Skip to main content

A Comparative Study of Two Algorithms for Computing the Shortest Reducts: MiLIT and MinReduct

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2021)

Abstract

Rough set reducts are irreducible attribute subsets preserving discernibility information of a decision system. Computing all reducts has exponential complexity regarding the number of attributes in the decision system. Given the high computational cost of this task, computing only the reducts of minimum length (the shortest reducts) becomes relevant for a wide range of applications. Two recent algorithms have been reported, almost simultaneously, for computing these irreducible attribute subsets with minimum length: MiLIT and MinReduct. MiLIT was designed at the top of the Testor Theory while MinReduct comes from the Rough Set Theory. Thus, in this paper, we present a comparative study of these algorithms in terms of asymptotic complexity and runtime performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bache, K., Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  2. Cheguis, I.A., Yablonskii, S.V.: About testors for electrical outlines. Uspieji Matematicheskij Nauk (In Russian) 4(66), 182–184 (1955)

    Google Scholar 

  3. Chikalov, I., et al.: Three Approaches to Data Analysis. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-28667-4

  4. Jiang, Yu., Yu, Y.: Minimal attribute reduction with rough set based on compactness discernibility information tree. Soft. Comput. 20(6), 2233–2243 (2015). https://doi.org/10.1007/s00500-015-1638-0

    Article  Google Scholar 

  5. Lazo-Cortés, M., Ruiz-Shulcloper, J., Alba-Cabrera, E.: An overview of the evolution of the concept of testor. Pattern Recogn. 34(4), 753–762 (2001)

    Article  MATH  Google Scholar 

  6. Lazo-Cortés, M., Martínez-Trinidad, J., Carrasco-Ochoa, J., Sánchez-Díaz, G.: On the relation between rough set reducts and typical testors. Inf. Sci. 294, 152–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lias-Rodríguez, A., Sánchez-Díaz, G.: An algorithm for computing typical testors based on elimination of gaps and reduction of columns. Int. J. Pattern Recognit Artif Intell. 27(08), 1350022 (2013)

    Article  MathSciNet  Google Scholar 

  8. Lin, T.Y., Yin, P.: Heuristically fast finding of the shortest reducts. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 465–470. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25929-9_55

    Chapter  Google Scholar 

  9. Nguyen, S.H., Szczuka, M.: Feature selection in decision systems with constraints. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS (LNAI), vol. 9920, pp. 537–547. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47160-0_49

    Chapter  Google Scholar 

  10. Own, H.S., Yahyaoui, H.: Rough set based classification of real world Web services. Inf. Syst. Front. 17(6), 1301–1311 (2014). https://doi.org/10.1007/s10796-014-9496-3

    Article  Google Scholar 

  11. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11(5), 1–51 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data, vol. 9. Springer, Heidelberg (1991). https://doi.org/10.1007/978-94-011-3534-4

  13. Piza-Dávila, I., Sánchez-Díaz, G., Lazo-Cortés, M.S., Villalón-Turrubiates, I.: An algorithm for computing minimum-length irreducible testors. IEEE Access 8, 56312–56320 (2020)

    Article  Google Scholar 

  14. Rodríguez-Diez, V., Martínez-Trinidad, J., Carrasco-Ochoa, J., Lazo-Cortés, M.: A new algorithm for reduct computation based on gap elimination and attribute contribution. Inf. Sci. 435, 111–123 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rodríguez-Diez, V., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Lazo-Cortés, M.S., Olvera-López, J.A.: MinReduct: a new algorithm for computing the shortest reducts. Pattern Recogn. Lett. 138, 177–184 (2020)

    Article  Google Scholar 

  16. Ruiz-Shulcloper, J.: Pattern recognition with mixed and incomplete data. Pattern Recognit Image Anal. 18(4), 563–576 (2008)

    Article  Google Scholar 

  17. Sanchez-Díaz, G., Lazo-Cortés, M.: CT-EXT: an algorithm for computing typical testor set. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 506–514. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76725-1_53

    Chapter  Google Scholar 

  18. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support, vol. 11, pp. 331–362. Springer, Heidelberg (1992). https://doi.org/10.1007/978-94-015-7975-9_21

  19. Susmaga, R.: Computation of shortest reducts. Found. Comput. Decis. Sci. 23(2), 119–137 (1998)

    MATH  Google Scholar 

  20. Torres, M.D., Torres, A., Cuellar, F., Torres, M.D.L.L., Ponce De León, E., Pinales, F.: Evolutionary computation in the identification of risk factors. Case of TRALI. Expert Syst. Appl. 41(3), 831–840 (2014)

    Google Scholar 

  21. Yao, Y., Zhao, Y.: Discernibility matrix simplification for constructing attribute reducts. Inf. Sci. 179(7), 867–882 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhou, J., Miao, D., Feng, Q., Sun, L.: Research on complete algorithms for minimal attribute reduction. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS (LNAI), vol. 5589, pp. 152–159. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02962-2_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladímir Rodríguez-Diez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez-Diez, V., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Lazo-Cortés, M.S., Olvera-López, J.A. (2021). A Comparative Study of Two Algorithms for Computing the Shortest Reducts: MiLIT and MinReduct. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2021. Lecture Notes in Computer Science(), vol 12725. Springer, Cham. https://doi.org/10.1007/978-3-030-77004-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77004-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77003-7

  • Online ISBN: 978-3-030-77004-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics