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Abstract. Graph neural networks and other machine learning models
offer a promising direction for machine learning on relational and multi-
modal data. Until now, however, progress in this area is difficult to gauge.
This is primarily due to a limited number of datasets with (a) a high
enough number of labeled nodes in the test set for precise measurement
of performance, and (b) a rich enough variety of multimodal informa-
tion to learn from. We introduce a set of new benchmark tasks for node
classification on RDF-encoded knowledge graphs. We focus primarily on
node classification, since this setting cannot be solved purely by node
embedding models. For each dataset, we provide test and validation sets
of at least 1000 instances, with some over 10000. Each task can be per-
formed in a purely relational manner, or with multimodal information.
All datasets are packaged in a CSV format that is easily consumable in
any machine learning environment, together with the original source data
in RDF and pre-processing code for full provenance. We provide code for
loading the data into numpy and pytorch. We compute performance for
several baseline models.

Keywords: Knowledge graphs · Machine learning · Message passing
models · Multimodal learning

1 Introduction

The combination of knowledge graphs and machine learning is a promising direc-
tion of research. In particular, the class of machine learning models known as
message passing models offer an interesting set of abilities [1,35]. These mod-
els operate by propagating information along the structure of the graph and
are trained end-to-end, meaning all information in the graph can potentially be
used if it benefits the task. Even the contents of the literals may be used by
attaching encoder networks to learn how literals should be read, leading to an
end-to-end model for multimodal learning on knowledge graphs. The message
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passing framework is also a promising direction for interpretable machine learn-
ing, as the computation of the model can be directly related to the relational
structure of the data [9].

Unfortunately, the progress of message passing models and related machine
learning approaches has been difficult to gauge due to the lack of high quality
datasets. Machine learning on knowledge graphs is commonly evaluated with
two abstract tasks: link prediction and node labeling. In the latter, the model is
given the whole graph during training, together with labels for a subset of its
nodes. The task is to label a set of withheld nodes with a target label: a class
for node classification or a number for node regression.

While link prediction is probably more popular in recent literature, node
labeling is more promising for developing message passing models. In link pre-
diction, it is not clear whether message passing models offer an advantage over
embedding models on currently popular benchmarks, without a considerable
increase in computational requirements. In node labeling, however, the task can-
not be solved from node embeddings alone. In some way, the deeper structure
of the graph needs to be taken into account, making it a better testing ground
for message-passing algorithms such as R-GCNs [28] and R-GATs [6].

In this work, we specifically focus on knowledge graphs that are built on
top of the Resource Description Framework (RDF). The most common datasets
used in node classification on such knowledge graphs are the AIFB, MUTAG,
BGS and AM datasets, which were first collected and published for this purpose
in [22]. Their details are given in Table 1. These datasets are well suited to
message passing methods since they are relatively small, allowing a message
passing model to be trained full-batch so that we can gauge the performance of
the model independent of the influence of minibatching schemes. However, this
small size of the graphs also means a small number of labeled instances, and, in
particular, a small test set, sometimes with less than 50 instances.

While limited training data is often a cause for concern in machine learning,
limited test data is usually the greater evil. With limited training data, we may
have a model that fails to perform well, but with limited test data we cannot
even tell how well our model is performing. In statistical terms: a performance
metric like accuracy is an estimate of a true value, the expected accuracy under
the data distribution, based on a sample from that distribution; the test set.
The larger that sample, the more accurate our estimate, and the smaller our

Table 1. The currently most commonly used benchmark datasets for node classifica-
tion.

Dataset AIFB MUTAG BGS* AM*

Entities 8285 23644 87688 246728

Relations 45 23 70 122

Edges 29043 74227 230698 875946

Labeled 176 340 146 1000

Classes 4 2 2 11
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Fig. 1. The size of a 95% confidence interval around an estimate of accuracy for a
two-class problem, with test sets of 100, 1000 and 10000 instances. Note that 10000
instances are required before we can tell apart all estimates that differ by 0.01.

uncertainty about that estimate. Figure 1 shows the size of the 95% confidence
intervals for different test set sizes on a balanced binary classification problem.
We see that only at 10000 instances do we have sufficient certainty to say that
a model with a measured accuracy of 0.94 is most likely better than one with a
measured accuracy of 0.93. The test set sizes in Table 1 do not allow for anything
but the most rudimentary discrimination.

Additionally, while these datasets provide some multimodal data in the form
of literals, these literals are usually not annotated with datatypes, whereas their
modalities remain restricted to simple strings containing natural language, or
structured information like numerical values and dates. Richer multimodal infor-
mation like images, audio, or even video would present a more exciting challenge
for the possibility of integrating such data in a single end-to-end machine learn-
ing model.

To overcome these problems, we introduce kgbench: a collection of evaluation
datasets for node labeling on knowledge graphs. Each dataset comes with a test
set of between 2000 and 20000 labeled nodes, allowing for precise estimates of
performance.

Each dataset can be used in two different ways. In the relational setting,
each node is treated as an atomic object, with literals considered equal if their
lexical content is equal. This mode can be used to evaluate relational machine
learning models, as in [6,23,28]. In the multimodal setting, the content of
literal nodes is taken into account as well, as described in [34,35]. In addition,
each dataset can also be used to evaluate link prediction models with by ignoring
the node labels (see Sect. 2.3 for details).

The datasets are offered as RDF, with each dataset packaged both in N-
Triples and in HDT [10] format. Additionally, since loading RDF into machine
learning environments can be non-trivial, we offer pre-processed versions of each
dataset, which contain integer indices for all nodes and relations in the graph.
These are stored as a set of CSV files, to ensure that they can be directly read by
a large number of machine learning libraries. We also provide explicit dataloading
code for Numpy and Pytorch, as well as scripts to converts any RDF-encoded
knowledge graph to this format.
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All data and code is hosted on Github.1 To ensure long term availability and
to provide a permanent identifier, snapshots are also hosted on Zenodo.2 Each
dataset is licensed under the most permissive conditions allowed by the licenses
on the source datasets.

1.1 Related Work

Similar efforts to ours include: CoDEx [25], a link prediction benchmark includ-
ing multilingual literals, and RichPedia [32], a large-scale multimodal knowledge
graph with no specific machine learning task attached. Other link prediction
research has included new benchmark data [15,30]. Our datasets are, to the best
of our knowledge, the first node labelling benchmarks that focus on large test
set size and multimodal learning. In [22], node labeling tasks on large knowl-
edge graphs are included, but the number of total instances in the dataset never
exceeds 2000, and canonical snapshots of the knowledge graphs are not provided.

The field of knowledge graph modeling by machine learning methods can
be divided into two main camps: pure embedding methods, which learn node
embeddings directly, and message passing approaches, which learn from the
graph structure more explicitly. For pure embedding methods, [24] serves as a
good overview of the state of the art. Message passing methods are popular [1],
but in the specific domain of knowledge graphs there has been less progress, with
R-GCNs [28] and R-GATs [6] as the main approaches. Other approaches include
kernel methods [7] and feature-extraction approaches [23].

2 Method

In this section we detail the main design choices made in constructing the tasks
and datasets in kgbench. Our data model in all cases follows RDF. That is, a
knowledge graph is defined as a tuple G = (V,R,E), with a finite set of nodes
V , a finite set of relations R and a finite set of edges (also known as triples)
E ⊆ V ×R×V . The nodes in V can be atomic entities,3 or literals, defined by a
string which is optionally tagged with a datatype annotation (an IRI expressing
the type of data) or a language tag.

2.1 Desiderata

A good machine learning benchmark must satisfy a large number of constraints.
We have focused primarily on the following.

Large test sets. A large test set is essential for accurate performance estimates.
This is our primary concern.

1 https://github.com/pbloem/kgbench.
2 Details, including DOIs, under the following references amplus [3], dmgfull and
dmg777k [36], dblp [4], mdgenre and mdgender [2].

3 Entities may be resources, identified by an IRI, or blank nodes.

https://github.com/pbloem/kgbench
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Manageable graph size. A small benchmark dataset allows for quick evalua-
tion of hypotheses and quick iteration of model designs, and keeps machine
learning research accessible.

Small training sets. Keeping the number of training instances relatively low
has several benefits: it leaves more instances for the validation and test sets,
and it makes the task more difficult. If the instances are more sparsely labeled,
models are forced to use the graph structure to generalize. It is common prac-
tice, once hyperparameter tuning is finished, to combine the training and val-
idation sets into a larger training set for the final run. Normally this conveys
only a very small extra advantage. In our case, adding the validation data
often has a very large effect on how easy the task becomes, and which struc-
ture can be used to solve. For this reason, in our tasks, practitioners
should only ever train on the training data, no matter what set is
being evaluated on.

Multimodal literals. Where possible we offer literals of multiple modalities.
We annotate existing strings with datatypes and language tags, and add
images and spatial geometries. These are placed into the graph as literals
rather than as hyperlinks, making the dataset self-contained.

2.2 Data Splitting and Layout

Each dataset provides a canonical training/validation/test split. We also split off
a meta-test set if the data allows. This is an additional set of withheld data. It
serves as an additional test set for review studies over multiple already-published
models. This provides the possibility to test for overfitting on the test set if
the dataset becomes popular. Any practitioner introducing a single new
model or approach, should ignore the meta-test set.4

Each dataset is provided as an RDF graph, with the target labels kept in
separate files. We emphatically choose not to include the target labels in the
dataset, as this would then require practitioners to manually remove them prior
to training, which creates a considerable risk of data leakage.

Preprocessing. The most common preprocessing step for relational machine
learning is to map all relations and nodes to integer indices. We have prepro-
cessed all datasets in this manner and provided them as a set of CSV files (in
addition to the original RDF). While a collection of CSV files may not be in
keeping with the spirit of the Semantic Web, this format greatly facilitates read-
ing the data into any data science or machine learning software, without the
need to parse RDF or load the data into a triple store.

This format also allows practitoners to choose between the relational and
multimodal setting in a simple manner. If only the integer indices are read,
then the data is viewed purely from a relational setting. The mappings from the

4 It is common practice to not publish the meta-test set to ensure that it is not used
by practitioners until it is necessary. In our case this makes little sense, since the
meta-test set could easily be derived from the available raw data manually.
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1 @prefix : <http://kgbench.info/dt#> .

2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

4

5 :base64Image a rdfs:Datatype ;

6 rdfs:subClassOf xsd:base64Binary ;

7 rdfs:label "Base64-encoded image"@en ;

8 rdfs:comment "An image encoded as a base64 string"@en .

9

10 :base64Video a rdfs:Datatype ;

11 rdfs:subClassOf xsd:base64Binary ;

12 rdfs:label "Base64-encoded video"@en ;

13 rdfs:comment "A video encoded as a base64 string"@en .

14

15 :base64Audio a rdfs:Datatype ;

16 rdfs:subClassOf xsd:base64Binary ;

17 rdfs:label "Base64-encoded audio"@en ;

18 rdfs:comment "An audio sequence encoded as a base64 string"@en .

Listing 1.1. A small ontology (kgbench.info/dt.ttl) for base64-encoded image, audio,
and video.

integer indices to the string representations of the nodes provide the multimodal
layer on top of the relational setting.

2.3 Link Prediction

Our focus is node labeling, but since link prediction is an unsupervised task,
each of our datasets can also be used in link prediction, both for purely relational
settings and for multimodal settings. In such cases, we suggest that the following
guidelines should be followed:

– The triples should be shuffled before splitting. The validation, test, and meta-
test set should each contain 20000 triples, with the remainder used for train-
ing. We include such a split for every dataset.

– In contrast to the node labeling setting, we do not enforce limited training
data. The final training may be performed on the combined training and
validation sets, and tested on the test set.

– Practitioners should state that the data is being adapted for link prediction,
and whether the dataset is being used in relational or in multimodal setting.

2.4 Expressing Binary Large Objects

No convention currently exists for encoding images, videos, or audio in literals.
A convention in the realm of relational databases is to store complex datatypes
as Binary Large OBjects (BLOBs). Here, we chose to adopt this convention by
encoding binary data in base64 encoded string literals. The conversion to and
from binary data is well supported by many popular programming languages.

To express that a certain string literal encodes a complex type it should be
annotated as such using a suitable datatype. The straightforward choice for this
datatype would be xsd:base64Binary. However, this does little to convey the

http://kgbench.info/dt.ttl
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Table 2. Statistics for all datasets. We consider a dataset “GPU friendly” if the R-
GCN baseline can be trained on it with under 12 GB of memory and “CPU-friendly” if
this can be done with under 64 GB. mdgender is not meant for evaluation (see Sect. 5).

Dataset amplus dmgfull dmg777k dblp mdgenre mdgender*

Triples 2521046 1850451 777124 21985048 1252247 1203789

Relations 33 62 60 68 154 154

Nodes 1153679 842550 341270 4470778 349344 349347

Entities 1 026162 262494 148127 4231513 191135 191138

Literals 127517 580056 192143 239265 158209 158209

Density 2·10−6 3·10−6 7·10−6 1·10−6 1·10−5 1·10−5

Degree Avg 4.37 4.47 4.53 9.83 7.17 6.89

Min 1 1 1 1 1 1

Max 154828 121217 65576 3364084 57363 57363

Classes 8 14 5 2 12 9

Labeled Total 73423 63565 8399 86535 8863 57323

Train 13423 23566 5394 26535 3846 27308

Valid 20000 10001 1001 20000 1006 10005

Test 20000 20001 2001 20000 3005 10003

Meta 20000 10001 20000 1006 10007

Source [5] see text [21,29,31] [12,31] [12,31]

GPU friendly � �
CPU friendly � � � � �
Datatypesa

Numerical 8 418 64184 8891 1387 1387

Temporal 6 676 463 290 37442 37442

Textual 56202 340396 117062 239265 51852 51852

Visual 56130 58791 46061 67528 67528

Spatial 116220 20837
a Numerical includes all subsets of real numbers, as well as booleans, whereas date, years,

and other similar types are listed under temporal information. Textual includes the set

of strings (possibly without datatype, its subsets, and raw URIs (e.g. links). Images and

geometries are listed under visual and spatial information, respectively

type of information which it encodes, which makes it difficult to build machine
learning models that distinguish between these types. To accommodate this dis-
tinction, we instead introduce a small collection of datatype classes to annotate
binary-encoded strings in accordance with their information type (Listing 1.1).5

3 Datasets

Table 2 lists the datasets contained in kgbench and their basic statistics, as well
as an overview of the distribution of modalities per dataset. All datasets were
created by combining publicly available data sources, with no manual annotation.
Enrichment was limited to combining data sources, and annotating literals.
5 The same may be achieved with additional triples. While this would remove the need

for new datatypes, it would render the isolated literal meaningless. This contrasts
with most other datatypes, which still convey their meaning in isolation.
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Table 3. The class mapping for the amplus data. The original categories are translated
from their original Dutch names.

Original Class Frequency

Furniture, Glass, Textile, Ceramics, Sculpture, Arts & crafts Decorative art 25782

Prints Prints 22048

Coins & tokens, Archaeological artifacts, Measures & weights Historical artifacts 7558

Drawings Drawings 5455

Non-noble metals art, Noble metal art Metallic art 4333

Books, Documents Books & documents 4012

Paintings Paintings 2672

Photographs Photographs 1563

3.1 The Amsterdam Museum Dataset (amplus)

The Amsterdam Museum is dedicated to the history of Amsterdam. Its catalog
has been translated to linked open data [5]. The AM dataset, as described in
Table 1, is already established as a benchmark for node classification: the task
is to predict the type of a given collection item.

In the original version, the number of labeled instances is arbitrarily limited
to 1000, resulting in small test set sizes. We return to the original data and
make the following changes: we collect all collection items as instances, annotate
a large number of literals with the correct datatype, and insert images as base64
encoded literals. We also include only a subset of the relations of the original
data to make the dataset both small and challenging. Finally, we remap the
categories to a smaller set of classes to create a more balanced class distribution.
The mapping is given in Table 3.

The amplus data is provided under a Creative Commons CC-BY license.

3.2 The Dutch Monument Graph (dmgfull, dmg777k)

Like amplus, the Dutch Monument Graph (DMG) is a dataset from the Digi-
tal Humanities. Encompassing knowledge from several organizations, the DMG
contains information about 63566 registered monuments in the Netherlands.

Engineered with the goal of creating a highly multimodal dataset, the DMG
contains information in six modalities, five of which are encoded as literals. This
includes the often common numerical, temporal, and textual information, but
also visual information in the form of images, and, more uniquely, several dif-
ferent kinds of spatial information. Taken all together, these modalities provide
the monuments with a diverse multimodal context which includes, amongst other
things, a short title, a longer description, a construction date, the city and munic-
ipality it lies in, several images from different directions, a set of geo-referenced
coordinates, and a polygon describing its footprint.
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Five different knowledge graphs from four different organizations,6 were com-
bined to form the DMG. The information from these organizations was combined
using entity resolution based on string comparison, matching municipality and city
names, as well as multi-part addresses. Once merged, the information was cleaned
and provided with accurate class and datatype declarations where missing.

The 777k -variant is a subset encompassing 8399 monuments created by sam-
pling monuments from the top-5 monument classes that have no missing values.
Both datasets are published under the CC-BY license.

3.3 The Movie Dataset (mdgenre, mdgender)

The Movie datasets are subsets of Wikidata [31] in the movie domain. We select
any movies that are recorded as ever having won or been nominated for an award.
Every person affiliated with any of these movies is also selected if the relation
between the movie and the person is in a whitelist.

This whitelist consists of relations that satisfy the conditions that 1) every
relation needs to have a Wikidata prefix, and 2) the relations do not direct
to an identifier tag outside of Wikidata. Every triple that contains a movie or
individual on their respective lists and a relation on the whitelist is extracted.
This creates a graph that is centred around movie-related data with a longest
path of 4 hops.

The main objective of this dataset is to predict the genre of the movies. Movies
can have multiple genres, which is not practical when creating a single-label clas-
sification problem. Therefore, movies are assigned a genre based on a solution to
the Set Cover Problem, which was derived using [38]. Each movie is assigned a sin-
gle genre of which it already was part. This simplifies the multi-label classification
objective to a multiclass classification objective. Additionally, the Movie Datasets
also contain a gender objective, which we include as a sanity check as the objective
is considered easier compared to the genre objective (see Sect. 5 for a discussion).
As the classification in the Wikidata knowledge base is already suitable for multi-
class classification, no further constraining as with the genres is necessary.

We download thumbnail images from URLs in Wikidata and include these
as base64-encoded string literals. We also include thumbnails of images in the
Internet Movie Database (IMDb) by matching the IMDb-identifier in Wikidata.

The relational data in these datasets is taken from Wikidata, and provided
under the same CC0/Public domain license that applies to Wikidata. For 40449
out of the 68247 images in this dataset, we extracted thumbnails from larger
images published by IMDb. The copyright of the original images resides with
their producers. We assert no rights on this part of the data for redistribution or
use outside non-commercial research settings. The remainder of the thumbnails
is taken from the Wikimedia repository, and distributed under the individual
license of each image.

6 (1) the Dutch Cultural Heritage Agency, www.cultureelerfgoed.nl, (2) the Dutch
Cadastre, Land Registry and Mapping Agency, www.kadaster.nl, (3) Statistics
Netherlands, www.cbs.nl, and (4) Geonames, www.geonames.org.

www.cultureelerfgoed.nl
www.kadaster.nl
www.cbs.nl
www.geonames.org
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3.4 The DBLP Dataset (dblp)

The DBLP repository [29] is a large bibliographic database of publications in the
domain of computer science. This was converted to RDF under the name L3S
DBLP, of which we used the HDT dump7. To provide a classification task on
this data we extracted citation counts from the OpenCitations project [21] using
the REST API. We checked all DOIs of papers in the DBLP dump, giving us a
set of 86535 DOIs that are present in both databases. These are our instances.

We also extract information from Wikidata about researchers. We use the
XML dump of DBLP [29] to extract ORCiDs, which allows us to link 62774
people to Wikidata. For each person linked, we extract triples from the one-hop
neighborhood in Wikidata. We use 24 relations from the DBLP data and 44
relations from Wikidata.

Since we are focusing on classification tasks, we turn the prediction of the
citation count into two classes: those papers which received one citation, and
those which received more (due to the skewed distribution this the closest to a
median-split). We have also preserved the original citation counts in the data, so
the task can also be treated as a node regression task. This dataset is provided
under a CC0/Public domain license.

4 Code and Baselines

In addition to the datasets in their RDF and CSV formats, we also provide scripts
to convert any arbitrary RDF-encoded graph to our CSV format. To import these
datasets into a machine learning workflow, we further provide a small Python
library that loads any dataset that makes use of our CSV format into a object
containing Pytorch [20] or Numpy [19] tensors, together with mappings to the
string representations of the nodes. This provides both a utility sufficient for the
majority of current machine learning practice, and a reference implementation
for any setting where such a dataloader does not suffice.

In addition to the new datasets of Table 2, the repository also includes legacy
datasets aifb and the original Amsterdam Museum data, named am1k here.
These are useful for debugging purposes.

The dataloader allows the data to be loaded in a single function call. It also
provides utility functions for pruning the dataset to a fixed distance around the
instance nodes, and for re-ordering the nodes so that the datatypes are ordered
together (which may reduce expensive tensor indexing operation in implementing
multimodal models). We also provide three baseline models as reference for how
to use the data in practice:

Features. This model extracts binary graph features about the set of triples
incident to the instance node, which are then used by a logistic regression
classifier. Over the whole set of training instances, all of the following binary
features are considered: (a) whether a particular predicate p is present or

7 Available at https://www.rdfhdt.org/datasets/.

https://www.rdfhdt.org/datasets/
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Table 4. Performance of baselines on the datasets in the collection. The R-GCNs could
not be trained on dblp in under 64 Gb of memory.

Setting Baseline amplus dmgfull dmg777k dblp mdgenre

Relational Features 0.72 0.73 0.42 0.72 0.66

R-GCN 0.77 0.71 0.70 - 0.63

Multimodal MR-GCN 0.86 0.76 0.57 - 0.62

not, (b) whether a particular predicate is present in a specific direction, i.e.
outgoing or incoming, and (c) whether a particular predicate, in a particular
direction, connects the instance node to a specific node n. For all collected
features, the information gain is computed for splitting the training instances
on that feature. The k features with the highest information gain are kept
and used to train a classifier.

R-GCN. The default classification R-GCN model [28]. It contains two R-GCN
layers that are fed with a one-hot encoding of the nodes, which is mapped, via
a hidden layer, to class probabilities. By default, a hidden size of 16 is used,
with a basis decomposition of 40 bases. This baseline is purely relational, and
ignores multimodal information.

MR-GCN. We provide a stripped-down version of the MR-GCN model [34].
Unlike the original, this model does not train its feature extractors end-to-end,
which means that no backpropagation is needed beyond the R-GCN layer,
saving memory. The literal features are extracted by pretrained models: a
Mobilenet-v2 [26] for the images and DistilBERT [27] for literals. After feature
extraction, the features are scaled down to a uniform input dimension d by
principal component analysis.

4.1 Baseline Performance

Table 4 shows the accuracies of the three baseline models on the datasets in
kgbench. The R-GCN models were trained for 50 epochs with default hyperpa-
rameters. That is, a two-layer model, with ReLU activation and a hidden size
of 16. Training was done full-batch for 50 epochs with the Adam optimizer with
default parameters and a learning rate of 0.01. A 0.5·10−3 L2 penalty was applied
to the weights of the first layer. The features baseline was run with k = 2000
and a logistic regression classifier with no regularization.

These numbers should be taken as broad baselines for how default models
perform on these datasets, and not as the last word of the performance of, for
instance, the R-GCN. It may well be possible to achieve better performance
with more extensive hyperparameter tuning, a different architecture, or more
training epochs. In particular, the MR-GCN used here is likely considerably less
performant than the fully end-to-end version.
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5 Discussion

While only a small proportion of benchmarks datasets that are published achieve
broad community-wide uptake, those that do ultimately have a profound impact
on the direction in which technology is developed. A dataset like ImageNet [8]
was developed in a time when no models were available that could solve the task,
but it is now commonly used to pretrain computer vision models that are widely
distributed and used in production systems. Even a dataset like FFHQ [13],
which was specifically compiled with diversity and representation in mind has
led to pre-trained models that contain bias, which is ultimately exposed in down-
stream applications [17].

For this reason we consider it wise to discuss both the biases present in the
data and the implications of setting certain labels as training targets.

5.1 Bias in Training Data

A common source of discussion in AI Ethics is the bias present in training data,
especially where the representation of people is concerned [16]. A case in point
are the mdgenre and dblp datasets, which both contain the “Sex or Gender”
property of Wikidata.8 In the former, a disproportionate number of the actors
in the data are men. While this may be an accurate reflection of a bias in the
world,9 it means that actions taken based on the predictions of a production
model trained on this data, may end up amplifying the data biases.

We have chosen not to de-bias the data for various reasons. First, we can
only correct for the biases for which we have attributes (such as sex, gender,
race, or religion). Second, even if we resample in this way, the biases may still
manifest, for instance in the completeness of the data for men and women.
Finally, debiasing the data ourselves, by a fixed strategy removes the possibility
of investigating the debiasing method itself.

In short, we take it as a given that the data is biased. Since the data was
largely retrieved completely as found in the wild, with only crude filtering based
on node neighborhoods and relation whitelists, we may assume that these biases
are reflective of the biases in real-world data. This may be used to study data
bias in knowledge graphs, but any model trained on these datasets should not
be put into production without careful consideration.

5.2 Choice of Target Relations

In all cases, our primary reasons for setting a particular target relation are tech-
nical. It is challenging to find a set of classes that are well-balanced, offer a large
amount of instances, and provide a challenging task. Moreover, in the multi-
modal setting, a variety of literals with different modalities must be available,
all of which can be shown to contribute to the task.
8 https://www.wikidata.org/wiki/Property:P21.
9 Even this is not a given. In many cases, the models themselves also amplify the

biases present in the data [37].

https://www.wikidata.org/wiki/Property:P21
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This narrow range of requirements can lead difficult choices: in our search for
suitable targets, we noted that the category “Sex or gender” in Wikidata, satis-
fied our technical requirements very well. However, training a model to predict
this relation is to train (in part) a gender classifier, which is a controversial sub-
ject [11]. The following reasons have been posed for why such classifiers would
be undesirable:

– Both sex and gender are not well captured by binary categories. Even the
range of 36 categories offered by Wikidata (of which 8 are present in the
Movie data) is unlikely to capture the spectrum of possibilities.

– People with gender identities outside the male/female categorization are at
risk of oppression or discrimination. An oppressive regime may abuse gen-
der and sex classifiers for large scale detention or prosecution. While there
are currently no such systems employed to our knowledge, such practices do
already exist in the related cases of race and ethnicity classification [18].

– The possibility of gender classification from external features may falsely
imply a strong or causal relationship. Here, a comparable case is [14,33],
where a classifier was built to predict sexual orientation. Besides the possi-
bilities for abuse noted previously, such classifiers are often misinterpreted as
showing strong causal links, for instance between physical features and the
target class. In fact, all that can really be inferred is a weak correlation, which
may well be based on incidental features, such as lighting, or personal choices
such as clothing and make-up.

On the other hand, the inclusion of sex and gender as features in the data is
important for the study of algorithmic bias. Simply removing the sex or gender
attribute as a target class, but not as a feature of the data, also does not circum-
vent these issues. In a link prediction setting rather than a node labeling setting,
every relation in the data becomes both feature and target. In such settings the
two cannot be separated, and the problem remains.

Ultimately, we have chosen to include the dataset, with the “Sex or gender”
attribute in place. We urge that practitioners use these datasets with care. For
the gender-prediction task mdgender itself, we recommend strongly that this
dataset be used only as a test case in development,10 and not to report model
performance in general settings, unless the task at hand is specifically relevant
to the issue of sex or gender bias.

6 Conclusion

In this work, we have introduced a collection of multimodal datasets for the pre-
cise evaluation of node classification tasks on RDF-encoded knowledge graphs.
10 The task in its current setup is too easy to serve as a good benchmark (which we

have deliberately refrained from fixing). However, it is unique among these datasets
in offering a strong guarantee that the images can be used to predict the target label
with good accuracy. This property may be useful in debugging models, which can
then be evaluated on the other tasks.
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All datasets are available on GitHub and Zenodo in N-Triples and HDT format.
Also provided are CSVs with an integer-to-label mapping, which can be loaded
into Numpy and Pytorch by using the provided dataloader code. To support
images, videos, and audio sequences, we also introduced a modest ontology to
express these datatypes as binary-encoded string literals. For all datasets, we
demonstrated their performance using several baseline models.

6.1 Limitations

To add extra modalities to our data, we have relied primarily on images. Other
modalities are available: for instance Wikidata contains a rich collection of audio
clips which provide an additional modality. Even small videos might be suitable.

An important consideration in constructing our graphs was to keep the total
size of the graph relatively small. This means that the graphs presented here
paint a slightly simplified image of real-world knowledge graphs. A model that
performs well on these graphs can most likely not be applied directly to knowl-
edge graphs found in the wild, as these will have magnitudes more relations, and
relevant information stored more steps away from the instance nodes.

6.2 Outlook

To stimulate adoption of the benchmark, we have aimed to offer a simple and
unambiguous way to load the data (including baseline implementations for ref-
erence) and to host the data in multiple, redundant places (Zenodo and Github).
As the data is used, we will offer a leader board on the Github page to track top
performance and collect papers making use of the data.

The ultimate test of a benchmark task is whether it can be solved. In cases
like speech-to-text, we can use human performance as an upper bound, but in
a relational learning setting this is difficult to measure. Our baseline tests show
that simple baselines reach low, but above-chance performance, with plenty of
room for growth. It is difficult to establish what the performance ceiling is,
but we hope that by providing a good number of datasets, we increase the
probability that one of them will turn out to contain that particular trade-off
between difficulty and simplicity that typifies the most enduring benchmark
tasks.

Our ultimate hope is that these benchmarks stimulate more principled
research towards models that learn end-to-end from relational and multimodal
data, and that such models help to bridge the gap between statistical and sym-
bolic forms of knowledge representation.
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