Skip to main content

A Fault-Tolerant Automated Flight Path Planning System for an Ultralight Aircraft

  • Conference paper
  • First Online:
  • 925 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12414))

Abstract

The development and integration of fault-tolerant systems has considerably increased flight safety over the years. One of the research areas that has made this improvement possible is the development of more advanced flight guidance systems, that are able to compute feasible flight trajectories in an automated manner, even under non-nominal conditions. However, such highly automated systems are normally not available for low-cost ultralight aircraft, which are usually piloted by non-professional pilots, who may not react properly under adverse circumstances. In this paper, we propose a model-based flight path planning system that uses an automated AI planner. By leveraging the flexibility of the AI planner to adapt to different planning problem models, we integrate “fault-tolerant” capabilities into the planning system. Therefore, optimal control parameters learned for various non-nominal flight conditions can be considered too. Finally, extension tests were performed under a selected number of scenarios to validate the feasibility of the plans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albaker, B., Rahim, N.: Flight path PID controller for propeller-driven fixed-wing unmanned aerial vehicles. Int. J. Phys. Sci. 6(8), 1947–1964 (2011)

    Google Scholar 

  2. Bittar, A., Figuereido, H.V., Avelar Guimaraes, P., Correa Mendes, A.: Guidance software-in-the-loop simulation using x-plane and simulink for UAVs. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 993–1002. IEEE (2014)

    Google Scholar 

  3. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  4. Chialastri, A.: Automation in Aviation. INTECH Open Access Publisher (2012)

    Google Scholar 

  5. Chien, S.A., Knight, R., Stechert, A., Sherwood, R., Rabideau, G.: Using iterative repair to improve the responsiveness of planning and scheduling. In: AIPS, pp. 300–307 (2000)

    Google Scholar 

  6. De Voogt, A., Chaves, F., Harden, E., Silvestre, M., Gamboa, P.: Ultralight Accidents in the US, UK, and Portugal. Safety 4(2), 23 (2018)

    Article  Google Scholar 

  7. Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion planning. J. ACM 40, 1048–1066 (1993)

    Article  MathSciNet  Google Scholar 

  8. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. J. Artif. Intell. Res. 27, 235–297 (2006)

    Article  Google Scholar 

  9. Giriraj Kumar, S., Jayaraj, D., Kishan, A.R.: PSO based tuning of a PID controller for a high performance drilling machine. Int. J. Comput. Appl. 1(19), 12–18 (2010)

    Google Scholar 

  10. Jolliffe, I.T.: Principal Components Analysis. Springer Series in Statistics 29 (2002). https://doi.org/10.1007/b98835

  11. Kiam, J.J., Scala, E., Ramirez Javega, M., Schulte, A.: An AI-based planning framework for HAPS in a time-varying environment. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 30, pp. 412–420 (2020)

    Google Scholar 

  12. Kreyszig, E.: Advanced Engineering Mathematics, 10th edn. Wiley, Hoboken (2009)

    Google Scholar 

  13. Lekkas, A., Dahl, A.R., Breivik, M., Fossen, T.I.: Continuous-curvature path generation using fermat’s spiral. J. Modeling Identification Control 34(4), 183–198 (2013)

    Article  Google Scholar 

  14. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  15. Meyer, A.: Laminar Research: X-Plane. https://www.x-plane.com/

  16. Oceanic, U.N., Administration, A.: NOMADS-NOAA Operational Model Archive and Distribution System. https://nomads.ncep.noaa.gov/

  17. Piprek, P.: Clothoid development for a trajectory system. Master’s thesis, Technical University of Munich (2014)

    Google Scholar 

  18. Santos León, B., Kiam, J.J., Schulte, A.: Model-based automated flight path planner for an ultralight aircraft. In: CEUR Workshop Proceedings of the 8th Italian Workshop on Planning and Scheduling (IPS), vol. 2745 (2020)

    Google Scholar 

  19. Scala, E.: Expressive Numeric Heuristic Search Planner (ENHSP). https://gitlab.com/enricos83/ENHSP-Public/

  20. Schatz, S.P., Holzapfel, F.: Modular trajectory/path following controller using nonlinear error dynamics. In: 2014 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, pp. 157–163. IEEE (2014)

    Google Scholar 

  21. Ünal, F., Ekici, S.: A new clustering approach for monthly electricity consumption data. In: International Applied Sciences Congress (2020)

    Google Scholar 

  22. Zhu, Q., Pei, J., Liu, X., Zhou, Z.: Analyzing commercial aircraft fuel consumption during descent: a case study using an improved k-means clustering algorithm. J. Clean. Prod. 223, 869–882 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Jean Kiam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

León, B.S., Kiam, J.J., Schulte, A. (2021). A Fault-Tolerant Automated Flight Path Planning System for an Ultralight Aircraft. In: Baldoni, M., Bandini, S. (eds) AIxIA 2020 – Advances in Artificial Intelligence. AIxIA 2020. Lecture Notes in Computer Science(), vol 12414. Springer, Cham. https://doi.org/10.1007/978-3-030-77091-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77091-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77090-7

  • Online ISBN: 978-3-030-77091-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics