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Abstract

We introduce deterministic concurrent systems as a subclass of con-

current systems. Deterministic concurrent system are “locally commu-

tative” concurrent systems. We prove that irreducible and deterministic

concurrent systems have unique probabilistic dynamics, and we charac-

terise these systems by means of their combinatorial properties.

1—Introduction

Trace monoids are well known models of concurrency. They represent systems
able to perform several types of actions, represented by letters in a given
alphabet, and with the feature that some actions may occur concurrently.
If a and b are two concurrent actions, then the system does not distinguish
between the two sequences of actions a-then-b and b-then-a. Instead, a unique
compound action a · b = b · a may be performed. This feature is typically used
when one wishes to work on the logical order between actions rather than on
the chronological order.

Mathematically, a trace monoid M is a monoid generated by an alpha-
bet Σ, and with relations of the form ab = ba for some fixed pairs of letters
(a, b) ∈ Σ×Σ. The identity ab = ba in M renders the concurrency of the two
actions a and b.

The use of trace monoids in concurrency theory goes back at least to the
1980’s with survey works such as [6, 7]. Trace monoids had also been studied in
Combinatorics under different names, as free partially commutative monoids
and heaps of pieces in the seminal works [4] and [13] respectively. Hence, trace
monoids stand at a junction point between computer science and combina-
torics.

Despite their successful use as models of concurrency for databases for
instance, trace monoids lack an essential feature present in most real-life sys-
tems, namely they lack a notion of state. Indeed, any action can be performed
at any time when considering a trace monoid model; whereas, in real-life sys-
tems, some actions may only be enabled when the system enters some specified
state, and then one expects the system to enter a new state, determined by
the former state and by the action performed.

A natural model combining both the “built-in” concurrency feature of trace
monoids and the notion of state arises when considering a partially defined
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monoid action of a trace monoid M on a finite set of states X. Equivalently,
instead of considering that the monoid action is only partially defined, it is
more convenient to introduce a sink state ⊥ and to consider a total monoid
action (X ∪ {⊥}) × M → (X ∪ {⊥}). Hence, if the system is in state α,
performing the letter a ∈ Σ brings the system into the new state α · a, with
the convention that a was actually not allowed if α · a = ⊥. This notion of
concurrent system, introduced in [1], encompasses in particular popular models
of concurrency such as bounded Petri nets [11, 10].

In the present paper, we use some results previously obtained in [1, 3] in
order to study a particular case of concurrent systems, namely the class of de-

terministic concurrent systems. Intuitively, a deterministic concurrent system
(DCS) is a concurrent system where no conflict between different actions can
ever arise. Hence the only non-determinism left results solely from the con-
currency of the model, combined with the constraints imposed by the monoid
action. Deterministic concurrent systems can be related, for instance, to causal
nets and to elementary event structures found in 1980’s papers [10]. We prove
in particular that deterministic concurrent systems correspond to concurrent
systems which are “locally commutative”.

Compared to general concurrent systems, deterministic concurrent systems
appear as limit cases. For instance, we prove that their space of maximal
executions is at most countable—whereas it is uncountable in general; if the
system is moreover irreducible, we prove that it carries a unique probabilistic
dynamics—whereas there is a continuum of them in general. Yet, proving these
properties is not trivial. The definition of DCS is formulated in elementary
terms; their specific properties are formulated in elementary terms; but the
proof of these properties relies on the combinatorics of partially ordered sets.

Beside the general properties of deterministic concurrent systems, our main
contribution is to give several equivalent characterisations of concurrent sys-
tems which are both deterministic and irreducible: an algebraic characteri-
sation; a probabilistic characterisation; a characterisation from the Analytic
combinatorics viewpoint; and a characterisation through set-theoretic prop-
erties of the set of infinite executions. The multiplicity of these viewpoints
suggests that the notion is worth exploring it.

Another contribution is a generalisation of the well known fact that com-
mutative free monoids have a polynomial growth. The property that we obtain
in Corollary 2.3 is general enough to be of interest per se.

Although quite specific, the class of deterministic concurrent systems has
a non trivial modelisation power. We also believe that understanding deter-
ministic concurrent systems is useful for the deeper understanding of general
concurrent systems.

Organisation of the paper. Section 2 is devoted to preliminaries, and is
divided into three subsections. Sections 2.1 and 2.2 survey respectively basic
notions on trace monoids and on concurrent systems; Section 2.3 is devoted to
an elementary, yet original result of trace theory, that we tried to formulate in
a way not too specific so that it could be of general interest, and that will be
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used later in the paper. Deterministic concurrent systems are introduced in
Section 3. Section 4 is devoted to the study of concurrent systems which are
both deterministic and irreducible.

2—Preliminaries

2.1 — Trace monoids and their combinatorics

The background material introduced in this section is standard, see for in-
stance [6, 7], excepted for the probabilistic notions which are borrowed from [2].

Independence and dependence pairs. An alphabet is a finite set, which
we usually denote by Σ, the elements of which are called letters. An inde-

pendence pair is a pair (Σ, I), where I is a binary symmetric and irreflexive
relation on Σ, called an independence relation. A dependence pair is a pair
(Σ,D), where D is a binary symmetric and reflexive relation on Σ, called a
dependence relation. With Σ fixed, dependence and independence relations
correspond bijectively to each others, through the association D = (Σ×Σ)\I.

In the remaining of Section 2.1, we fix an independence pair (Σ, I), with

corresponding dependence pair (Σ,D).

Traces. The trace monoid1 M(Σ, I) is the presented monoid M = 〈Σ
∣∣ ab =

ba for (a, b) ∈ I〉. Elements of M are called traces. The unit element, also
called empty trace, is denoted by ε, and the concatenation of x, y ∈ M is
denoted by x · y. We identify letters of the alphabet with their images in M
through the canonical mappings Σ → Σ∗ → M.

The trace monoid M is irreducible if the dependence pair (Σ,D), seen as
a graph, is connected.

Length. Occurrence of letters. Every trace x ∈ M corresponds to the
congruence class of some word u ∈ Σ∗. The length of x, denoted by |x|, is the
length of u. For each letter a ∈ Σ, we write a ∈ x whenever a has at least one
occurrence in u, and we write a /∈ x otherwise.

Divisibility order. The preorder (M,≤) inherited from the left divisibility
in M is defined by: x ≤ y ⇐⇒ (∃z ∈ M y = x · z). This preorder is
actually a partial order. If x ≤ y, the element z ∈ M such that y = x · z
is unique since trace monoids are left cancelable. We denote this element by
z = x\y.

Cliques. A clique of M is a trace of the form x = a1 · . . . · ai, where all ais
are letters such that i 6= j =⇒ (ai, aj) ∈ I. Since all ais commute with each
other, we identify the clique x ∈ M with the subset {a1, . . . , ai} ∈ P(Σ). If C

1In the literature, trace monoids are also called free partially commutative monoids, and

they also correspond to right-angled Artin-Tits monoids.
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denotes the set of cliques of M, the restricted partial order (C ,≤) corresponds
to a sub-partial order of (P(Σ),⊆). We note that C is always downward closed
in (P(Σ),⊆), and that C corresponds to the full powerset P(Σ) if and only if
M is the free commutative monoid on Σ.

A non empty clique is a clique x 6= ε. The set of non empty cliques of M
is denoted by C. Minimal elements of (C,≤) correspond to the letters of Σ.

Parallel cliques. Lower and upper bounds. Any two traces x, y ∈ M
have a greatest lower bound (glb) in (M,≤), which we denote by x∧ y. They
have a least upper bound (lub) in (M,≤), denoted by x∨ y if it exists, if and
only if they have a common upper bound.

If x and y are cliques, then x ∧ y is the clique corresponding to the subset
x∩ y ∈ P(Σ). We say that x and y are parallel, denoted by x ‖ y, if x× y ⊆ I,
where x and y are seen as subsets of Σ. In this case, x ∨ y exists and is given
by x ∨ y = x · y = y · x.

Normal sequences. A pair (x, y) ∈ C ×C is a normal pair if: ∀b ∈ y ∃a ∈
x (a, b) ∈ D. This relation is denoted by x → y. A sequence (ci)i of cliques,
the sequence being either finite or infinite, is a normal sequence if (ci, ci+1) is
a normal pair for all pairs of indices (i, i + 1).

Note that the empty clique satisfies x → ε for all x ∈ C , and ε → x if and
only if x = ε.

Normal form and generalised normal form. [4] For any trace x 6= ε,
there exists a unique integer k ≥ 1 and a unique normal sequence (c1, . . . , ck)
of non empty cliques such that x = c1 · . . . · ck. The sequence (c1, . . . , ck) is
the Cartier-Foata normal form of x, or the normal form of x for short. The
integer k is the height of x, denoted by k = τ(x).

The generalised normal form of x is the infinite normal sequence (ci)i≥1

defined by ci = ε for i > k. By definition, the generalised normal form of ε is
the normal sequence (ε, ε, . . .).

For every integer i ≥ 1, we introduce the mapping Ci : M → C defined by
Ci(x) = ci, where (ci)i≥1 is the generalised normal form of x.

Generalised traces and infinite traces. A generalised trace is any infinite
normal sequence ξ = (ci)i≥1 of cliques. If ci = ε for some integer i, then cj = ε
for all j ≥ i, and then ξ is the generalised normal form of a unique element
of M. If ci 6= ε for all i ≥ 1, then ξ is said to be an infinite trace.

We denote by M the set of generalised traces, and by ∂M the set of infinite
traces—the latter set is called the boundary at infinity of M. We note that
∂M is non empty as soon as Σ 6= ∅.

We define a partial order on (M,≤) by putting, for ξ = (ci)i≥1 and ζ =
(di)i≥1 two generalised traces:

ξ ≤ ζ ⇐⇒ (∀i ≥ 1 ci ≤ di).
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The injection M → M induces an embedding of partial orders (M,≤) →
(M,≤), so we simply identify M with its image in M. With this identification,
we have M = M+ ∂M, where ‘+’ denotes the disjoint union.

The family of mappings (Ci)i≥1 extends in the obvious way to the natural
projections Ci : M → C , with restrictions Ci : ∂M → C.

The digraph (C ,→) is called the digraph of cliques of the monoid. Gen-
eralised traces correspond bijectively to infinite paths in (C ,→), with finite
traces corresponding to paths hitting the empty clique ε, and infinite traces
corresponding to paths never hitting the empty clique.

Möbius transform. Let f : C → A be a function where A is any commuta-
tive group. The Möbius transform [12] of f is the function h : C → A defined
by:

∀c ∈ C h(c) =
∑

c′∈C : c≤c′

(−1)|c
′|−|c|f(c′). (2.1)

The function f can be retrieved from h thanks to the Möbius inversion

formula, which is a kind of generalised inclusion-exclusion formula:

∀c ∈ C f(c) =
∑

c′∈C : c≤c′

h(c′). (2.2)

In particular, one has:

f(ε) =
∑

c∈C

h(c). (2.3)

Valuations and probabilistic valuations. [2] A valuation is a monoid
homomorphism f : (M, ·) → (R≥0,×). One instance is the constant valuation
f = 1. More generally, any assignation of non negative numbers λa to letters
a of Σ yields a valuation f , obviously unique, such that f(a) = λa for a ∈ Σ.

Let h : C → R be the Möbius transform of a valuation f , restricted to C .
Then f is a probabilistic valuation whenever:

(
h(ε) = 0

)
∧

(
∀c ∈ C h(c) ≥ 0

)
. (2.4)

In this case, the vector
(
h(c)

)
c∈C

is a probability vector. Indeed, it is non
negative and it sums up to 1 thanks to (2.3), since f(ε) = 1 and h(ε) = 0.

Markov chain of cliques. [2] If f is a probabilistic valuation, then there
exists a unique probability measure ν on ∂M equipped with the natural Borel
σ-algebra, such that ν( ↑ x) = f(x) for all x ∈ M, where ↑ x is the visual

cylinder defined by ↑ x = {ω ∈ ∂M
∣∣ x ≤ ω}.

With respect to this probability measure, the sequence of mappings Ci :
∂M → C, seen as a sequence of random variables, is a homogeneous Markov
chain. Its initial distribution is given by: ∀c ∈ C ν(C1 = c) = h(c), where h
is the Möbius transform of f . The transition matrix of the chain can also be
described, but we shall not need it in the sequel.
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a0 •

a1 •
a2 •

a3 •
a4

Figure 1: Coxeter graph of the trace monoid M(Σ, I) with Σ = {a0, . . . , a4}
and (ai, aj) ∈ I ⇐⇒ |i − j| ≥ 2. The set of cliques is C =
{ε, a0, . . . , a4, a0 · a2, a0 · a3, a0 · a4, a1 · a3, a1 · a4, a2 · a4, a0 · a2 · a4}.

Example. Let M = 〈a, b, c, d | ad = da, bd = db〉. The set of cliques is
C = {ε, a, b, c, d, ad, bd}. Let us simply denote by a, b, etc, the values of
f(a), f(b), etc, for some valuation f . The normalization conditions (2.4) for
f to be a probabilistic valuation are:

1− a− b− c− d+ ad+ bd = 0

a− ad ≥ 0, b− bd ≥ 0, c ≥ 0, d ≥ 0, ad ≥ 0, bd ≥ 0.

A solution is to put a = b = 1/3 and c = d = 1/4. Another solution is
to put a = b = c = d = 1 −

√
2/2. The later value is the root of smallest

modulus of the polynomial 1 − 4p + 2p2, which we encounter below as the
Möbius polynomial of the monoid.

Growth series and Möbius polynomials. The growth series G(z) and
the Möbius polynomial µ(z) of M are defined as follows:

G(z) =
∑

x∈M

z|x|, µ(z) =
∑

c∈C

(−1)|c|z|c|.

[4] The series G(z) is rational, and it is the formal inverse of the Möbius
polynomial: G(z)µ(z) = 1.

[9, 8] If Σ 6= ∅, the Möbius polynomial has a unique root of smallest
modulus. This root, say r, is real and lies in (0, 1]. If Σ = ∅, we put r = ∞.
In all cases, the radius of convergence of G(z) is r.

We note that: r ≥ 1 if and only if M is commutative—an elementary
result to be generalised when dealing with deterministic concurrent systems
in Sections 3 and 4. Indeed, if M is not commutative, then M contains the
free monoid on two generators as a submonoid, hence r ≤ 1/2. Whereas,
if M is commutative and Σ has N ≥ 0 elements, then µ(z) = (1 − z)N

and therefore r = 1 or r = ∞. In this case, one recovers from the formula
G(z) = 1/(1 − z)N the standard elementary result that commutative free
monoids have a polynomial growth.

Representation of traces. The alphabet Σ is usually represented by its
Coxeter graph [5], which is the graph (Σ,D) with all self-loops omitted. Hence
two distinct letters commute with each other if and only if they are not joined
by an edge; see an example depicted on Fig. 1.

A convenient representation of traces is provided by the identification of
traces with the heaps of pieces introduced in [13]. Picture each letter as a
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piece falling to the ground, in such a way that distinct letters which commute
with each other fall along parallel lines; whereas non commutative letters fall
in such a way that they block each other. The heaps of pieces thus obtained
are combinatorial object corresponding bijectively to the elements of the trace
monoid, by reading the letters labelling the pieces from bottom to top. The
cliques of the normal form of a trace correspond to the horizontal layers that
appear in the heap of pieces. See an illustration on Fig. 2.

a0 a3

a0 a2

a1 a3

a4

a0

a3

a0

a2

a1

a3

a4
a0

a3

a0

a2

a1

a3

a4

Figure 2: In this example the commutation relations are those of the Coxeter
graph depicted on Fig. 1. Left: representation as a heap of piece of the trace
which normal form is (a0a3, a0a2, a1a3, a4). Middle and right: representations
of two words in the congruence class of the trace x: a0-a3-a0-a2-a1-a3-a4 (mid-
dle) and a3-a2-a3-a0-a4-a0-a1 (right).

2.2 — Concurrent systems and their combinatorics

The background material presented in this section is borrowed from [1, 3].

Concurrent systems and executions. A concurrent system is a triple
(M,X,⊥) where M is a trace monoid, X is a finite set of states and ⊥ is
a special symbol not in X, together with a right monoid action of M on
X ∪ {⊥}, denoted by (α, x) 7→ α · x, and such that ⊥ · x = ⊥ for all x ∈ M.
By definition of a monoid action, one has thus α · (x · y) = (α · x) · y for all
(α, x, y) ∈ X ×M×M, and α · ε = α for all α ∈ X.

The concurrent system X is trivial if α · a = ⊥ for all α ∈ X and for all
a ∈ Σ. It is non trivial otherwise.

The symbol ⊥ represents a sink state. So we are interested, for every
α, β ∈ X, in the following subsets of M:

Mα,β = {x ∈ M
∣∣ α · x = β}, Mα = {x ∈ M

∣∣ α · x 6= ⊥}.

Traces of Mα are called executions starting from α, or executions for short
if the context is clear. Note that Mα is always downward closed in (M,≤).

We introduce the following useful notations, for α, β ∈ X:

Σα = Σ ∩Mα Cα = C ∩Mα Cα = C ∩Mα Cα,β = C ∩Mα,β
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Figure 3: (a)—A safe Petri net with its initial marking α0 = {A,C} depicted.

The two reachable markings are α0 and α1 = {B,C}. (b)—The Coxeter graph of

the associated trace monoid. (c)—Graph of markings of the net. (d)—Digraph of

states-and-cliques of the associated concurrent system.

A generalised execution from α is an element ξ ∈ M such that:

∀x ∈ M x ≤ ξ =⇒ x ∈ Mα.

Their set is denoted Mα, and we also put ∂Mα = Mα ∩ ∂M.
As a running example for a “general concurrent system”, we use the 1-safe

Petri net depicted in Fig. 3, (a). The underlying trace monoid is generated by
the transitions, with commutative transitions t and t′ whenever •t• ∩ •t′• = ∅,
thus M = 〈a, b, c, d | ad = da, db = db〉. The corresponding Coxeter graph is
depicted on Fig. 3, (b), and the graph of marking is depicted on Fig. 3, (c).

Digraph of states-and-cliques. Generalised executions of a concurrent
system X = (M,X,⊥) are generalised traces of M. As seen in Sect. 2.1,
generalised traces correspond to paths in the digraph of cliques (C ,→). Not
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all paths of (C ,→) however correspond, in general, to executions of X . In
order to take into account the constraints induced by the monoid action, we
introduce the digraph of states-and-cliques (D ,→), the vertices of which are
pairs (α, c) with α ranging over X and c ranging over Cα. There is an arrow
(α, c) → (β, d) in D if β = α · c and if (c, d) is a normal pair of cliques.

To every generalised execution ξ = (ci)i≥1 with ξ ∈ Mα, is associated the
path (αi−1, ci)i≥1 in D , where αi is defined by α0 = α and αi = α · (c1 · . . . · ci)
for i ≥ 1. We put Yi(ξ) = (αi−1, ci) for every integer i ≥ 1.

Conversely, every infinite path in D corresponds to a unique generalised ex-
ecution. Consider the subgraph D of D with all vertices of the form (α, c) with
c 6= ε. Then infinite paths in D correspond bijectively to infinite executions.

For our running example, the digraph of states-and-cliques is depicted on
Fig. 3, (d).

Characteristic root. The combinatorics of a concurrent system X = (M,X,⊥)
involves not only the combinatorics of M, but also of the monoid action
X × M → X. Consider the Möbius matrix µ(z) = (µα,β(z))(α,β)∈X×X , the
polynomial θ(z), and the growth matrix G(z) = (Gα,β(z))(α,β)∈X×X defined
by:

µα,β(z) =
∑

c∈Cα,β

(−1)|c|z|c| θ(z) = detµ(z) Gα,β(z) =
∑

x∈Mα,β

z|x|

Then G(z) is a matrix of rational series, and it is the inverse of the Möbius
matrix: G(z)µ(z) = Id. One of the roots of smallest modulus of the polynomial
θ(z) is real and lies in (0, 1] ∪ {∞}, with the convention that it is ∞ if θ(z)
is a non zero constant. This non negative real or ∞ is the characteristic

root of the concurrent system X . The characteristic root r is the minimum
of all convergence radii of the generating series Gα,β(z), for (α, β) ranging
over X ×X.

For our running example, the Möbius matrix is given by:

µ(z) =
α0

α1

(
1− 2z + z2 −z + z2

−z 1− z

)

with determinant θ(z) = (1 − z)2(1 − 2z). The characteristic root is thus
r = 1/2.

Irreducibility and the spectral property. A concurrent system X =
(M,X,⊥) is irreducible if: 1) The monoid M is irreducible; 2) Mα,β 6= ∅
for all α, β ∈ X; 3) For every α ∈ X and for every letter a ∈ Σ there exists
x ∈ Mα such that a ∈ x.

If Σ′ is any subset of Σ, and if M′ = 〈Σ′〉 is the submonoid of M gen-
erated by Σ′, then the restriction of the action (X ∪ {⊥}) ×M′ → X ∪ {⊥}
defines clearly a new concurrent system X ′ = (M′,X,⊥), said to be induced

by restriction. In particular, let X a denote the concurrent system induced by
restriction with Σ′ = Σ \ {a}, and let ra be the characteristic root of X a.
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A key property, that we shall use later, is the spectral property [3] which
states: if X is irreducible, then ra > r for every a ∈ Σ.

The concurrent system in our running example from Fig. 3 is irreducible.

Valuations and probabilistic valuations. Markov chain of states-and-

cliques. A valuation on a concurrent system X = (M,X,⊥) is a family f =
(fα)α∈X of mappings fα : M → R≥0 satisfying the three following properties:

∀α ∈ X ∀x ∈ M α · x = ⊥ =⇒ fα(x) = 0 (2.5)

∀α ∈ X ∀x ∈ Mα ∀y ∈ Mα·x fα(x · y) = fα(x)fα·x(y) (2.6)

∀α ∈ X fα(ε) = 1 (2.7)

Let f = (fα)α∈X be a valuation and for each α ∈ X, let hα : C → R be the
Möbius transform of the restriction fα

∣∣
C
: C → R≥0. Note first that hα(x) = 0

if x /∈ Mα. We say that f is a probabilistic valuation if:

∀α ∈ X
(
hα(ε) = 0 ∧ (∀c ∈ Cα hα(c) ≥ 0)

)
. (2.8)

In this case, there exists a unique family ν = (να)α∈X , where να is a
probability measure on ∂Mα, such that να( ↑ x) = fα(x) for all α ∈ X and
for all x ∈ Mα. Of course the existence of a probabilistic valuation implies in
particular that ∂Mα 6= ∅, a property which might not be satisfied in general
even if Σ 6= ∅.

If ν = (να)α∈X is associated as above with a probabilistic valuation f =
(fα)α∈X , then for each state α ∈ X, and with respect to the probability
measure να , the family of mappings Yi : ∂Mα → D defined earlier is a ho-
mogeneous Markov chain, called the Markov chain of states-and-cliques. Its
initial distribution is given by 1α ⊗ hα; hence in particular:

∀α ∈ X ∀c ∈ Cα να(C1 = c) = hα(c). (2.9)

Let us determine all the probabilistic valuations for the running example
of Fig. 3. Any probabilistic valuation f = (fα)α∈X is entirely determined by
the finite family of values fα(u) for (α, u) ranging over {α0, α1}×Σ, since then
the other values fα(x) are obtained by the chain rule fα(xy) = fα(x)fα·x(y).

Since fα0
(c) = fα1

(a) = fα2
(b) = 0, the remaining parameters for f are

p = fα0
(a), q = fα0

(b), s = fα0
(d), t = fα1

(c), u = fα1
(d). The parameters

are not independent; to cope with the commutativity relations induced by the
trace monoid, one must have fα0

(a)fα0·a(d) = fα0
(d)fα0·d(a), since ad = da,

and fα0
(b)fα1

(d) = fα0
(d)fα0·d(b) since bd = db; yielding simply u = s here.

The Möbius tranform of fα0
evaluated for instance at b is hα0

(b) = fα0
(b)−

fα0
(bd) = fα0

(b) − fα0
(b)fα1

(d) = q − qs. Other computations are done simi-
larly, and we gather the results in Table 1. According to (2.8), the normaliza-
tion contraints on the parameters for the valuation f to be probabilistic are
thus:

1− p− q − s+ ps+ qs = 0, 1− t− s = 0, (2.10)
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state α hα(ε) hα(a) hα(b) hα(c) hα(d) hα(ad) hα(bd)

α0 1− p− q − s+ ps+ qs p− ps q − qs 0 s− ps− qs ps qs
α1 1− t− s 0 0 t s 0 0

Table 1: Möbius tranform of a generic valuation for the running example
depicted in Fig. 3, with parameters p = fα0

(a), q = fα0
(b), s = fα0

(d) = fα1
(d)

and t = fα1
(c).

plus all inequalities hα0
(a) ≥ 0, etc, which in this case amount to specify that

all parameters vary between 0 and 1. The second equality in (2.10) is standard:
since there is no concurrenycy enabled at α1, the events of firing c and d are
disjoint, hence their probabilities sum up to 1. The first equality in (2.10) is
less standrad. It takes into account the existence of concurrency enabled at α0

and shows a degree greater than 1, resulting form the existence of cliques of
order 2.

Here, the equality hα0
(ε) = 0 rewrites as (1− p− q)(1− s) = 0. It follows

that, if s 6= 1, then 1 − p − q = 0 and therefore hα0
(d) = s(1 − p − q) = 0.

Hence the node (α0, d) is never reached, which meets well the inuition. We
say that (α0, d) is a null node. See [3] for more details about the notion of null
node.

Representation of concurrent systems and of executions. To repre-
sent a concurrent system X = (M,X,⊥), we first use the Coxeter graph of M,
as in Fig. 1. We also depict the labelled multigraph of states, which vertices
are the elements of X, and with an edge from α to β labelled by the letter
a ∈ Σ if α · a = β, as in Fig. 3, (c). For representing executions, we stick to
the representation by heaps of pieces introduced earlier for traces.

Remark 2.1. Any multigraph V with edges labelled by elements from a set Σ
represents an action of the free monoid (V ∪{⊥})×Σ∗ → (V ∪{⊥}), provided
that for any node v ∈ V , there is no two edges starting from v and labelled
with the same letter. It requires an additional verification to check that it also
represents an action of a trace monoid M = M(Σ, I) on V ; namely, one has
to check that α · (ab) = α · (ba) for any two letters (a, b) ∈ I.

2.3 — A comparison result

In this subsection, we state an elementary lemma and its corollary, both be-
longing to trace theory, and given in a form slightly more general than precisely
needed in the sequel.

Consider an alphabet Σ and two independence relations I and I ′ on Σ
such that I ⊆ I ′, and consider the two trace monoids M = M(Σ, I) and
N = M(Σ, I ′). There is a natural surjection π : M → N , which entails in
particular that M is “not smaller” than N . It seems to have been unnoticed
so far that, when restricted to the set of sub-traces of a given trace of M, or
even of M, then π becomes injective. This is the topic of the following lemma.
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The lemma generalises the following elementary fact. Let M = Σ∗ be a
free monoid and let u ∈ Σ∗. Then any prefix word x ≤ u is entirely determined
by the collection (na)a∈Σ where na is the number of occurrences of the letter
a in x. Hence x is entirely determined by its image in the free commutative
monoid generated by Σ.

• Lemma 2.2—Let I ⊆ I ′ be two independence relations on an alphabet Σ,

let M = M(Σ, I) and N = M(Σ, I ′), and let π : M → N be the natural

surjection. Then π extends naturally to a surjection on generalised traces, as

a mapping still denoted by π : M → N . Let ω ∈ M, and define: M≤ω =
{x ∈ M

∣∣ x ≤ ω}. Then the restriction of π to M≤ω is injective.

Proof. The extension of π to a mapping M → N follows from the definitions,
hence we focus on proving that the restriction of π to M≤ω is injective. Let
x ∈ M≤ω and let y = π(x). Let c1 be the first clique in the normal form of x,
and let d1 be the first clique in the normal form of y. Let also C1 be the first
clique in the normal form of ω. We assume with loss of generality that x 6= ε
since π−1({ε}) = {ε}.

We claim that c1 = d1 ∩C1. The inclusion c1 ⊆ d1 ∩C1 is clear since both
inclusions c1 ⊆ d1 and c1 ⊆ C1 are obvious. For proving the converse inclusion,
seeking a contradiction, we assume that there is a letter a ∈ d1 ∩C1 such that
a /∈ c1. Then, since y = π(x), the letter a belongs to some higher clique in the
normal form of x. But, since x ≤ ω, and since a ∈ C1, that entails that a ∈ c1,
contradicting the assumption a /∈ c1. Hence c1 = d1 ∩ C1, as claimed.

Repeating inductively the same reasoning, with x′ = c1\x and with y′ =
π(x′) = c1\y and ω′ = c1\ω in place of x and of y and of ω respectively2, we
see that all the cliques (ci)i≥1 of the generalised trace x can be reconstructed
from y. This entails that π is injective.

• Corollary 2.3—Let M be a trace monoid, and let ω ∈ ∂M be an infinite trace.

For each integer n ≥ 0, consider:

M≤ω(n) = {x ∈ M
∣∣ x ≤ ω ∧ |x| = n}, pn = #M≤ω(n).

Then there is a polynomial P ∈ Z[X] such that pn ≤ P (n) for all integers n.

Furthermore, the set ∂M≤ω = {ξ ∈ ∂M
∣∣ ξ ≤ ω} is at most countable. The

polynomial P only depends on M, and not on ω.

Proof. Let M = M(Σ, I) and let N be the free commutative monoid generated
by Σ, i.e., N = M(Σ, I ′) with I ′ = (Σ× Σ) \∆ and ∆ = {(x, x) : x ∈ Σ}.

For each integer n, let qn = #N (n). Then it is well known that qn = P (n)
for some polynomial P ∈ Z[X] (a short proof based on the Möbius inversion
formula was given in Sect. 2.1). Since I ⊆ I ′, it follows from Lemma 2.2 that
p(n) ≤ q(n).

Furthermore, N itself is at most countable since N identifies with:

N ∼
{
(xi)i∈Σ

∣∣ xi ∈ Z≥0 ∪ {∞}, ∃i ∈ Σ xi = ∞
}
.

2Recall that, if c ≤ u with c, u ∈ M, we denote by c\u the left cancellation of u by c,

which is the unique trace v ∈ M such that c · v = u.
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Hence, the fact that ∂M≤ω is at most countable also follows from Lemma 2.2.

Remark 2.4. Of course, the direct argument:

∂M≤ω ⊆
{
ξ ∈ C

Z≥1

∣∣ ∀i ≥ 1 Ci(ξ) ⊆ Ci(ω)
}

would not allow to conclude as in Corollary 2.3 that ∂M≤ω is at most count-
able.

3—Deterministic concurrent systems

• Definition 3.1—A deterministic concurrent system (DCS) is a concurrent sys-

tem X = (M,X,⊥) such that for every state α ∈ X, the partial order (Mα,≤)
is a lattice.

Remark 3.2. According to the background on lub and glb on trace monoids
recalled in Section 2.1 on the one hand, and since Mα is a downward closed
subset of M on the other hand, we have for any two executions x, y ∈ Mα:
1) x and y have a glb in Mα, which coincides with their glb in M; and 2) x and
y have a lub in Mα if and only they have a common upper bound in Mα, in
which case their lub in Mα coincides with their lub in M. Note however that
the existence of x ∨ y in M is not enough to insure that x ∨ y ∈ Mα.

Henceforth, a concurrent system (M,X,⊥) is a DCS if and only if, for
every state α, any two executions x, y ∈ Mα have a common upper bound
in Mα.

The following result says that DCS correspond to “locally commutative”
concurrent systems.

• Proposition 3.3—Let X = (M,X,⊥) be a concurrent system. Then the fol-

lowing properties are equivalent:

(i) X is deterministic.

(ii) For every α ∈ X, the partial order (Cα,≤) is a lattice.

(iii) For every α ∈ X, any two letters in Σα commute with each other.

Proof. The equivalence (ii) ⇐⇒ (iii) and the implication (i) =⇒ (iii) are
clear. The interesting point is the implication (ii) =⇒ (i).

Assume that (Cα,≤) is a lattice for every α ∈ X. Fix α ∈ X and let
x, y ∈ Mα. Assume first that x ∧ y = ε. Let (c1, . . . , ck) and (d1, . . . , dm)
be the normal forms of x and of y. Maybe by adding the empty trace at the
tail of one or the other normal form, we assume that k = m, at the cost of
tolerating that some of the elements may be the empty trace.

On the one hand, since c1 · c2 is an execution starting from α, one has
c2 ∈ Cα·c1 . On the other hand, both c1 and d1 belong to Cα, which is a lattice
by assumption. Hence c1 ∨ d1 ∈ Cα. And since c1 ∧ d1 = ε by assumption, one
has c1 ∨ d1 = c1 · d1 = d1 · c1. Therefore: d1 ∈ Cα·c1 . Since both cliques c2 and
d1 belong to Cα·c1, which is a lattice, it follows that c2 ∨ d1 ∈ Cα·c1.

Now we claim that c2 ∧ d1 = ε. Otherwise, there exists a letter a occurring
in both c2 and d1. Since (c1, c2) is a normal pair of cliques, there exists b ∈ c1
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such that (a, b) ∈ D, the dependence pair of the monoid. Because of the
assumption c1 ∧ d1 = ε, the identity a = b is impossible. But both a and b
belong to Σα, and since a 6= b, the fact that (a, b) ∈ D contradicts that Cα is
a lattice; our claim is proved.

We have obtained that c2 ∨ d1 exists in Cα·c1 and that c2 ∧ d1 = ε. Hence
c2 ∨ d1 = c2 · d1 = d1 · c2. It implies that c2 ∈ Cα·(c1∨d1). Symmetrically,
we obtain that d2 ∈ Cα·(c1∨d1). Since Cα·(c1∨d1) is a lattice, it follows that
d2 ∨ c2 ∈ Cα·(c1∨d1). But again, d2 ∧ c2 = ε hence d2 ∨ c2 = d2 · c2 = c2 · d2.
Therefore we obtain that the following trace belongs to Mα:

(c1 ∨ d1) · (c2 ∨ d2) = (c1 · c2) · (d1 · d2) = (d1 · d2) · (c1 · c2).

Repeating inductively the same reasoning, we finally obtain that x ·y = y ·x ∈
Mα, hence providing a common upper bound of x and of y in Mα. This
proves the existence of x ∨ y in Mα in the case where x ∧ y = ε.

The general case follows by considering x′ = (x ∧ y)\x and y′ = (x ∧ y)\y
instead of x and y.

Remark 3.4. In a DCS, for each state α ∈ X, the partially ordered set of
cliques (Cα,≤) identifies with the powerset (P(Σα),⊆). In particular Cα has a
maximum cα = max(Cα) =

∨
Σα, given by: cα = Σα. We keep this notation

in the statement of the following lemma.

• Lemma 3.5—Let X = (M,X,⊥) be a deterministic concurrent system, and

let α ∈ X. Let Tα = (ci)i≥1 be the sequence of cliques defined by c1 = cα, and

inductively by ci+1 = cαi
where αi = α · (c1 · . . . · ci). Then Tα is a generalised

execution which is the maximum of (Mα,≤).

Proof. We first observe that, for cα the maximum of Cα, then cα → y holds3

for every clique y ∈ Cα·cα. Here in particular, ci → ci+1 holds for all i ≥ 1,
hence Tα is indeed a generalised execution.

Let x ∈ Mα, with x = (di)i≥1. We prove that x ≤ Tα. Assume first that x
is a finite trace, of height k = τ(x). Put y = c1 · . . . · ck. Then x and y belong
to Mα. Hence z = x ∨ y exists in Mα. Let (e1, . . . , ek) be the normal form
of z (since x and y have the same height k, z also has height k). Then cj ≤ ej
and thus cj = ej for all j by maximality of cj . Hence dj ≤ cj for all j, which
was to be proved.

If x = (ci)i≥1 is now a generalised trace, we obtain the same result by
applying the previous case to all sub-traces (ci)1≤i≤k.

Let us introduce a name for a valuation that will play a special role.

• Definition 3.6—Let X = (M,X,⊥) be a concurrent system. The valuation

f = (fα)α∈X defined by:

∀α ∈ X ∀x ∈ M fα(x) =

{
1, if x ∈ Mα

0, otherwise

3This actually holds for any concurrent system, not necessarily deterministic, if cα is

taken to be any maximal element in Cα.
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is called the dominant valuation of X .

The family f = (fα)α∈X given in Def. 3.6 is indeed a valuation. Indeed,
using the axioms of the monoid action and the additional assumption ⊥·z = ⊥
for all z ∈ M, one sees that the following equivalence is true for every α ∈ X
and for every traces x, y ∈ M:

α · (x · y) 6= ⊥ ⇐⇒ (α · x 6= ⊥ ∧ (α · x) · y 6= ⊥),

which translates at once as the identity fα(x · y) = fα(x)fα·x(y).

• Theorem 3.7—Let X = (M,X,⊥) be a non trivial concurrent system.

1. If Σα 6= ∅ for all α ∈ X, then the two following statements are equivalent:

(i) X is deterministic.

(ii) The dominant valuation of X is probabilistic.

2. If X is deterministic, then all sets ∂Mα, for α ∈ X, are at most count-

able and the characteristic root of X is r = 1 or r = ∞.

Proof. Point 1. To prove the stated equivalence, assume (i), and let f =
(fα)α∈X be the dominant valuation. Let α ∈ X, and let c ∈ Cα. Since Cα

identifies with P(Σα), the Möbius transform of fα evaluated at c is given by:

hα(c) =
∑

c′∈Cα : c′≥c

(−1)|c
′|−|c| =

{
1, if c = cα (the maximum of Cα)

0, otherwise.

Since ε 6= cα for all α ∈ X, this shows that f is a probabilistic valuation.
Conversely, assume as in (ii) that f is probabilistic. Let α ∈ X be a state,

and let cα be a maximal element of (Cα,≤). Then, on the one hand, and
since cα is a maximal clique, one has hα(cα) = fα(cα) = 1. But on the other
hand, hα is nonnegative on Cα and sums up to 1 on Cα. Hence hα vanishes
on all other cliques of Cα. Since this is true for every maximal element of Cα,
it entails that Cα has actually a unique maximal element, which is thus its
maximum Σα. Hence (Cα,≤) is a lattice for every α ∈ X, which proves (i)
according to Proposition 3.3.

Point 2. We assume that X is a DCS. According to Lemma 3.5, the partial
order (Mα,≤) has a maximum Tα for every α ∈ X, hence Mα ⊆ M≤Tα . It
follows at once from Corollary 2.3 that ∂Mα is at most countable, and that
#Mα(n) ≤ P (n) for all integers n and for some polynomial P . All generating
series Gα,β(z) are rational with non zero coefficients at least 1, and they have
their coefficients dominated by some polynomial. They have therefore a radius
of convergence either 1 or ∞. Hence r ∈ {1,∞}.

Remark 3.8. In general, there might exist other probabilistic valuations than
the dominant valuation, even for a DCS. See an example at the end of next
section.

Since the dominant valuation f is probabilistic, there corresponds a family
of probability measures as described in Sect. 2.2. The behaviour of the asso-
ciated Markov chain of states-and-cliques is trivial, as shown by the following
result.
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• Proposition 3.9—Let X = (M,X,⊥) be a non trivial DCS such that Σα 6= ∅
for all α ∈ X, and let ν = (να)α∈X be the family of probability measures

associated with the dominant valuation. Then for each initial state α ∈ X, the

probability measure να is the Dirac distribution δ{Tα}, where Tα = maxMα.

Proof. Assuming that X is a DCS, we keep using the notation cα = maxCα =
Σα for all α ∈ X.

A direct proof is as follows. Fix α ∈ X, and let (αi, zi)i≥0 be defined
inductively by α0 = α, z0 = ε and zi+1 = zi · cαi

, αi+1 = α · zi. On the
one hand, we have

∨
i≥0 zi = Tα by the construction used in the proof of

Lemma 3.5. But on the other hand, the characterisation of the probability
measure να yields να( ↑ zi) = f(zi) = 1 for all i ≥ 0. Since ↑ zi+1 ⊆↑ zi for
all i ≥ 0, we have thus:

να(ω ≥ Tα) = να

(⋂

i≥0

↑ zi

)
= lim

i→∞
να( ↑ zi) = 1.

Since Tα = maxMα, it implies να(ω = Tα) = 1.
An alternative proof is as follows. Let (Yi)i≥1 be the Markov chain of

states-and-cliques associated to the dominant valuation, and let α ∈ X. One
has να(C1 = c) = hα(c) for all c ∈ Cα, by (2.9). The values of hα computed in
the proof of Th. 3.7 show that the initial distribution of the chain is δ{(α,cα)}.
It is shown in [1] that the (α, c)-row of the transition matrix of the chain is
proportional to hα·c(·). Hence all entries of the (α, c)-row are 0, except for the(
(α, c), (β, cβ )

)
entry with β = α · c, where the entry is 1. Hence the execution

Tα is given να-probability 1.

4—Irreducible deterministic concurrent systems

Before stating the main result of this section, we need to prove two lemmas.

• Lemma 4.1—Let X = (M,X,⊥) be a DCS. Let α ∈ X and let c ∈ Cα be a

clique such that a /∈ c for some letter a ∈ Σα. Then:

∀x ∈ Mα C1(x) = c =⇒ a /∈ x.

Proof. Let α, a and c be as in the statement. Clearly, the implication stated
in the lemma is true if we prove it to be true for x ranging over Mα instead
of Mα. Hence, let x ∈ Mα be such that C1(x) = c. Let (ci)i≥1 be the
generalised normal form of x, and define by induction x0 = ε, xi+1 = xi · ci+1

for all i ≥ 0 and αi = α ·xi for all i ≥ 0. We prove by induction on i ≥ 1 that:
1) a ∈ Σαi−1

; and 2) a /∈ ci.
For i = 1, both properties derive from the assumptions of the lemma.

Assume that both properties hold for some i ≥ 1. By construction, ci ∈ Cαi−1
,

and a ∈ Σαi−1
by the induction hypothesis. Since the concurrent system is

deterministic, it follows that a ∨ ci ∈ Cαi−1
. Since a /∈ ci by the assumption

hypothesis, this lub is given by ci · a ∈ Cαi−1
. This entails first that a ∈

Cαi−1·ci , but αi−1 · ci = αi hence a ∈ Σαi
. But it also entails that a /∈ ci+1 ,

completing the induction step. The result of the lemma follows.
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• Lemma 4.2—Let X = (M,X,⊥) be a concurrent system. Let α ∈ X, and let

rα be the radius of convergence of the generating series Gα(z) =
∑

x∈Mα
z|x|.

Then the following properties are equivalent: (i) Mα is finite; (ii) ∂Mα = ∅;
(iii) rα = ∞.

Proof. The implications (i) =⇒ (ii) and (i) =⇒ (iii) are clear.
Assume that Mα is infinite. Then there exists executions in Mα of length

arbitrary large. Therefore there exists x ∈ Mα and y 6= ε such that α · x =
α · (x ·y). Then all traces xn = x ·yn belong to Mα for n ≥ 0. This proves two
things. First, if k = |y|, the coefficient of z|x|+kn in the series Gα(z) is ≥ 1 for
all integers n, hence rα < ∞. Second, the execution ξ =

∨
n≥0 xn is an element

of ∂Mα, showing that ∂Mα 6= ∅. Hence we have proved both (ii) =⇒ (i)
and (iii) =⇒ (i) by contraposition, completing the proof.

• Theorem 4.3—Let X = (M,X,⊥) be an irreducible and non trivial concur-

rent system, of characteristic root r, and let f be the dominant valuation of X .

Then the following statements are equivalent:

(i) X is deterministic.

(ii) f is a probabilistic valuation.

(iii) f is the only probabilistic valuation of X .

(iv) r = 1.
(v) One set ∂Mα is at most countable.

(vi) Every set ∂Mα is at most countable.

Proof. Since X is both irreducible and non trivial, it satisfies in particular
Σα 6= ∅ for all α ∈ X. Hence the equivalence (i) ⇐⇒ (ii) and the implications
(i) =⇒ (iv) and (i) =⇒ (vi) derive already from Theorem 3.7. The
implications (iii) =⇒ (ii) and (vi) =⇒ (v) are trivial.

(i) =⇒ (iii). Let f = (fα)α∈X be a probabilistic valuation, and let
f̃ = (f̃α)α∈X be the dominant valuation. Let α ∈ X and let c ∈ Cα with
c 6= cα, where cα = Σα is the maximum of Cα. There is thus a letter a ∈ Σα

such that a /∈ c. Let Ma be the submonoid of M generated by Σ \ {a}. It
follows from Lemma 4.1 that {ω ∈ ∂Mα

∣∣ C1(ω) = c} ⊆ ∂Ma
α.

According to the spectral property recalled in Section 2.2, the character-
istic root ra of X a = (Ma,X,⊥) satisfies ra > r since X is assumed to be
irreducible. But r = 1 since X is deterministic, and therefore ra = ∞, which
implies that ∂Ma

α = ∅ according to Lemma 4.2. Let ν = (να)α∈X be the
family of probability measures associated with the probabilistic valuation f ,
as explained in Sect. 2.2. Then να(∂Ma

α) = 0 and thus να(C1 = c) = 0. But
one also has hα(c) = να(C1 = c) according to (2.9), where hα is the Möbius
transform of fα. Hence hα(c) = 0. We have proved that hα vanishes on all
cliques c ∈ Cα such that c 6= cα. Since (hα(c))c∈Cα

is a probability vector, it
entails that hα(cα) = 1. Thus hα coincides with the Möbius transform of f̃α,
and f = f̃ .

(iv) =⇒ (i) and (v) =⇒ (i) . By contraposition, assume that X is
not deterministic. Prop. 3.3 implies the existence of a state α and of two
distinct letters a, b ∈ Σα such that a · b 6= b · a. Since X is assumed to be
irreducible, there exists x ∈ Mα·a,α and y ∈ Mα·b,α. Put xa = a · x and
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Figure 4: Example of an irreducible and deterministic concurrent system X =
(M,X,⊥) with Σ = {a0, . . . , a3}, X = {0, 1, . . . , 8}. Left: Coxeter graph of
the monoid M. Right: multigraph of states of X . The two framed labels 0
are identified and correspond to the same state.

xb = b · y, and we can also assume without loss of generality that |xa| = |xb|.
Then Mα contains the submonoid generated by {xa, xb}, which is free. This
implies two things: first, the generating series Gα(z) =

∑
x∈Mα

z|x| has radius
of convergence smaller than 1, and thus r < 1; second, ∂Mα is uncountable.
The proof is complete.

For an irreducible DCS, the behaviour of the Markov chain of states-and-
cliques associated to the unique probabilistic dynamics is the trivial dynamics
described by Prop. 3.9. This is illustrated in the following example.

Example 4.4. Figure 4 depicts an example of irreducible DCS. The digraph
of states-and-cliques of the system is depicted on Fig. 5. Compare with the
situation depicted next for a DCS which is not irreducible.

Example 4.5. Without the irreducibility assumption, the equivalence stated
in Th. 4.3 may fail. We give below an example of a deterministic concurrent
systems not irreducible, and not satisfying point (iii).

Let X = (M,X,⊥) be the DCS depicted in Fig. 6. The system is not
irreducible for several reasons: none of the three conditions for irreducibility is
met. The probabilistic valuations of X are all of the following form, for some
real p ∈ [0, 1]:

fα0
(a) = 1 fα0

(c) = p fα1
(b) = 1 fα1

(c) = p fβ0
(a) = 1 fβ1

(b) = 1

Hence the dominant valuation is not the unique probabilistic valuation,
contrary to irreducible systems as stated by point (iii) of Th. 4.3. The param-
eter p is to be interpreted as the “probability of playing c” in the course of the
execution. But this decision—playing c or not—is made once, hence allowing
all values between 0 or 1 for the probability. Whereas, in a sequential model of
concurrency, that would typically be a decision repeated infinitely often, hence
yielding the only two possible values 0 or 1 for this probability. The formula
να(C1 = γ) = hα(γ) for γ ∈ Cα yields the following initial distribution of
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Figure 5: Digraph of states-and-cliques for the DCS depicted on Fig. 4. Nodes
with solid frames are nodes of the form (α, cα) with cα = maxCα. The prob-
ability for the Markov chain of states-and-cliques to jump from a solid frame
node to a dashed frame node is 0; the probability of starting in a dashed node
in 0.

the Markov chain of states-and-cliques if, for instance, the initial state of the
system is α0:

να0
(C1 = a) = 1− p να0

(C1 = c) = 0 να0
(C1 = ac) = p
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