Skip to main content

Pseudo-haptic Perception in Smartphones Graphical Interfaces: A Case Study

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12770))

Abstract

Human-computer interaction is a characteristic that strongly influences the user experience in computer systems, especially Virtual Reality and Augmented Reality. The ability to perform tasks using various human sensory channels (e.g., vision, hearing and touch) can increase the efficiency of these systems. The term pseudo-haptic is used to describe haptic effects (for example, stiffness and viscosity) perceived in touch interaction without actuators. Such effects are generated by visual changes that can improve the user experience. Pseudo-haptic interaction can be created on devices, such as smartphones, with graphical interfaces and touch screens. This paper presents an experiment that uses six types of materials (real and virtual) to check the perception and measure the level of perception of users in relation to the pseudo-haptic effect of stiffness, when the task of pressing the material is performed. A comparison of the perception of each participant in relation to virtual materials was also performed when the effect is applied alone and when it is combined with the device’s vibration motor. The results showed that the pseudo-haptic effects are perceived by the participants and in most materials the level of stiffness is similar to that of real materials. The use of the vibration feature combined with the pseudo-haptic approach can mitigate the differences in perception between real and virtual materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Achibet, M., Girard, A., Talvas, A., Marchal, M., Lécuyer, A.: Elastic-arm: human-scale passive haptic feedback for augmenting interaction and perception in virtual environments. In: 2015 IEEE Virtual Reality (VR), pp. 63–68. IEEE (2015)

    Google Scholar 

  2. Achibet, M., et al.: Flexifingers: multi-finger interaction in VR combining passive haptics and pseudo-haptics. In: 2017 IEEE Symposium on 3D User Interfaces (3DUI), pp. 103–106. IEEE (2017)

    Google Scholar 

  3. Argelaguet, F., Jáuregui, D.A.G., Marchal, M., Lécuyer, A.: Elastic images: perceiving local elasticity of images through a novel pseudo-haptic deformation effect. ACM Trans. Appl. Percept. (TAP) 10(3), 1–14 (2013)

    Article  Google Scholar 

  4. Azmandian, M., Hancock, M., Benko, H., Ofek, E., Wilson, A.D.: Haptic retargeting: dynamic repurposing of passive haptics for enhanced virtual reality experiences. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1968–1979 (2016)

    Google Scholar 

  5. Ban, Y., Kajinami, T., Narumi, T., Tanikawa, T., Hirose, M.: Modifying an identified angle of edged shapes using pseudo-haptic effects. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7282, pp. 25–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31401-8_3

    Chapter  Google Scholar 

  6. Ban, Y., Kajinami, T., Narumi, T., Tanikawa, T., Hirose, M.: Modifying an identified curved surface shape using pseudo-haptic effect. In: 2012 IEEE Haptics Symposium (HAPTICS), pp. 211–216. IEEE (2012)

    Google Scholar 

  7. Ban, Y., Narumi, T., Tanikawa, T., Hirose, M.: Modifying an identified position of edged shapes using pseudo-haptic effects. In: Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology, pp. 93–96 (2012)

    Google Scholar 

  8. Ban, Y., Narumi, T., Tanikawa, T., Hirose, M.: Modifying an identified size of objects handled with two fingers using pseudo-haptic effects. In: ICAT/EGVE/EuroVR, pp. 1–8 (2012)

    Google Scholar 

  9. Ban, Y., Ujitoko, Y.: Enhancing the pseudo-haptic effect on the touch panel using the virtual string. In: IEEE Haptics Symposium 2018 (HAPTICS), pp. 278–283. IEEE (2018)

    Google Scholar 

  10. Berthoz, A.: Le sens du mouvement. Odile Jacob (1997)

    Google Scholar 

  11. Chubb, E.C., Colgate, J.E., Peshkin, M.A.: Shiverpad: a glass haptic surface that produces shear force on a bare finger. IEEE Trans. Haptics 3(3), 189–198 (2010)

