arXiv:2103.03305v2 [cs.LG] 6 Jul 2022

Predicting Kidney Transplant Survival using
Multiple Feature Representations for HLAs

Mohammadreza Nemati', Haonan Zhang', Michael Sloma!, Dulat Bekbolsynov?,
Hong Wang?, Stanislaw Stepkowski?, and Kevin S. Xu*!

Department of Electrical Engineering and Computer Science, University of
Toledo, Toledo, OH, USA
2Department of Medical Microbiology and Immunology, University of Toledo
3Department of Engineering Technology, University of Toledo

July 7, 2022

Abstract

Kidney transplantation can significantly enhance living standards
for people suffering from end-stage renal disease. A significant factor
that affects graft survival time (the time until the transplant fails and
the patient requires another transplant) for kidney transplantation is
the compatibility of the Human Leukocyte Antigens (HLAs) between
the donor and recipient. In this paper, we propose 4 new biologically-
relevant feature representations for incorporating HLA information
into machine learning-based survival analysis algorithms. We evalu-
ate our proposed HLA feature representations on a database of over
100,000 transplants and find that they improve prediction accuracy
by about 1%, modest at the patient level but potentially significant
at a societal level. Accurate prediction of survival times can improve
transplant survival outcomes, enabling better allocation of donors to
recipients and reducing the number of re-transplants due to graft fail-
ure with poorly matched donors.
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1 Introduction

Kidney transplantation is the therapy of choice for many people suffering
from end-stage renal disease (ESRD). A successful kidney transplant can
enhance a patient’s living standards and diminish the patient’s risk of dy-
ing. Although allograft (organ or tissue transplanted from one individual
to another) and patient survival have improved because of new surgical
technologies and effective immunosuppression, a transplant is not a lifetime
treatment. Allografts, or simply grafts, will stop functioning over time [29],
requiring re-transplantation for the patient after graft failure. There is a
significant societal demand for kidney transplants, with over 90,000 people
on the waiting list in the United States alone.

The time to graft failure or graft survival time is determined by a variety of
factors, including the age, race, and overall health of the donor and recipient.
The compatibility of the donor and recipient also plays a key role, particularly
with respect to their Human Leukocyte Antigens (HLAs) [21]. Prior research
has demonstrated that the number of mismatches (MM) between donor and
recipient HLAs can significantly affect the graft survival time [5, [8] [13].

In this paper, we aim to predict the graft survival time for a transplant
given a variety of covariates on the donor and recipient. We propose multiple
feature representations for incorporating HLA information into survival anal-
ysis models. By building a base model without HLA information and then
comparing to models that contain more detailed representations of HLAs, we
can identify whether the HLA information can improve prediction accuracy.

Our main contribution is 4 new feature representations for HLA types
and pairs that account for biological mechanisms behind HLA compatibility,
differences in categorization of HLAs, and differences in the way categori-
cal variables are treated in different survival analysis models. We find that
incorporating HLA information can improve the accuracy of predicted graft
survival time by about 1%. While this is a modest improvement for an indi-
vidual patient, it could translate to significant improvements at the societal
level by increasing graft survival times, thus enabling more transplant recip-
tents with the same number of donors, and potentially reducing the size of
the waiting list.

We first reported preliminary results from this paper in the conference
publication [20]. This paper extends those results with the following new
contributions:



e We propose 2 new target encoding approaches for HLA types designed
to improve prediction accuracy with random survival forests and other
tree-based survival analysis models.

e We repeat our experiments over 10 different random train, validation,
and test splits, unlike our preliminary results in [20] that used only
a single split. In doing so, we establish statistical significance for our
main findings and can further conclude that the observed improvements
from incorporating HLA features, while small, are unlikely to be due
to chance alone.

e We present a detailed comparison of prediction accuracy when includ-
ing also post-transplant covariates for prediction.

e We add a more detailed discussion of the potential clinical significance
and impact of our biologically-relevant HLA feature representations.

2 Background and Motivation

Chronic kidney disease (CKD) is a public health issue and a general term
for heterogeneous disorders affecting a kidney’s function, which may lead
to ESRD. According to 2019 reports of United States Renal Data System,
CKD affects at least 10% of adults in the U.S., with nearly 750,000 Ameri-
cans requiring kidney transplantation. In the absence of kidney donors, life
support therapy for these patients is associated with exorbitant morbidity,
mortality, and tremendous financial burden. Successful kidney transplanta-
tion may save about $55,000 per year in Medicare costs for every functioning
transplant [26].

Unfortunately, the waiting list for kidney transplantation continues to
grow. Based on 2019 OPTN data, over 41,000 new patients were added to
the kidney transplant waiting list, while only 23,401 total transplants were
performed, with 11% of them being patients returning to the waiting list due
to previous transplant failure. These numbers highlight the need to improve
transplant survival in kidney transplant recipients.



2.1 Human Leukocyte Antigens (HLAs)

HLAs are a category of surface proteins encoded in a distinct gene cluster
[4]. These HLAs, which are highly polymorphic, play a fundamental role
in the body’s immune system function. In organ transplantation, donor
HLAs are also recognized as foreign to be attacked by the recipient’s immune
system [10]. Each human inherits 2 copies (1 maternal and 1 paternal) of
each HLA gene. In the cluster, 3 specific loci, HLA-A, -B and -DR, are
of utmost clinical significance for kidney transplantation. Thus, 6 HLAs (2
copies of each of HLA-A, -B, and -DR) are routinely typed in the clinic.
An HLA is typically represented by the locus and a 2-digit number such as
Al. This representation is known as the HLA serological type; we refer to
it as just the HLA type in this paper. For example, a donor may have the
following 6 HLA types: A3, A9, B5, B7, DR5, and DR6.

It is important to note that the 2-digit numbers are just categories and
not actual numerical values. For example, A9 and A10 are not necessarily
more similar than A9 and A3 despite the numbers 9 and 10 being closer
than 9 and 3. Furthermore, as HLA typing methods evolved, some crudely
defined antigens (broads) were found to be groups of finer, previously unseen
antigens (splits). For example, the splits and associated antigens of the broad
antigen HLA-A9 are A23 and A24. Thus, some instances of the splits A23
and A24 may be coded as the broad A9 in transplant databases.

The clinical importance of HLA stems from the sheer polymorphism [25],
resulting in donor HLAs being in most instances different from recipient
HLAs. Each HLA type present in the donor but not in the recipient leads to
an HLA mismatch (MM). There may be 0 to 6 HLA-A/B/DR MM between
a donor and recipient, with higher MM generally resulting in shorter graft
survival times [2I]. In addition to the number of mismatches, prior work has
also demonstrated that specific HLAs of the donor and recipient can also
impact the outcome of kidney allograft survival [6].

2.2  Survival Analysis

Survival analysis is a well-established technique in statistics used to predict
time to an event of interest during a specific observed time interval. It is a
form of regression where the objective is to predict the survival time, i.e. the
time until an event of interest occurs. For many data points, however, the
exact time of the event is unknown due to censoring, and thus, standard
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Figure 1: Examples of right censoring in the kidney transplantation setting
we consider.

regression models are not well-suited to handle such time-to-event problems.
Right censoring is the most common form and applies to our survival time
prediction problem. Although a subject’s status is known at the beginning
of the study, the subject’s event might not be observed. Some of the cen-
soring conditions in our kidney transplantation problem setting are shown in
Figure

Many survival analysis algorithms have been proposed to handle censored
data—we refer readers to the survey [32]. We consider 3 machine learning-
based survival analysis algorithms in this paper, which we describe in Section
4.2

3 Data Description

This study uses data from the Scientific Registry of Transplant Recipients
(SRTR) and includes data on all donors, wait-listed candidates, and trans-
plant recipients in the U.S., submitted by the members of the Organ Pro-
curement and Transplantation Network (OPTN).

Inclusion Criteria We acquired 469,711 anonymous cases on all kidney
transplants between 1987 and 2016 from the registry. We apply the following



inclusion criteria to the data. We consider only transplants with deceased
donors, recipients aged 18 years or older, and only candidates who are re-
ceiving their first transplant. We include only transplants between 2000 and
2016 due to the introduction of new therapy regimes and a new kidney allo-
cation system [2] around the year 2000. Finally, we include only recipients
with peak Panel Reactive Antibody (PRA) less than 80 percent since pa-
tients with high PRA levels experience increased acute rejection rate and
graft failure [27]. After applying the inclusion criteria, subjects with missing
values in any basic covariates except cold ischemia time (see Section
or HLAs are removed from the study. After the preceding stages, 106, 372
transplants remain for the purpose of developing predictive models, with 74.6
percent of them being censored.

Target Variable There are three primary endpoints (targets) in survival
analyses for kidney transplantation: patient survival, all-cause graft loss, and
death-censored graft loss. In the SRTR database, data on patient survival
was compiled based on reports from transplant centers, as well as the Centers
for Medicare and Medicaid Services and Social Security Administration’s
Death Master File [15]. Record of patient death and patient death date from
any of these sources was used to define the patient survival variable.

We use death-censored graft loss as the clinical endpoint (prediction tar-
get) in this study. This means that patients who died with a functioning
graft are treated as censored since they did not exhibit the event of interest
(graft loss), as shown in example B in Figure . Graft loss is determined
based on the record of either graft failure, return to maintenance dialysis, re-
transplant, or listing for re-transplant. For censored instances, the censoring
date is defined to be the last follow-up date.

4 Methods and Technical Solutions

Research Questions We pose two main research questions in this study.
First, does incorporating donor and recipient HLA information into a graft
survival time predictor improve prediction accuracy? If so, what type of rep-
resentation for the HLA information results in the highest prediction accu-
racy? We first describe the different HLA feature representations we propose
in Section and then discuss the survival analysis algorithms we use in
Section [£.2] Our data processing pipeline is shown in Figure [2|
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Figure 2: Illustration of data processing and survival analysis pipeline.

4.1 Feature Representations

We consider 8 different feature sets ranging from 23 to 3,900 covariates. Some
of the covariates are pre-transplant covariates, meaning that they are avail-
able prior to the transplant time, while others are post-transplant covariates,
available only at the time of transplant or after a transplant has been per-
formed and the patient has been discharged. The number of covariates for
each feature set is shown in Table

We first consider prediction using only the pre-transplant covariates, as
they can be used to predict graft survival prior to the transplant being per-
formed and could potentially be used in the process of matching donors and
recipients. We also consider prediction using both pre- and post-transplant
covariates, which should be more accurate and can still be useful to a clini-
cian.

4.1.1 Basic Features

Pre-transplant basic features consist of age, sex, race, and body mass index
(BMI). Race is encoded using a one-hot representation. The post-transplant
covariates employed are donor and recipient serum creatinine levels at the
time of transplant, recipient serum creatinine at discharge time, whether
the patient needs dialysis within the first week of the transplant, and the
cold ischemia time (CIT), which denotes the amount of time the kidney was



Table 1: Number of covariates in each feature set in pre- and post-transplant
settings.

Number of covariates

Feature Set Pre-transplant Post-transplant
Basic 23 29
Basic + MM (total) 24 30
Basic + MM (A-B-DR) 26 32
Basic + Types (binary) 252 258
Basic + Types (target) 29 35
Basic + Pairs 3,661 3,667
Basic + Frequent pairs 227 236
All 3,894 3,900

preserved after the blood supply has been cut off. Missing values for CIT
were imputed using the mean over all other transplants. There are a total of
23 and 29 features for the pre- and post-transplant settings, respectively.

4.1.2 HLA Mismatches

We first consider the number of mismatches (MM) between donor and re-
cipient, which has been found to be a significant factor in the time to graft
failure. We consider two possible representations: the total number of MM
(0 to 6), as well as the separate A-B-DR MM (0 to 2 each). These result in
1 and 3 features appended to the basic features, respectively.

4.1.3 HLA Types

We consider directly encoding the HLA types of the donor and recipient.
The digits in an HLA type should be treated as categories and not numeric
values, e.g. A2 and Al differing by 1 does not imply that they are more
similar than A2 and A23.

Binary Encoding One focus of our study is to address the methodological
challenges arising from HLA broad and split antigens. We propose to encode
HLA types using a binary one-hot-like encoding that also maps splits back
to broads so that a split like A23 has a one in both the columns for A23 and
A9. We encode donors and recipients separately so that each transplant has



at least 12 ones (6 donor, 6 recipient), and possibly more due to splits. An
example of the binary encoding applied to donor and recipient HLA types for
the HLA-A locus is shown in Figure |4l This encoding results in 229 features
appended to the basic features.

Target Encoding One disadvantage to the proposed binary encoding is
that it converts 12 categorical features for the donor and recipient HLA types
into 229 binary features. This may have an adverse effect on the accuracy of
tree-based models. (Indeed, we observe that it leads to a decrease in the pre-
diction accuracy of the random survival forest but not that of the Coxnet or
gradient boosting, as we show in Section ) To mitigate this disadvantage,
we propose an alternative encoding: a target encoding approach that encodes
HLA types with a much lower dimensionality, resulting in 6 real-valued fea-
tures as opposed to 229 binary features. This target encoding approach was
not considered in our preliminary results in [20].

The proposed technique relies on a transformation that maps each cate-
gory of a high-cardinality categorical variable to the target variable’s proba-
bility estimate. In a typical supervised learning setting, the numerical rep-
resentation corresponds to the target’s expected value given the categorical
feature’s category [19]. In our setting, however, we have two additional chal-
lenges. The first is censoring, which prevents us from observing the time to
event for the majority of instances. Secondly, each person inherits two copies
of each HLA, one paternal and one maternal. These two HLA types are typ-
ically stored as two different covariates, e.g. DON_A1 and DON_A2 denoting
the two HLA-A types that the donor possesses. However, the ordering of
the two types does not matter, so that (DON_A1, DON_A2) = (3,9) and
(DON_A1, DON_A2) = (9, 3) both denote a donor possessing A3 and A9.

To perform the target encoding procedure, we consider the graft survival
time in two scenarios: one in which the graft survival time is a continuous
target, and the other in which the graft survival time is a binary target.
Examples of both types of encodings are shown in Figure [3] In the first
setting, which we denote as regression-based target encoding, the encoding
values are simply the average of graft survival times (for uncensored cases)
or censoring times (for censored cases) grouped by distinct HLA types.

In the second setting, which we denote as classification-based target en-
coding, we take into account the censoring status of each transplant. By using
the number of post transplant years as a criterion, we transform the contin-
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Figure 3: Two examples of target encoding calculation for each HLA type.
The encodings for the two HLA types for each locus are averaged to form
the final target encoding for the locus.

uous target to binary values which represent the functioning or failed grafts.
For determining the encoding values, we eliminate all censored transplants
that have not reached the specified number of years. For these transplants,
we cannot determine whether a graft is still functioning or has failed.

The encoding for each HLA type is then calculated as follows:

# of failed transplants at year ¢

Encoding at year t = .
&aty # of functioning or failed transplants at year ¢

This encoding is simply the average of binarized target (1: failed, 0: func-
tioning) for each HLA type. To investigate the effect of this criterion on our
model, we choose one, five, ten, fifteen, and twenty post-transplant years to
binarize the target, which result in five distinct HLA type features with dis-
tinct encoding values for each type. This also enables us to compare different
target encoding approaches.

To address the ordering problem of each HLA type, we take the average of
two encodings calculated for each HLA locus to create a unique encoding for
each HLA type regardless of locus. This allows our encoding to be invariant
to the ordering of the two HLA types that a donor or recipient possesses for
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Figure 4: An example of one-hot-like HLA type and pair encoding. The
features shown in the gray boxes are encoded as 1’s while all other features
for the HLA-A locus are encoded as 0’s.

each locus. For example, a donor possessing both A3 and A9 will have their
HLA-A target encoding set to the average of the encodings for A3 and A9.

4.1.4 HLA Pairs

An HLA pair is the combination of the HLA types of a donor and a recipient.
For instance, if a donor possesses HLA-A3 and a recipient possesses A23, the
HLA pair (A3, A23) is associated with the transplant. Similar to how we
encode HLA types, we can use a one-hot-like encoding for HLA pairs by
placing a one in the column for each HLA pair associated with a transplant.

This does not, however, account for the biological mechanisms underlying
HLA compatibility. If the donor has HLA types that the recipient does
not, the recipient’s immune system may reject the transplant. There is no
problem if the recipient has HLA types that are not present in the donor,
which creates an asymmetry in roles of the donor and recipient HLA types.
As a result, some HLA pairs are not biologically relevant. To distinguish
between biologically relevant and irrelevant pairs, it is essential to consider
the number of donor-recipient mismatches. Figure {4 illustrates an instance
in which the donor and recipient HLA-As are A3 and A23. Given that A23
is a split of A9, both the donor and the recipient have the HLA types A3,
A23, and A9 encoded in our encoding mechanism.

Applying the biological concept of broads and splits into our encoding
methodology generates four different cases in pairing the HLAs. Combining
the HLASs of the donor and recipient in each case yields four distinct pairs. In
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the case where the donor and recipient HLAs are A3 and A23, for instance,
there are four possible pairings: (A3, A3), (A3, A23), (A23, A3), and (A23,
A3). For this transplant’s encoding, we would typically insert one into each
column of the four mentioned pairs. However, this does not account for the
underlying biological mechanisms of HLA pairs.

As both of the donor’s HLA types are present in the recipient’s HLA
types, the number of mismatches is zero. Due to this zero mismatch, the
mismatched pairs (A3, A23) and (A23, A3) are deemed biologically irrele-
vant; therefore, the ones in the columns of irrelevant pairs should be replaced
with zeros and we also maintain one in the columns of only active HLA pairs
(A3, A3), and (A23, A23). Other cases are handled in a similar fashion.

The HLA pair encoding results in 3,638 features appended to the basic
features. Due to the large number of features for the HLA pair encoding,
we also consider a smaller frequent pairs representation where we remove
all HLA pairs observed in less than 1,000 transplants, which results in 204
features.

4.1.5 All Features

We consider also a combined feature set by concatenating all of the above
feature representations. For HLA types, we use the binary one-hot-like en-
coding. The total number of features is 3,894 in the pre-transplant setting,
which is dominated by the 3,638 HLA pair features.

4.2 Survival Analysis Algorithms

Coxnet The Cox Proportional Hazards (Cox PH) model is one of the most
widely used models for survival analysis. It models the hazard ratio using
a weighted linear combination of covariates. The coefficient vector is esti-
mated by maximizing the partial likelihood. We use a Cox PH model with
combined ¢; and /5 regularization, known as the elastic net, which leads to
the Coxnet model [30]. The model has 2 hyperparameters: A, which controls
the strength of regularization, and r, which denotes the ratio between the ¢;
and /5 penalties. We use a grid search with A uniformly distributed on a log
scale between 10~ and 1072 and r uniformly distributed between 0.1 and 1.

Random Survival Forest Random forest is a bootstrap aggregating (bag-
ging) ensemble learning algorithm with decision trees as base learners. Isha-
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van et al. [11] proposed the random survival forest (RSF) algorithm that
can handle right-censored data. We use an RSF with 500 trees and consider
random selection of the square root of the number of features for each split.
We perform a grid search on the maximum depth of each tree in the range
{5,10, 15}.

Gradient Boosted Regression Trees Gradient boosting (GB) is an en-
semble learning technique that combines the predictions of many weak learn-
ers. Boosting algorithms using survival regression trees as their weak learners
have been developed to be used in survival analysis problems [32]. We use
stochastic gradient boosting with 500 trees using a 50% subsample to fit each
tree. We perform a grid search on the maximum depth of each tree in the
range {1,2,3}.

5 Empirical Evaluation

To evaluate the accuracy of our predictors, we randomly split the data into
3 sets: 60% training, 20% validation, and 20% testing. The validation set
is used for hyperparameter tuning. For each algorithm, we choose the set
of hyperparameters with the highest validation set C-index (see Section
and then retrain it on the 80% set containing both the training and validation
sets. We then finally evaluate each algorithm and feature set on the 20% test
set, which was initially held out and not used at any point to prevent test
set leakage. Furthermore, we repeat the above process of calculating the
accuracies of algorithms 10 times using 10 different splits to avoid drawing
conclusions based on a single data split and the potential variance associated
with that random split. Our experiments are conducted using the scikit-
survival Python package [23].

5.1 Evaluation Metrics

We consider two metrics to evaluate the accuracy of our survival time predic-
tions. First, we use Harrell’s concordance index (C-index), which is perhaps
the most widely used accuracy metric for survival prediction models [9]. The
C-index is merely dependent on the ordering of predictions and is calculated
by counting all possible pairs of samples and concordant pairs. A pair is a
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concordant pair if the risk n; < n; and T; > T}, where T; is the survival time
for patient 1.

We also consider the cumulative/dynamic area under receiver operating
characteristic curve (AUC) metric that measures how accurately a model
can predict the events that happen before and after a specific time ¢ [14].
We consider the mean cumulative/dynamic AUC over 5 equally-spaced time
points.

5.2 Statistical Significance Testing

Our preliminary results from [20] used a single train, validation, and test
split. It is difficult to draw conclusions from the results because the observed
improvements from incorporating the HLA feature representations are small
and may be just due to variance from the single random split. A major goal
of this study is to more definitively evaluate how our proposed HLA feature
representations affect the accuracy of graft survival prediction algorithms.
Since the accuracy gain from incorporating the new features may be minor
in comparison to our baseline criterion, one might wonder if the gain is due to
chance factors like a specific data train and test split. To investigate whether
this is the case, we conduct our experiments with 10 different data train and
test splits, as explained in Section [5] This strategy enables us to conduct an
appropriate statistical significance test.

To compare the test set accuracy of our augmented data to our basic
feature set, we use the Wilcoxon signed rank test. The reason for using this
test is that we only run each algorithm 10 times, so it is best to avoid making
normality assumptions about the population of test set accuracies. In this
setting, a non-parametric test like the Wilcoxon signed rank test (rather than
a paired t-test) is a better candidate to make a comparison about the two
populations by using pairs of matched samples [7]. We do also perform a
paired t-test to provide a comparison to the results of the Wilcoxon signed
rank test.

To determine whether there is a significant difference between the ba-
sic and augmented feature sets, we form the following null and lower-tail
alternative hypotheses:

Hnull : Mbasic = augmented Vs. Halternative : Mbasic < Maugmented7

where M denotes the median accuracy metric (either C-index or mean cumu-
lative/dynamic AUC) over the 10 splits. We compute the p-values for these
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Table 2: Average test set C-index accuracy using only pre-transplant covari-
ates across 10 different data splits. The Wilcoxon test p-values are calculated
with respect to the basic feature set. Other feature sets also include the basic
features. Best feature set for each predictor is listed in bold.

Coxnet Random Surv. Forest Gradient Boosting
Feature Set  C-index p-value C-index  p-value  C-index p-value
Basic 0.625 — 0.634 — 0.636 -

MM (total) 0.627  0.006 0.635 0.006 0.637 0.012
MM (A-B-DR) 0.627 0.006 0.636 0.012 0.638 0.006

Types (binary) 0.626  0.012  0.630 1 0.637 0.006
Pairs 0.627 0.006 0.620 1 0.637 0.006
Freq. pairs 0.627  0.006  0.631 1 0.638 0.006
All 0.627  0.006 0.614 1 0.637 0.006

tests and compare them to the level of significance oo = 0.05.

We consider 6 different augmented feature sets, each of which we compare
against the basic features, so we have 6 different hypotheses. Since multiple
comparison tests are conducted, the Bonferroni correction method is applied
to adjust the p-values. The Bonferroni correction is a multiple-comparison
correction approach utilized when multiple dependent or independent statis-
tical tests are conducted simultaneously [I]. To control the excessive occur-
rence of false positives, which is equivalent to rejecting the null hypothesis,
the p-values of each individual comparison must be multiplied by the total
number of possible pairwise comparisons between each group to account for
the number of comparisons being conducted. Therefore, we multiply the
p-values of each comparison by 6, the total number of comparisons.

6 Results

6.1 Effects of Feature Representations

The two main research questions are both centered around the effects of
incorporating HLA information into graft survival time prediction. From
the results in Tables [2] and [3| notice that incorporating HLA information
almost always results in an improvement in prediction accuracy in the pre-
transplant prediction setting. The amount of improvement compared to the
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Table 3: Average test set mean cumulative/dynamic AUC accuracy using
only pre-transplant covariates across 10 different data splits. The Wilcoxon
test p-values are calculated with respect to the basic feature set. Other
feature sets also include the basic features. Best feature set for each predictor
is listed in bold.

Coxnet Random Surv. Forest Gradient Boosting
Feature Set Mean AUC p-value Mean AUC p-value Mean AUC p-value
Basic 0.635 — 0.655 — 0.653 -

MM (total) 0.641 0.006 0.659 0.006 0.658 0.006
MM (A-B-DR) 0.641 0.006 0.659 0.018 0.658 0.006

Types (binary)  0.635 1 0.654 1 0.654 1
Pairs 0.640 0.006 0.651 1 0.655 0.012
Freq. pairs 0.640 0.006 0.658 0.006 0.657 0.006
All 0.640 0.006 0.645 1 0.657 0.006

basic features varies for the differing feature representations and evaluation
metrics. In addition to the mean accuracy metrics, the tables also show the
p-values from the Wilcoxon signed rank test. The differences between the
C-indices for each feature set and the C-index for the basic features on each
of the 10 data splits along with p-values from a paired t-test are shown in

ATl

HLA Mismatches In all cases, adding HLA MM (either total or separate
A-B-DR MM) improves the accuracy of the predictive models. We notice
minimal differences in accuracy from including total MM and A-B-DR MM.
Additionally, the p-values suggest that the improvement is statistically sig-
nificant at the a = 0.05 level.

The maximum improvement in prediction accuracy observed across both
evaluation metrics and all three algorithms is obtained from the MM (total)
feature set. The relative improvement of mean AUC from 0.635 for the basic
features to 0.641 when including MM (total) is about 1%.

HLA Types We first consider the binary encoding for HLA types. Results
for the target encoding are shown in Section [6.2]

For Coxnet and gradient boosting, including HLA types resulted in better
accuracy than the basic features. However, for all of the predictors, including
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HLA types resulted in worse accuracy than including HLA MM. Since the
Coxnet is linear in the features, it cannot learn interactions between features,
and thus, cannot learn compatibilities between different HLA types, so this
result is not too surprising for Coxnet. On the other hand, the tree-based
predictors are non-linear and should be able to learn donor-recipient HLA
compatibilities, so it is somewhat surprising that RSF and GB also perform
worse. We discuss some possibilities below when considering HLA pairs.

For RSF, notice that including HLA types leads to a C-index even lower
than just using the basic feature set. This does not happen with Coxnet or
GB and leads us to consider target encoding approaches for the HLA types
when using RSF, which we discuss in Section [6.2]

The p-values for Coxnet and GB suggest that, when HLA types are added
to basic features, there is a statistically significant improvement in test set
accuracy when measured using the C-index, but not the mean AUC. This
may be due to the algorithms’ hyperparameters being optimized using C-
index rather than mean AUC.

HLA Pairs Unlike with HLA MM, the results with HLA pairs vary by
model. The inclusion of all HLA pairs benefits the Coxnet more than any
other feature. Since it is linear in the features, it requires HLA pair features
in order to learn compatibilities between donor and recipient HLAs. It is also
robust to overfitting in high dimensions due to the elastic net penalty. Thus,
it is not surprising the HLA pairs lead to the highest C-index for Coxnet.

On the other hand, the nonlinear predictors behave differently as they see
a minimal gain (GB) or even a significant decrease (RSF) in accuracy from
the inclusion of all HLA pairs. This indicates that the high dimensionality
may cause a problem for tree-based predictors, particularly for the RSF. The
high dimensionality results from the one-hot-like encoding mechanism we are
using for HLA pairs, which can be disadvantageous for trees because it splits a
single categorical variable into multiple variables, potentially requiring many
splits for a single categorical variable with a large number of categories. When
restricting to just the most frequent HLA pairs, resulting in a much smaller
number of HLA pair features (180 compared to over 3,600), the accuracy
of GB now increases rather than decreases, and results are mixed for RSF
(decrease in C-index but increase in mean AUC).
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Table 4: RSF type feature set mean survival prediction accuracy using only
pre-transplant covariates across 10 different data splits for different HLA type
encodings. Best encoding version is listed in bold for each metric.

HLA Type Encoding C-index p-value Mean AUC p-value
Binary 0.630 - 0.654 -
Target (Regression-based) 0.633  0.006 0.652 1
Target (Classification: 1 year)  0.630 1 0.651 1
Target (Classification: 5 years) 0.633  0.006 0.652 1
Target (Classification: 10 years) 0.633  0.006 0.653 1
Target (Classification: 15 years) 0.633  0.006 0.653 1

Target (Classification: 20 years) 0.634  0.006 0.655 0.316

All The accuracy when all features are included seems to be similar to that
of including all HLA pairs, which contribute the highest number of features.
Both Coxnet and GB have statistically significant improvements when using
all features compared to the basic feature set.

6.2 Effects of Target Encoding

We saw in the previous section that the addition of binary-encoded HLA
types has a negative impact on RSF’s performance due to its high dimen-
sionality. We compare the accuracy of RSF using different target encodings
for the HLA types to that of the binary encoding. To formalize the com-
parison as a statistical test, we consider the following null and alternative
hypotheses:

Hnull : Mbinary = Mtarget Vs. Halternative : Mbinary < Mtarget;

where M denotes the median accuracy metric (C-index or mean AUC) over
the 10 data splits. The p-values are computed using the Wilcoxon signed
rank test with Bonferroni correction in the same manner as described in
Section The differences between the C-indices of the target encodings
and the binary encoding are shown in

The type feature set test accuracy using the proposed regression and
classification-based target encoding approaches is shown in Table 4l The C-
index values for the binary and target-encoded type set test accuracy suggests
that both target encoding approaches can improve RSF’s predictive power.
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Table 5: Survival prediction accuracy using pre- and post-transplant covari-
ates. Best feature set for each predictor and each metric is listed in bold.

Coxnet Random Surv. Forest Gradient Boosting
Feature Set  C-index Mean AUC C-index Mean AUC C-index Mean AUC
Basic 0.665 0.673 0.676 0.690 0.677 0.687

MM (total)  0.667  0.678  0.676 0.692 0.678  0.690
MM (A-B-DR) 0.667  0.678  0.676  0.693  0.678  0.689

Types 0.666 0.672 0.667 0.687 0.678 0.686
Pairs 0.667 0.677 0.658 0.681 0.677 0.688
Freq. pairs 0.667 0.677 0.669 0.687 0.678 0.689
All 0.667 0.677 0.654 0.680 0.677 0.687

The p-values also indicate that there is a statistically significant improvement
for the C-index of target encoding (except for the 1-year classification). The
mean AUC, on the other hand, does not improve, which could again be due
to the hyperparameters being optimized using C-index.

6.3 Prediction with Post-transplant Covariates

When we include also the post-transplant covariates, for all models, the
C-index and mean cumulative/dynamic AUC improve by about 0.03-0.04
compared to using only pre-transplant covariates. The highest C-indices
are 0.667, 0.676, and 0.678 for Coxnet, random survival forest and gradient
boosting, respectively, as shown in Table [f] The results indicate that inte-
grating post-transplant covariates tremendously helps the survival prediction
algorithms improve their accuracy, as one might expect.

The trends across HLA feature representations are roughly the same as in
the pre-transplant case, although the relative improvement in accuracy when
including the HLA features is slightly lower compared to using only pre-
transplant features. This is reasonable because the post-transplant covariates
carry information about how the recipient’s immune system is responding to
the transplant, which is what the HLA features aim to predict in the pre-
transplant setting.
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7 Related Work

A broad group of studies has used data-driven statistical models to predict
graft survival times or measure risk factors’ impact on graft survival. Prior
work includes multivariate analysis using Cox proportional hazards (Cox PH)
models with a small number of covariates [24], [33] 3]. There has been more
recent work on machine learning-based survival analysis applied to kidney
transplantation, including an ensemble model that combines Cox PH models
with random survival forests [I8] and a deep learning-based approach [17].

Our results compare favorably to prior studies [24) 33] [3, [I7] using the
same SRTR data we use in this study. Each study differs in inclusion criteria,
time duration, and several other factors that prevent a direct comparison;
however, we include their reported results here for reference. Two older
studies [24] and [33] using Cox PH models without regularization achieved
C-indices of 0.62 and 0.61, respectively. A more recent study also using a
Cox PH model with only pre-transplant covariates [3] including HLA MM
achieved a C-index of 0.64; however, their study included both living and
deceased donors while ours considers only deceased donors. Transplant out-
comes with living donors are much more favorable [3], which may result in
easier prediction. Another recent study [I7] used a deep learning approach
applied to both pre- and post-transplant covariates to achieve a C-index of
0.655, less than the 0.676 we achieved.

Several other recent studies have focused on prediction of patient survival
rather than graft survival, with [I6] and [I8] achieving C-indices of 0.70
and 0.724, respectively. Prediction of patient survival is much easier than
prediction of graft survival, which we focus on in this paper. For example,
[33] considered both patient and graft survival and achieved a C-index of
0.68 for patient survival compared to 0.61 for graft survival. We also argue
that graft survival is the more relevant clinical endpoint, as a patient who
survives a transplant but suffers a graft failure will require a re-transplant
and returns to the waiting list.

8 Significance and Impact

Transplantation outcome prediction is instrumental for clinical decision-making,
as well as allocation policy development. The kidney allocation policy by
the OPTN was developed to encourage fairness (equal access to treatment)
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and effectiveness (the longest predicted survival) [12] in transplantation. In-
formed clinical decision making allows for avoidance of high-risk transplants
and thus reduces number of graft losses. However, accurate prediction of
transplant outcomes remains a daunting challenge due to the high complex-
ity of human biology.

In addition, failure to account for complexities of HLA results in unin-
tended consequences in transplantation. As such, OPTN’s good intention to
promote HLA matching initially resulted in de facto discrimination against
African Americans, whose HLA gene locus is highly diverse and who there-
fore were not selected for transplantation as frequently as Caucasians and
other races [34]. The requirement for HLA matching was later relaxed, but
the problem of racial disparities in access to high-quality transplants persists
until today [31]. By modifying our approach to HLA immunogenicity quan-
tification, adding biologically-relevant representations of HLA, we attempt
to build improved models for transplant outcome prediction, which may help
address the pressing problem of poor long-term transplantation outcomes.

Addition of HLA features improves our predictive model and presents
clinical interest for two reasons. First, physicians are most comfortable mak-
ing decisions with HLA information at hand. There is a growing consen-
sus in the transplantation field that HLA is a critical consideration for pre-
transplant patient evaluation [22]. In the U.S., nationwide sharing of fully
HLA-matched kidneys is mandated in certain situations, and transplant cen-
ters typically require labs to provide HLA information before a crossmatch
(a final pre-transplant test). Therefore, clinicians, governmental entities, and
payers who are interested in predicting transplantation outcome are typically
interested in making sure HLA compatibility is factored into the model.

Second, due to the large size of the transplant waiting list and exorbitant
cost of pre-transplant kidney replacement therapy, even a small improvement
in post-transplant outcomes would result in large economic and social impact
over time, as was described in simulations by Segev et al. [28]. They showed
that as much as $750 million could be saved if transplant rates were to
improve by 5.7% in a 4,000 patient pool. It would require a separate study to
quantify the impact of a 1% increase in prediction accuracy on long-term graft
survival, however, it is reasonable to think that implementation of improved
predictive models in transplant allocation would result in improvement in
transplant survival, with downstream societal impact. Our findings are thus
useful for assisting clinical decision making aimed at improving long-term
allograft survival.
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A Evaluation Metrics Across Data Splits

A.1 Effects of Feature Representations

The difference between the C-index of each feature set (Maugmented) and the
C-index of the basic feature set (Myasic) is shown in Figures for Coxnet,
random survival forest, and gradient boosting, respectively. Notice that,
for all the cases with p-value 0.006 from the Wilcoxon signed rank test,
Mugmented > Mhasic for all 10 data splits. While the improvement in C-index
from adding HLA features is small, it is consistent across the 10 data splits,
leading to the low p-values in Table [2|

In Tables [6] and [7, we compare the p-values computed by the Wilcoxon
signed rank test (the ones shown in Tables |2 and , respectively) with those
computed using a paired t-test. The p-values from the paired t-test are
lower, suggesting that the Wilcoxon signed rank test is more conservative
about rejecting null hypotheses.
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Table 6: Comparison of Wilcoxon signed rank test and paired t-test p-values

for C-index

Pairs

Frequent pairs

All

Difference between C-index of each feature set and C-index of
basic feature set on all 10 data splits for the Coxnet. For the Types feature
set, 9 of 10 splits result in improved C-index. For all other feature sets, all

Coxnet Random Surv. Forest Gradient Boosting

Wilcoxon t-test Wilcoxon — t-test ~ Wilcoxon t-test

MM (total) 0.006 0 0.006 0 0.012 0.001
MM (A-B-DR) 0.006 0 0.012 0.003 0.006 0

Types 0.012  0.001 1 1 0.006 0.001

Pairs 0.006 0 1 1 0.006 0.005
Freq. pairs 0.006 0 1 1 0.006 0

All 0.006 0 1 1 0.006 0.003
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Figure 6: Difference between C-index of each feature set and C-index of
basic feature set on all 10 data splits for Random Survival Forest. MM
(total) shows improved C-index in all 10 splits, while MM (A-B-DR) shows
improved C-index in 9 of 10 splits. All other feature sets result in decreased
C-index in all 10 splits.

Table 7: Comparison of Wilcoxon signed rank test and paired t-test p-values
for mean AUC

Coxnet Random Surv. Forest Gradient Boosting

Wilcoxon t-test Wilcoxon — t-test =~ Wilcoxon t-test
MM (total) 0.006 0 0.006 0 0.006 0
MM (A-B-DR) 0.006 0 0.018 0.007 0.006 0
Types 1 1 1 1 1 1

Pairs 0.006 0 1 1 0.012 0.001
Freq. pairs 0.006 0 0.006 0.001 0.006 0
All 0.006 0 1 1 0.006 0
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Gradient Boosting
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Figure 7: Difference between C-index of each feature set and C-index of basic
feature set on all 10 data splits for Gradient Boosting. MM (total) shows
improved C-index in 9 of 10 splits. All other feature sets show improved
C-index in all 10 splits.
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Figure 8: Difference between C-index of each target encoding approach and
C-index of binary encoding of Types feature set on all 10 data splits for ran-
dom survival forest. All encodings except the classification-based encoding
at 1 year (Classification_1) show improved C-index in all 10 splits.

A.2 Effects of Target Encoding

The difference between the C-index of each target encoding for HLA types
(Miarget) and the C-index of the binary encoding (Mpinary) is shown in Figure
for random survival forest. The improvement offered by target encoding is
consistent across all approaches except for the classification-based encoding
at 1 year.
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