Skip to main content

Pay-as-you-go Population of an Automotive Signal Knowledge Graph

  • Conference paper
  • First Online:
  • 2478 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12731))

Abstract

Nowadays, cars are equipped with hundreds of sensors that support a variety of features ranging from basic functionalities to advanced driver assistance systems. The communication protocol of automotive signals is defined in DBC files, yet, signal descriptions are typically ambiguous and vary across manufacturers. In this work, we address the problem of extracting the semantic data from DBC files, which is then managed in an Automotive Signal Knowledge Graph (ASKG). We developed a semi-automatic tool that automatically extracts signals from DBC files and computes candidate links to the ontology. These candidates can then be revised by experts who can also extend the ontology to accommodate new signal types in a pay-as-you-go manner. The knowledge provided by the experts is stored in the ASKG and exploited by the tool thereafter. We conducted an evaluation of the tool based on a targeted experiment with automotive experts and report on the first lessons learned from the usage of the tool in the context of the Bosch automotive data lake. The results show that our solution can correctly populate the ASKG and that the expert effort is reduced over time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Vector Informatik GmbH. DBC Communication Database for CAN, https://www.vector.com/.

  2. 2.

    Developed semantic artifacts, the detailed setup of the evaluation experiment and its results are available at https://github.com/YuliaS/cannotator.

  3. 3.

    https://github.com/GENIVI/vehicle_signal_specification.

  4. 4.

    http://www.w3.org/ns/sosa/.

  5. 5.

    https://qudt.org.

  6. 6.

    From the article: https://en.wikipedia.org/wiki/Automotive_acronyms_and_abbreviations.

  7. 7.

    http://wordnet-rdf.princeton.edu/.

  8. 8.

    wn, wp, ex stand for the IRIs of WordNet, Wikipedia, and the example source, respectively.

  9. 9.

    https://query.wikidata.org/.

  10. 10.

    For hash-URIs/slash-URIs we consider the text after the hash/last slash.

  11. 11.

    https://github.com/commaai/opendbc, retrieved on Jul 27, 2020.

  12. 12.

    https://gitlab.com/ottr/lutra/lutra.

  13. 13.

    https://github.com/ericprud/shex-form.

  14. 14.

    https://www.w3.org/community/gao/.

References

  1. Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases. Semant. Web 8(3), 471–487 (2017)

    Article  Google Scholar 

  2. Chopard, D., Spasić, I.: A Deep Learning Approach to Self-expansion of Abbreviations Based on Morphology and Context Distance. In: Martín-Vide, C., Purver, M., Pollak, S. (eds.) SLSP 2019. LNCS (LNAI), vol. 11816, pp. 71–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31372-2_6

    Chapter  Google Scholar 

  3. Dietze, H., et al.: TermGenie–a web-application for pattern-based ontology class generation. J. Biomed. Semant. 5(1), 1–13 (2014)

    Google Scholar 

  4. Feld, M., Müller, C.A.: The automotive ontology: managing knowledge inside the vehicle and sharing it between cars. In: AutomotiveUI, pp. 79–86. ACM (2011)

    Google Scholar 

  5. Gangemi, A., Presutti, V.: Ontology design patterns. In: Handbook on Ontologies (2009)

    Google Scholar 

  6. Gupta, S., et al.: Karma: a system for mapping structured sources into the semantic Web. In: ESWC (2012)

    Google Scholar 

  7. Jupp, S., et al.: Webulous and the Webulous Google Add-On-a web service and application for ontology building from templates. J. Biomed. Semant. 7(1), 1–8 (2016)

    Google Scholar 

  8. Klotz, B., Troncy, R., Wilms, D., Bonnet, C.: VSSo: the vehicle signal and attribute ontology. In: SSN@ ISWC, pp. 56–63 (2018)

    Google Scholar 

  9. Ławrynowicz, A., Potoniec, J., Robaczyk, M., Tudorache, T.: Discovery of emerging design patterns in ontologies using tree mining. Semant. web 9(4), 517–544 (2018)

    Article  Google Scholar 

  10. Mami, M.N., et al.: Semantic data integration for the SMT manufacturing process using SANSA stack. In: ESWC (2020)

    Google Scholar 

  11. Motik, B., et al.: Owl 2 web ontology language: structural specification and functional-style syntax. W3C Recommendation 27(65), 159 (2009)

    Google Scholar 

  12. O’Connor, M.J., Halaschek-Wiener, C., Musen, M.A.: M2: a language for mapping spreadsheets to owl. In: OWLED, vol. 614 (2010)

    Google Scholar 

  13. Pakhomov, S., Pedersen, T., Chute, C.G.: Abbreviation and acronym disambiguation in clinical discourse. In: AMIA (2005)

    Google Scholar 

  14. Schmid, S., Henson, C., Tran, T.: Using knowledge graphs to search an enterprise data lake. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11762, pp. 262–266. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32327-1_46

    Chapter  Google Scholar 

  15. Skjæveland, M.G., Lupp, D.P., Karlsen, L.H., Forssell, H.: Practical ontology pattern instantiation, discovery, and maintenance with reasonable ontology templates. In: ISWC 2018

    Google Scholar 

  16. Volz, J., et al.: Silk-a link discovery framework for the web of data. In: LDOW, vol. 538 (2009)

    Google Scholar 

  17. Wright, J., Rodríguez Méndez, S.J., Haller, A., Taylor, K., Omran, P.G.: Schímatos: a SHACL-based web-form generator for knowledge graph editing. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 65–80. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_5

    Chapter  Google Scholar 

  18. Xiang, Z., et al.: Ontorat: automatic generation of new ontology terms, annotations, and axioms based on ontology design patterns. J. Biomed. Semant. 6, (2015). https://doi.org/10.1186/2041-1480-6-4

  19. Zhang, W., Sim, Y.-C., Su, J., Tan, C.-L.: Entity linking with effective acronym expansion, instance selection and topic modeling. In: IJCAI, Citeseer (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Heling .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 68 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Svetashova, Y., Heling, L., Schmid, S., Acosta, M. (2021). Pay-as-you-go Population of an Automotive Signal Knowledge Graph. In: Verborgh, R., et al. The Semantic Web. ESWC 2021. Lecture Notes in Computer Science(), vol 12731. Springer, Cham. https://doi.org/10.1007/978-3-030-77385-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77385-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77384-7

  • Online ISBN: 978-3-030-77385-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics