Skip to main content

An Application of Recurrent Neural Networks for Estimating the Prognosis of COVID-19 Patients in Northern Italy

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12721))

Included in the following conference series:

Abstract

Hospital overloads and limited healthcare resources (ICU beds, ventilators, etc.) are fundamental issues related to the outbreak of the COVID-19 pandemic. Machine learning techniques can help the hospitals to recognise in advance the patients at risk of death, and consequently to allocate their resources in a more efficient way. In this paper we present a tool based on Recurrent Neural Networks to predict the risk of death for hospitalised patients with COVID-19. The features used in our predictive models consist of demographics information, several laboratory tests, and a score that indicates the severity of the pulmonary damage observed by chest X-ray exams. The networks were trained and tested using data of 2000 patients hospitalised in Lombardy, the region most affected by COVID-19 in Italy. The experimental results show good performance in solving the addressed task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulaal, A., Patel, A., Charani, E., Denny, S., Mughal, N., Moore, L.: Prognostic modeling of COVID-19 using artificial intelligence in the united kingdom: model development and validation. J. Med. Internet. Res. 22(8) (2020)

    Google Scholar 

  2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019)

    Google Scholar 

  3. An, C., Lim, H., Kim, D.W., Chang, J.H., Choi, Y.J., Kim, S.W.: Machine learning prediction for mortality of patients diagnosed with COVID-19: a nationwide Korean cohort study. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  4. Anysz, H., Zbiciak, A., Ibadov, N.: The influence of input data standardization method on prediction accuracy of artificial neural networks. Procedia Eng. 153, 66–70 (2016)

    Article  Google Scholar 

  5. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015 (2015)

    Google Scholar 

  6. Beeksma, M., Verberne, S., van der Bosch, A., Das, E., Hendrickx, I., Groenewoud, S.: Predicting life expectancy with a LSTM neural network using electronic medical records. BMC Med. Inf. Decis. Making (2019)

    Google Scholar 

  7. Borghesi, A., Maroldi, R.: COVID-19 outbreak in Italy: experimental chest X-ray scoring system for quantifying and monitoring disease progression. La Radiol. Med. 125(5), 509–513 (2020). https://doi.org/10.1007/s11547-020-01200-3

    Article  Google Scholar 

  8. Bullock, J., Luccioni, A., Pham, K.H., Lam, C.S.N., Luengo-Oroz, M.A.: Mapping the landscape of artificial intelligence applications against COVID-19. J. Artif. Intell. Res. 69, 807–845 (2020)

    Article  MathSciNet  Google Scholar 

  9. Fakhfakh, M., Bouaziz, B., Gargouri, F., Chaari, L.: Prognet: Covid-19 prognosis using recurrent and convolutional neural networks. medRxiv (2020)

    Google Scholar 

  10. Gama, J.A., Žliobaitundefined, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4) (2014)

    Google Scholar 

  11. Gerevini, A.E., Maroldi, R., Olivato, M., Putelli, L., Serina, I.: Prognosis prediction in COVID-19 patients from lab tests and x-ray data through randomized decision trees. In: Proceedings of the 5th International Workshop on Knowledge Discovery in Healthcare Data. CEUR Workshop Proceedings, vol. 2675 (2020)

    Google Scholar 

  12. Gruber, N., Jockisch, A.: Are GRU cells more specific and LSTM cells more sensitive in motive classification of text? Front. Artif. Intell. 3, 40 (2020)

    Article  Google Scholar 

  13. He, H., Sun, X.: F-score driven max margin neural network for named entity recognition in Chinese social media. arXiv preprint arXiv:1611.04234 (2016)

  14. Kawahara, J., Hamarneh, G.: Fully convolutional networks to detect clinical dermoscopic features. In: International Skin Imaging Collaboration (ISIC) 2017 Challenge at the International Symposium on Biomedical Imaging (ISBI) (2017)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  16. Liu, L., et al.: Multi-task learning via adaptation to similar tasks for mortality prediction of diverse rare diseases. arXiv preprint arXiv:2004.05318 (2020)

  17. Mangal, S., Joshi, P., Modak, R.: LSTM vs. GRU vs. bidirectional RNN for script generation. CoRR abs/1908.04332 (2019). http://arxiv.org/abs/1908.04332

  18. Mazzatorta, P., Benfenati, E., Neagu, D., Gini, G.: The importance of scaling in data mining for toxicity prediction. J. Chem. Inf. Comput. Sci. 42(5), 1250–1255 (2002)

    Article  Google Scholar 

  19. Pastor-Pellicer, J., Zamora-Martínez, F., España-Boquera, S., Castro-Bleda, M.J.: F-measure as the error function to train neural networks. In: Rojas, I., Joya, G., Gabestany, J. (eds.) IWANN 2013. LNCS, vol. 7902, pp. 376–384. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38679-4_37

    Chapter  Google Scholar 

  20. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. The MIT Press, Cambridge (2009)

    Google Scholar 

  21. Rakitianskaia, A.S., Engelbrecht, A.P.: Training feedforward neural networks with dynamic particle swarm optimisation. Swarm Intell. 6(3), 233–270 (2012)

    Article  Google Scholar 

  22. Yan, L., et al.: An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell. 2, 1–6 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mattia Chiari , Alfonso E. Gerevini , Matteo Olivato , Luca Putelli , Nicholas Rossetti or Ivan Serina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiari, M., Gerevini, A.E., Olivato, M., Putelli, L., Rossetti, N., Serina, I. (2021). An Application of Recurrent Neural Networks for Estimating the Prognosis of COVID-19 Patients in Northern Italy. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds) Artificial Intelligence in Medicine. AIME 2021. Lecture Notes in Computer Science(), vol 12721. Springer, Cham. https://doi.org/10.1007/978-3-030-77211-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77211-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77210-9

  • Online ISBN: 978-3-030-77211-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics