2104.10652v1 [cs.CL] 28 Mar 2021

arxXiv

TransICD: Transformer Based Code-wise
Attention Model for Explainable ICD Coding

Biplob Biswas! | Thai-Hoang Pham"2® | and Ping Zhang':

! Department of Computer Science and Engineering, The Ohio State University,
Columbus OH 43210, USA
2 Department of Biomedical Informatics, The Ohio State University, Columbus OH
43210, USA
{biswas.102, pham.375, zhang.10631}Qosu.edu

Abstract. International Classification of Disease (ICD) coding proce-
dure which refers to tagging medical notes with diagnosis codes has been
shown to be effective and crucial to the billing system in medical sector.
Currently, ICD codes are assigned to a clinical note manually which is
likely to cause many errors. Moreover, training skilled coders also re-
quires time and human resources. Therefore, automating the ICD code
determination process is an important task. With the advancement of ar-
tificial intelligence theory and computational hardware, machine learning
approach has emerged as a suitable solution to automate this process. In
this project, we apply a transformer-based architecture to capture the in-
terdependence among the tokens of a document and then use a code-wise
attention mechanism to learn code-specific representations of the entire
document. Finally, they are fed to separate dense layers for correspond-
ing code prediction. Furthermore, to handle the imbalance in the code
frequency of clinical datasets, we employ a label distribution aware mar-
gin (LDAM) loss function. The experimental results on the MIMIC-III
dataset show that our proposed model outperforms other baselines by a
significant margin. In particular, our best setting achieves a micro-AUC
score of 0.923 compared to 0.868 of bidirectional recurrent neural net-
works. We also show that by using the code-wise attention mechanism,
the model can provide more insights about its prediction, and thus it
can support clinicians to make reliable decisions. Our code is available
onlin
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1 Introduction

The International Classification of Diseases (ICD) is a health care classifica-
tion system maintained by the World Health Organization (WHO) [23], that
provides a unique code for each disease, symptom, sign and so on. Over 100
countries around the world use ICD codes and in the United States alone, the
healthcare coding market is a billion-dollar industry [7]. In manual ICD cod-
ing, professional coders use patients’ clinical records representing diagnoses and
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procedures performed during patients’ visits to assign codes. While it serves pur-
poses including billing, reimbursement and epidemiological studies, the task is
expensive, time-consuming and error-prone. Fortunately, the advent of machine
learning approaches has paved the way for automatic ICD coding. il-
lustrates an example of such ICD coding process where the coding model takes
clinical text as input and outputs predicted ICD codes. It also shows that the
model puts attention to subtext (highlighted in red) that is relevant to a disease,
e.g. ‘gastrointestinal bleeding’ is related to the disease Acute posthemorrhagic
anemia’ (ICD-9 code: 586).

However, the task poses a couple of challenges. First, with more than 15,000
codes in ICD-9, it is a multi-label classification problem of high dimensional label
space. Second, the majority of the codes are associated with rare diseases and
hence, used infrequently, resulting in an imbalance in the dataset. Third, clinical
records are noisy, lengthy and contain a large amount of medical vocabulary.

Previous well-known models [T6J19] employed methods such as CNNs, LSTMs
to automate ICD coding. However, CNNs and LSTMs have a weakness to en-
code the long sequence of discharge summaries (average token count before pre-
processing &~ 1500). On the other hand, a self-attention based transformer [21]
model processes a sequence as a whole and thus can avoid long term dependency
issue of LSTMs. Unfortunately, most pre-trained transformer models such as off-
the-shelf BERTs [6/IITT] have a limitation of a smaller sequence length and the
usual ones [6] experience a lot of out-of-vocabulary (OOV) words in representing
clinical text. Training a transformer encoder with a pre-trained CBOW (Con-
tinuous Bag Of Words) [I5] embedding of clinical tokens can mitigate both the
problem of limited sequence length and OOV words. With this intuition, in this
work, we present an end-to-end deep-learning model for ICD coding. Here are
our contributions:

— We propose an ICD coding model that utilizes transformer encoder to ob-
tain contextual representation of tokens in a clinical note. Aggregating those
representations, we employ the structured self-attention mechanism [I3] to
extract label-specific hidden representations of an entire note.

— To address the long-tailed distribution of ICD codes, we apply a label dis-
tribution aware margin (LDAM) [4] loss function. For evaluation, we make
a comparative analysis of our model with the well-known models on the
benchmark MIMIC-III dataset [§].

— Finally, we present a case study to demonstrate visualizable attention to
label-specific subtext indicating interpretability of our coding process.

2 Related Works

The study of automatic ICD coding can be traced back to the late 1990s [T0JT2].
Last two decades have seen quite a good number of ICD coding models with
various approaches from both feature-based classical machine learning and deep
learning technique. Most of these studies addressed the task as a multi-label
classification problem.

Larkey and Croft [10] adopted an ensemble of K-nearest neighbors, rele-
vance feedback and Bayesian independence to identify ICD code of a discharge
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Fig. 1. The framework of the proposed ICD coding model. The model takes clinical
text as input and passes it through embedding layer, transformer encoding layer, label
attention layer and finally through dense layer to predict corresponding codes.

summary. Both de Lima et al. [I2] and Perotte et al. [I7] proposed hierarchi-
cal models to capture the hierarchical relationship of ICD codes. However, the
former study uses cosine similarity between the discharge summaries while the
latter one employs SVM for prediction.

In the last few years, different variations of neural networks have been applied
to this task. Ayyar et al. [2] and Shi et al. [I9] utilized word and character level
LSTM (C-LSTM-Att) respectively to capture the long-distance relationships
within a clinical text. Mullenbach [16] employed the baseline models such as
Logistic Regression (LR), CNN [9], Bi-GRU [5] on the MIMIC datasets for ICD
coding and presented a convolutional attention network (CAML) that achieved a
state of the art results. In another work [3], the authors introduced a hierarchical
attention as part of a GRU-architecture that provides interpretability. Wang et
al. put forward a label embedding attentive model (LEAM) [22] that encodes
labels (i.e. codes) and words in the same representational space and uses cosine
similarity between them for label prediction. However, being motivated by the
recent success of transformer-based models [G/T1T], in our ICD coding task, we
train one such encoder from scratch to circumvent sequence length limitation
and learn better token representation.

3 Dataset

MIMIC-IIT [§] is one of the benchmark datasets that provides ICU medical
records and is widely used in ICD coding prediction. Each record of it includes
a discharge summary describing diagnoses and procedures that took place dur-
ing a patient’s stay and is labeled with a set of ICD-9 codes by professional
coders. Following previous works [I6], we prepare two common settings of the
dataset: MIMIC-IIT full and MIMIC-IIT 50. In total, the MIMIC-III full setting
contains 52,726 sets of discharge summaries and 8,929 unique codes. 6,918 of the
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codes are diagnosis codes and the rest 2,011 are procedure codes. Only 1.84%
of the diagnosis codes are assigned to more than 1000 discharge summaries, and
the majority (87.5%) of the ICD codes are tagged on to less than 100 notes,
indicating an extremely long-tail of distribution.

Hence, we choose the MIMIC-IIT 50 setting which consists of the 50 most
frequent ICD codes with 11,368 set of discharge summaries. The dataset is split
into train, validation and test set by patient ID so that the test or validation
set does not contain any patient data already seen in the training set.
provides the summary of the dataset.

Table 1. The statistics for the data samples of the 50 most frequent ICD-9 codes in
MIMIC-IIT dataset after preprocessing.

spiic | # Samples | SN | 4 e | Coder | Code g
Train 8,066 50 922 5.69 577.89
Validation | 1,573 50 1,115 5.88 121.01
Test 1,729 50 1,133 6.03 136.93

Preprocessing. For each discharge summary sample, we lowercase and tok-
enize the text, remove punctuations, numbers, English stopwords, and any token
with less than three characters. After that, we stem them with Snowball stem-
mer and replace any remaining digits with character ‘n” which converts tokens
such as ‘350mg’ to ‘nnnmg’. From the resulting distribution of token count per
record, we observe that more than 98% of the discharge summaries are bound
within 2500 tokens. So we use 2500 as the maximum length of token sequence for
training. We exploit word2vec CBOW method [I5] to obtain word embeddings of
size, d. = 128 by training the entire discharge summary set. Finally, we extract
a vocabulary of 123916 tokens from training set and augment it with ‘PAD’ and
‘UNK’ token for padding and out of vocabulary words respectively.

4 Methods

4.1 Problem Formulation

Since each discharge summary sample can have multiple ICD codes associated
with it, we approach the code prediction task as a multi-label classification prob-
lem. Given a clinical record with token sequence, W = [wy, ws, ..., w,], our ob-
jective is to determine y,_, € {0,1} where L is the set of labels i.e. ICD-9 codes.

4.2 Transformer Based Label Attention Model

We leverage the concept of multi-headed self-attention, popularly known as
transformer, to encode the tokens of the clinical notes. illustrates the
overall architecture of our model. The following subsections describe the model
framework in detail.
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Embedding Layer Considering an input clinical note, W = [wy,wa, . .., w,]T,
where w; is the vocabulary index of the i-th word and n is the maximum possible
length, we map them to the pre-trained embeddings (§3)). This provides us with
a matrix representation of the document, E = [e1, s, ...,e,]T where e; € R
is the word embedding vector for the i-th word.

Transformer Encoder Layer The word embeddings, E € R™"*% of a clinical
note is fed into a transformer encoder which employs multi-headed self attention
mechanism [21] to the sequence as a whole and provides us with contextual word
representations, H € R"* % Mathematically:

H = TransformerEncoder(E) (1)
where H = [hy, hy, ..., h,]7.

Code-specific Attention Model Being a multi-label classification task, it de-
mands further processing of the encoded representation, H € R"*% to produce
a code-wise representation. To this end, we apply a structured self-attention
mechanism on H. First, the attention weights, a; € R™ corresponding to tokens
of a note for label [ is computed by:

a; = Softmax(tanh(HU)v;) (2)
Cc = HTal (3)

where U € R%*4a and v; € R% are trainable parameters and d, is a hyper
parameter. Next, we multiply the contextual representation H and the attention
scores a; to produce a fixed length code-specific document representation c; for
each label | € L (Eq. . Intuitively, ¢; € R% encodes information sensitive to
label [. Finally, we concatenate this attended document representation c; for all
labels to obtain C = [c1, ca,...,cp]T € RLxdn

Multi-label Classification To compute the probability for label I, we feed
the corresponding label-wise document representation c; to a single layer fully
connected network with a one node in the output layer followed by a sigmoid
activation function (Eq. . Having the probability score, We use a threshold
of 0.5 to predict the binary output € {0,1}. For training, we adopt multi-label
binary cross-entropy as loss function (Eq. [5)).

i1 = o(Zc, + b) (4)
L

Lpop(y,9) = — Y _lylog(@) + (1 — y) log(1 — §)] ()
=1

To address the long-tailed distribution of ICD codes in the dataset, following
previous work of Song et al. [20], we employ label-distribution-aware margin
(LDAM) [4], where the probability score is computed by Eq. []

gt =0(Zer+b—1(y =1)A) (6)
Lipav = Lce(y,i™) (7)
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where function 1(.) is 1if y; = 1. A; = &5 and C is a constant and n; is the
n

total count of training notes having [ as fcrue label. Finally, we obtain LDAM
loss using Eq. [7]

5 Training Details

A search for optimal hyper-parameter leads us to the following setting of values:
{Encoder layer: 2, Attention head: 8, Epochs: 30, Learning rate: 0.001, Dropout
rate: 0.1}. We also set d, = 2xd, and C = 3. We train the models on an NVIDIA
Tesla P100 (Pascal). In our best setting, each epoch takes around 168 seconds.

6 Evaluation

To evaluate our model, we utilize commonly used metrics such as micro-averaged
and macro-averaged area under the ROC curve (AUC) and F1 score. As spec-
ified by Manning et al. [14], macro-averaged values are computed by averaging
metrics calculated per label. On the other hand, micro-averaged values are com-
puted considering each pair (document, code) as a separate prediction. The
macro-averaged values are usually low in this task as they put more emphasis
on infrequent label prediction. We also include precision at k (P@k) which com-
putes the fraction of the true labels that are present in our top-k predictions.
As the average number of codes per note is around 5.8, we choose k = 5 for
evaluation.

6.1 Results

provides a comparison of our proposed ICD coding model to the previ-
ous methods on the top-50 frequent ICD codes of the MIMIC-III dataset. The
scores are in percentage and are measured on the held-out test set with the
aforementioned hyperparameter setting (§5)). We ran our model five times and
use different random seeds in each run to initialize the model parameters. We
present the means and standard deviations of these five runs as our final result
of the proposed TransICD model. The low standard deviations indicate that our
model consistently performs well, and thus it is stable.

Our proposed TransICD model produced the highest scores on micro-F1,
macro-AUC, and micro-AUC, whereas the result in macro-F1 and precision@5
are comparable to the corresponding best score. also shows that we
achieved a substantial improvement from all the baselines including the recurrent
networks (Bi-GRU, C-LSTM-Att) and convolutional models(CNN, CAML). In
fact, our basic transformer model (without attention) that simply uses mean
pooling over the encoded token vectors for document representation outperforms
logistic regression (LR) by at least 2.3% in macro-AUC, 2.5% in micro-AUC,
0.1% in macro-F1, 3.0% in micro-F1, and 1.9% in precision@5. We believe this
is due to the transformer encoder’s superior ability to capture the long-term
dependency of the tokens in contrast to that of recurrent units or hand-crafted
feature extraction.
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Table 2. Test set results (in %) of the proposed models on the MIMIC-III 50 dataset.
Models marked with * are ours and values with boldface are the best in the corre-
sponding column.

AUC Fi
Models Pa@5s
Macro Micro Macro Micro
Logistic Regression (LR) 82.9 86.4 47.7 53.3 54.6
Bi-GRU 82.8 86.8 48.4 54.9 59.1
C-MemNN [18] 83.3 - - - 42.0
C-LSTM-Att [19] - 90.0 - 53.2 -
CNN [9] 87.6 90.7 57.6 62.5 62.0
CAML [16] 87.5 90.9 53.2 61.4 60.9
LEAM [22] 88.1 91.2 54.0 61.9 61.2
*Transformer 85.2 88.9 47.8 56.3 56.5
*Transformer + Attention 88.2 91.1 49.4 59.3 59.6
*
TransICD(Transformer +gg 4 4 (1 9234 0.1(56.24 04 64.4+0.3|61.7+0.3
Attention + Lrpanr)

With code-wise attention and LDAM loss, our best setting TransICD exceeds
the strong baseline LEAM [22] in macro-AUC by 1.3%, in micro-AUC by 1.1%,
in macro-F1 by 2.2%, in micro-F1 by 2.5% and in precision@5 by 0.5%. In
macro-F1, our model takes a back seat only to CNN [9]. The overall low scores
in this metric also signify that the models struggle in predicting rare codes.
The precision@5 of our model indicates that out of 5 predictions with the top
probabilities, on average 61.9% i.e. 3.085 are correct. The score is relatively
higher than most of the other baselines except CNN.

Comparing previous models, we observe that logistic regression (LR), being
a conventional machine learning model, performs worse than all other neural
networks. Further inspection reveals that the attention-based models result in
a significant improvement over the normal ones of the same kind. For instance,
CAML outperforms the regular CNN.

Ablation Study The contribution of different components of our model can be
recognized from the bottom three rows of First, we notice a substantial
drop in every metric when label-distribution aware margin (LDAM) loss is not
adopted. In another way, LDAM improves the performance in AUC by (macro-
1.2%, micro-1.2%), F1 by (macro-6.8%, micro-5.1%), and precision@5 by 2.1%.
This clearly demonstrates that LDAM loss played a powerful role to counter the
imbalanced frequency of the labels. Moreover, instead of the label attention, if
we simply use mean pooling of the token representations from our transformer
encoder to encode the entire document, we end up having the same hidden vec-
tor for all the labels. This further hurts the performance of the model. Putting
differently, extending basic transformer model with code-wise attention increases
AUC score by (macro-3.0%, micro-2.2%), F1 score by (macro-1.9%, micro-3%),
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and precision@5 by 3.1%. This corroborates that extraction of code-specific rep-
resentation of a document does improve the corresponding label prediction.

6.2 Distribution of Scores

10 mm AUC
-1
0.9
08
0.7
, 06
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04
03
0.2

0.1

0.0

ICD-9 Codes

Fig.2. AUC and F1 scores across the top-50 frequent ICD-9 codes of MIMIC-IIT
dataset

Our model achieves higher AUC scores for many ICD codes. Specifically, for
90% of the codes, our model attains an AUC higher than 0.8 and for 56% of them,
we have an AUC higher than 0.9. On the other side, an AUC score lower than
0.7 is seen for only 4% of the codes. We notice that some of the low scoring ICD
codes such as V15.82, 305.1, 276.1 are also the least frequent ones in the training
set. Another observation shows misclassification among closely related codes.
For instance, Tobacco use disorder (ICD: 305.1) and Arterial catheterization
(ICD: 38.91) are seen to be very frequently mislabeled as History of tobacco
use (ICD: V15.82) and Venous catheterization, not elsewhere classified (ICD:
38.93) respectively. Above all, most frequent wrongly classified codes such as
401.9, 96.04 are also found to be the dominant ones in the training set indicating
a bias towards them. A naive random oversampling of the dataset can be a way
to get rid of such bias. Analyzing F1 scores, we find a relatively smaller number
of the codes (10%) having F1 score greater than 0.8. We present the individual
AUC and F1 score of the most frequent 50 codes in

6.3 Visualization

For high-stakes prediction applications such as healthcare, there has been an
increasing demand to explain the prediction of a model in a way that humans
can understand. Although an automated model is set to reduce human labor,
being able to observe which parts of a text are contributing to the final prediction
provides reliability and transparency. In[Figure 3 we provide such visualization
of our code-wise attention model where an excerpt of a note is highlighted with
attention scores corresponding to two different labels.

Figure shows that for disease Urinary tract infection (ICD:
599.0), our model successfully puts high attention to the closely related words-
‘urinary tract infection’. However, the model ignores the same words while pre-
dicting for label Single internal mammary-coronary artery bypass (ICD: 36.15)
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first namen diagnosis ascending descending aortic aneurysm coronary

artery disease hypertension mitral valve prolapse history rheumatic -

clevated hemoglobin anc drug rash S80RAALY ciprofloxacin preoperative
Uirinary Wl MeEoH condition good instructions driving one month
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Fig. 3. Visualization of the model attending on an excerpt from a discharge summary
for label- (a) Urinary tract infection (ICD: 599.0) and (b) Single internal mammary-
coronary artery bypass (ICD: 36.15). Darker color indicates higher attention.

as illustrated in Figure because they are not relevant for the lat-
ter label. On the other hand, being associated with the latter label, ‘coronary
artery’ is seen to gain more attention in Figure although the same

bi-gram is not attended for the former label in Figure
All these suggest that the reasoning of our model is highly correlated to the

features that a human would have looked for while tagging a note with ICD
codes. Consequently, we believe, this model would help clinicians in the ICD
coding process with higher reliability and transparency.

(a)

fever

(b)

7 Conclusion

The study proposes a transformer-based deep learning method to predict ICD
codes from discharge summaries representing diagnoses and procedures con-
ducted during patients’ stay in hospital. We adopt LDAM loss to counter the
imbalanced dataset and employ a code-wise attention mechanism for more accu-
rate multi-label predictions. Our visualization report illustrates that the model
attends to the relevant features and hence provides evidence for reliability. For
future work, we will focus on a larger dataset containing more or even all the
ICD codes.
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