri net and I :
P × T → N ∪ {∞} is an inhibition function.

Markings, presets and postsets are defined similarly in Petri nets with and
without inhibitor arcs. In a Petri net with inhibitor arcs NI , for any t ∈ T ,
we define ◦t = {p ∈ P : I(p, t) ̸= ∞} the inhibition set of t. We extend
this notion to sets T of transitions by union of inhibition sets. A transition



t ∈ T is fireable from a marking m if and only if ∀p ∈ •t,m(p) ≥ F (p, t) and
∀p ∈ ◦t,m(p) < I(p, t). The result of firing t is similar as for Petri nets without
inhibitor arcs, only the fireability condition changes. Reachability is thus also
similarly defined in these two kinds nets.

Definition 14 (Subnet with inhibitor arcs). A subnet N ′
I of a Petri net

with inhibitor arcs NI = (P, T, F, I,m0) is a tuple (P ′, T ′, F ′, I ′,m′
0) such that

(P ′, T ′, F ′,m′
0) is a subnet of (P, T, F,m0) and I ′ = I|P ′,T ′ .

Given a subnet N ′
I of a Petri net with inhibitor arcs NI , and for any t ∈ T ′,

we define ◦NI t = {p ∈ P : I(p, t) ̸= ∞)} (that is, intuitively, the inhibition set
taken in NI rather than in N ′

I).
The notions of P-completeness, T-completeness, partial marking, reachability

of partial markings, and m-completeness remain the same in presence of inhibitor
arcs. However, we introduce two other notions of completeness with respect to
a net NI for a subnet N ′

I . The notion of PI-completeness expresses that N ′
I

contains all the places from NI that may inhibit transitions in N ′
I .

Definition 15 (PI-completeness). A subnet N ′
I of a net NI is said to be

PI-complete when ∀t ∈ T ′, ◦NI t ⊆ P ′.

The notion of TI-completeness expresses that N ′
I contains all the transitions

from NI that may remove tokens from places that inhibit transitions in N ′
I .

Definition 16 (TI-completeness). A subnet N ′
I of a net NI is said to be

TI-complete when ∀p ∈ ◦T ′, pNI• ⊆ T ′.

4.2 An algorithm for lazy reachability analysis with inhibitor arcs

The basic principles of our lazy reachability analysis algorithm for Petri nets
with inhibitor arcs are the same as for the case where there are no inhibitor
arcs. In fact, the main algorithm that we use is still Algorithm 1 – we simply
rename N as NI to make it clear that it has inhibitor arcs – and the merging does
not change. However, we use a different concretisation function (Algorithm 3)
as well as the following definitions for completeness and consistency.

Definition 17. Let NI = (P, T, F, I,m0) be a Petri net with inhibitor arcs and
m a marking. A subnet N ′

I of NI is complete with respect to NI and m if (N ′
I

is P-complete, PI-complete and) the submarking m′ is reachable in N ′
I .

Since we still need to check reachability, we must now assume that NI is
bounded, though we do not need to know the bound. Even when NI is bounded,
its subnets may be unbounded. In the concretisation function, we will nonetheless
build our subnets so that they are bounded by construction.

Definition 18. The list of subnets LNets = [(P1, T1), ..., (Pn, Tn)] is consistent
if

1. ∀k ̸= ℓ, (Pk ∩ Pℓ) = ∅, and



Algorithm 3 Auxiliary function Concretise(LNets,m) for Algorithm 1
1: choose k such that LNets[k] is not complete
2: (Pk, Tk)← LNets[k]
3: m′ ← m|Pk

4: choose T ′
k such that Tk ⊂ T ′

k ⊆ •NIPk ∪ supp(m′)
NI• ∪ (◦Tk)

NI•

5: if not possible then
6: return false
7: else
8: P ′

k ← •NIT ′
k ∪ ◦NIT ′

k

9: LNets[k]← (P ′
k, T

′
k)

10: end if
11: return true

2. ∀k ̸= ℓ, Tk
N• ∩ supp(m|Pℓ

) = ∅.
3. ∀k ̸= ℓ, Tk

N• ∩ ◦Tℓ = ∅.

The main difference with the concretisation function that was used for Petri
nets with no inhibitor arcs is that one does not distinguish between the case
where transitions should be added and the case where places should be added.
Indeed, if one allows for adding transitions without their preconditions, this
may result in unbounded subnets. In presence of inhibitor arcs this prevents
for checking reachability. One can remark, however, that if all the preconditions
of all transitions of a subnet are also part of this subnet, then this subnet is
necessarily bounded (if the original net was bounded). This is expressed by
Proposition 4 below. Thus, in Algorithm 3, one adds transitions as before to the
considered subnet but then one always adds all the preconditions of the newly
added transitions.

Remark 1. This explains the parenthesis in Definition 17: all the subnets con-
sidered are always P-complete and PI-complete.

Finally, notice that transitions that may remove tokens from inhibition places
are also considered when adding transitions, as they can enable new transitions
firings.

Proposition 4. Let NI = (P, T, F, I,m0) be a bounded Petri net with inhibitor
arcs. Let N ′

I = (P ′, T ′, F ′, I ′,m0|P ′) be a subnet of NI . If P ′ ⊇ •NIT ′
k ∪ ◦NIT ′

k,
then N ′

I is bounded.

Proof. Since NI is bounded, let k be the corresponding bound. Assume N ′
I is

not k-bounded. Then there exists a transition firing sequence ω = t1, . . . , tn,
some marking m′, and some place p ∈ P ′ such that in N ′

I , we have m0
m−→

′
and

m′(p) > k.
We prove by induction on the length n of ω that it is also fireable in NI and

that if m (resp. m′) is the marking obtained in NI (resp. in N ′
I) after firing ω,

then m|P ′ = m′.



First suppose n = 0, then the property holds trivially. Now assume it holds
for some sequence t1, . . . , tn, with n ≥ 0, and consider an additional transition
tn+1 ∈ T ′. Let mn (resp. m′

n) be the marking obtained in NI (resp. N ′
I) after

firing t1, . . . , tn. By the induction hypothesis mn|P = m′
n. By construction the

preset and inhibitor preset of tn+1 in NI are included in P ′ and therefore since
tn+1 is fireable in N ′

I from m′
n, it is fireable in NI from mn and the effect of

those firings on the places in P ′ is the same.
Since NI is k-bounded, ω cannot be fireable in NI so we have a contradiction

and N ′
I is therefore bounded. ⊓⊔

4.3 Proof of the algorithm

We now prove the correctness of Algorithm 1 when used with the concretisation
function of Algorithm 3 on a bounded Petri net with inhibitor arcs.

First, remark that completeness of the algorithm is achieved essentially for
the same reasons as in the previous case.

Proposition 5. Algorithm 1 always terminates and returns true or false when
used with the concretisation function of Algorithm 3 on a bounded Petri net with
inhibitor arcs.

Proof. The proof of Proposition 3 also works here as the order relation of Defi-
nition 12 does not depends on the arcs of the nets but only on their places and
transitions. The only difference in the proof is to remark that a call to Concretise
always increases the set of transitions. ⊓⊔

It remains to prove to soundness of the algorithm, which is achieved by
proving Propositions 6 and 7.

Proposition 6. If Algorithm 1 used with the concretisation function of Algo-
rithm 3 on a bounded Petri net NI with inhibitor arcs returns false, then m is
not reachable in NI .

Proof. As before, the only way for Algorithm 1 to return false is at line 11. It
implies that the previous call to the Concretise function (Algorithm 3) returned
false. This can only occur at line 6 of Algorithm 3.

In this case, it must not be possible to choose T ′
k such that Tk ⊂ T ′

k ⊆
•NIPk ∪ supp(m′)

NI• ∪ (◦Tk)
NI• (line 4). In other words, the subnet LNets[k]

considered is m′-complete (Definition 9), T -complete (Definition 6), and TI-
complete (Definition 16). Moreover, the current marking m′ must not be reach-
able in the subnet LNets[k] due to Remark 1 and is a submarking of m. Hence,
by applying Lemma 4 below, m is not reachable in NI . ⊓⊔

Lemma 4. Let N ′
I be a subnet of a bounded Petri net with inhibitor arcs NI .

Assume that N ′
I is T -complete and TI-complete. Let m′ be a marking of N ′

I , that
is not reachable. If N ′

I is m′-complete, then no marking m of NI such that m′

is the submarking of m in N ′
I is reachable in NI .



Proof. Let m be a reachable marking of NI , with m0
ω−→ m. Denote by n the

number of transitions in ω. We can prove by induction on n that m′ is reachable
in N ′

I . By the contrapositive, this proves the Lemma.
The induction is in fact similar to the one used for proving Lemma 1. The

only difference is in the induction step where – in cases (2), (3), and (4) – one
could imagine that tn would be fireable in NI but not in N ′

I , due to inhibitor
arcs. However, the fact N ′

I is TI-complete prevents this: any place p that could
inhibit tn must have its full postset in N ′

I and so, if, at some point in ω, p is
marked, and later it is unmarked by some transition t, then t must be a transition
from N ′

I . ⊓⊔

Proposition 7. If Algorithm 1 used with the concretisation function of Algo-
rithm 3 on a bounded Petri net NI with inhibitor arcs returns true, then m is
reachable in NI .

Proof. The only way for Algorithm 1 to return true is at line 22. This implies
that it goes out of the while loop. It means that both Complete and Consistent
are true (line 5). So, each element of the list LNets is complete according to
Definition 17 (line 6). Hence, for any k, LNets[k] is P -complete, PI-complete,
and the submarking mk of m in LNets[k] is reachable in LNets[k]. By Lemma 5,
the partial marking of NI whose support is exactly the same as the support of
mk is reachable in NI , using the same sequence of transitions ωk as in LNets[k].
Moreover, the list LNets is consistent according to Definition 18 (line 15). Hence,
for any k, ℓ the sets of places of LNets[k] and LNets[ℓ] are disjoint (part 1.
of Definition 18), as LNets[k] is P -complete, this implies that no transition
from LNets[k] can reduce the marking of a place from LNets[ℓ]. Moreover, no
transition from LNets[k] can increase the marking of a place from the support of
mℓ (part 2. of Definition 18) or the marking of a place that inhibits a transition
of LNets[ℓ] (part 3. of Definition 18). As a consequence, the concatenation of
all the ωk allows to reach the objective marking m in N . ⊓⊔

Lemma 5. Let N ′
I be a P -complete and PI-complete subnet of a bounded Petri

net with inhibitor arcs NI . Let m′ be a partial marking of N ′
I and let m be a

partial marking of NI so that supp(m) = supp(m′) and for all p ∈ supp(m),
m(p) = m′(p). If there exists a sequence of transitions ω such that m′

0
ω−→ m′ in

N ′
I , then m0

ω−→ m in NI .

Proof. The only difference with Lemma 2 is that some places in NI may inhibit
a transition of ω. This is prevented by the fact that N ′

I is PI-complete: all
these place must also exist in N ′

I as well. A similar induction proof can thus be
performed. ⊓⊔

5 Experimental evaluation

We have implemented the algorithms in the tool Romeo [16]5.
5 64bits Linux binaries for Romeo and converters from pnml (MCC) to cts (Romeo),

and full results are at http://lara.rts-software.org/

http://lara.rts-software.org/


Note that since Romeo deals with a very expressive formalism, encompassing
inhibitor arcs, we have only implemented the concretisation function described
in Section 4, even if it is less efficient than the one in Section 3 for the nets used
in the experiments, which do not contain inhibitor arcs.

We implement line 4 in Algorithm 3 by always choosing the biggest possible
T ′
k. Actually to account for the added expressiveness of Romeo, where transitions

can modify the marking in an arbitrarily complex way, we add even a bit more:
every transition that may modify the marking in Pk, i. e., •NIPk ∪ Pk

NI•.
For reachability, we perform a simple explicit state exploration with no par-

ticular optimization.
Romeo has then been run in a setting as close as we could of the Reachabil-

ityCardinality category of the 2020 edition of the model checking contest [10],
and we compare it with the results of the other tools, which we do not recall
here for the sake of space but which are fully available in [10]. For each model
of the contest, we gave Romeo one hour to solve the same 16 formulas that
the contestant had to solve during the contest. The machine we used is not as
powerful as the machines used for running the contest (it has four Intel Xeon
E5-2620 processors and 128GB of memory), but we did not run Romeo on a
virtual machine (during the MCC it would have been the case).

On a factual point of view, Romeo, using only the algorithm presented here,
has thus been faced to 1016 different models, among which it fully solved 120
(that is, it solved the 16 formulas corresponding to the model within one hour)
and partially solved 288 (that is, solved at least 1 of the formulas within one hour
but not the 16 of them). In total, Romeo solved 2654 formulas among 16256.
We have also run our algorithm on the 2018 version of the contest, thus on a
subset of the models but with different formulas, with similar overall results.

While this overall result is not outstanding, the details are a lot more in-
teresting. First, each result that Romeo returned was the same as the result
obtained by the majority of the tools during the actual contest, and hence we
can assume with some confidence that all those results are correct.

Second, there is also a lot of room left to improve the algorithm itself, by
choosing more cleverly which places to add, which transitions, how much of each
partial net to compute, etc. And actually, since we require nothing in terms of
exploration order, the technique we propose here should easily be combinable
with, e.g., stubborn sets [14] for much better results.

Finally, and most significantly, Romeo managed to completely solve (all 16
formulas) one model (GPPP-PT-C0010N1000000000) that no other tool could
handle (they solved at most the first formula). We have had the same results
for the 2018 formulas and at that time the other tools had solved none of them.
This is very relevant because most of the best performing tools actually have a
portfolio approach, in which several techniques are tried in parallel. It thus seems
that this model is particularly difficult for current state-of-the-art tools, none of
the currently implemented approaches is efficient to handle it, and hardly any
progress has been made on it for the last four years (the model was introduced
in the 2016 edition).



In contrast, the algorithm we have proposed here performs very well on that
model and is thus likely to be a worthy addition to the portfolio approach.

6 Conclusion

In this paper, we have presented an algorithm for reachability analysis in possibly
unbounded Petri nets and in bounded Petri Nets with inhibitor arcs. This algo-
rithm heuristically performs reachability queries on subnets of the original net,
in a lazy manner: it works on subnets of increasing size, trying to answer as soon
as possible. We have proven that, in each case (unbounded Petri nets, bounded
Petri nets with inhibitor arcs), the algorithm terminates, always answers, and
always gives correct answers.

We have implemented the approach in the tool Romeo and performed a large
scale experimental evaluation based on the models from the 2018 edition of
the model-checking contest, showing that on all the models we indeed answered
correctly. Moreover, it revealed that our implementation can solve problems
that state-of-the-art model-checking tools cannot handle. While for many other
problems, those tools outperform our implementation, we believe our algorithm
is still a good candidate for inclusion in a portfolio approach.

Future work consists in incorporating the rest of the features of Roméo in
the lazy framework: timing parameters, cost optimization, properties beyond
reachability, control, etc.
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