    Article  Google Scholar 

  12. Congedo, M., Lécuyer, A., Gentaz, E.: The influence of spatial delocation on perceptual integration of vision and touch. Presence Teleoperators Virtual Environ. 15(3), 353–357 (2006)

    Google Scholar 

  13. Corrêa, C.G., Nunes, F.L., Ranzini, E., Nakamura, R., Tori, R.: Haptic interaction for needle insertion training in medical applications: the state-of-the-art. Med. Eng. Phys. 63, 6–25 (2019)

    Article  Google Scholar 

  14. Costes, A., Argelaguet, F., Danieau, F., Guillotel, P., Lécuyer, A.: Touchy: a visual approach for simulating haptic effects on touchscreens. Front. ICT 6, 1 (2019)

    Article  Google Scholar 

  15. Eid, M., Orozco, M., Saddik, A.E.: A guided tour in haptic audio visual environments and applications. Int. J. Adv. Media Commun. 1(3), 265–297 (2007)

    Article  Google Scholar 

  16. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002)

    Article  Google Scholar 

  17. Facebook Inc: Rebound (2020). https://facebook.github.io/rebound-js/. Accessed 25 June 2020

  18. Gaucher, P., Argelaguet, F., Royan, J., Lécuyer, A.: A novel 3D carousel based on pseudo-haptic feedback and gestural interaction for virtual showcasing. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI), pp. 55–58. IEEE (2013)

    Google Scholar 

  19. Goldstein, E.B.: Sensation and Perception. Brooks/Cole, Kentucky (1999)

    Google Scholar 

  20. Hachisu, T., Cirio, G., Marchal, M., Lécuyer, A., Kajimoto, H.: Pseudo-haptic feedback augmented with visual and tactile vibrations. In: 2011 IEEE International Symposium on VR Innovation, pp. 327–328. IEEE (2011)

    Google Scholar 

  21. Hatwell, Y., Streri, A., Gentaz, E.: Touching for Knowing: Cognitive Psychology of Haptic Manual Perception, vol. 53. John Benjamins Publishing, Amsterdam (2003)

    Book  Google Scholar 

  22. Issartel, P., Guéniat, F., Coquillart, S., Ammi, M.: Perceiving mass in mixed reality through pseudo-haptic rendering of newton’s third law. In: 2015 IEEE Virtual Reality (VR), pp. 41–46. IEEE (2015)

    Google Scholar 

  23. Jang, I., Lee, D.: On utilizing pseudo-haptics for cutaneous fingertip haptic device. In: 2014 IEEE Haptics Symposium (HAPTICS), pp. 635–639. IEEE (2014)

    Google Scholar 

  24. Kim, H., Kim, M., Lee, W.: Hapthimble: a wearable haptic device towards usable virtual touch screen. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 3694–3705 (2016)

    Google Scholar 

  25. Kimura, T., Nojima, T.: Pseudo-haptic feedback on softness induced by grasping motion. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7283, pp. 202–205. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31404-9_36

    Chapter  Google Scholar 

  26. Kohli, L.: Exploiting perceptual illusions to enhance passive haptics. In: IEEE VR Workshop on Perceptual Illusions in Virtual Environments, pp. 22–24 (2009)

    Google Scholar 

  27. Kokubun, A., Ban, Y., Narumi, T., Tanikawa, T., Hirose, M.: Representing normal and shearing forces on the mobile device with visuo-haptic interaction and a rear touch interface. In: IEEE Haptics Symposium 2014 (HAPTICS), pp. 415–420. IEEE (2014)

    Google Scholar 

  28. Lécuyer, A.: Simulating haptic feedback using vision: a survey of research and applications of pseudo-haptic feedback. Presence Teleoperators Virtual Environ. 18(1), 39–53 (2009)

    Google Scholar 

  29. Lécuyer, A., Burkhardt, J.M., Coquillart, S., Coiffet, P.: “Boundary of illusion”: an experiment of sensory integration with a pseudo-haptic system. In: Proceedings IEEE Virtual Reality 2001, pp. 115–122. IEEE (2001)

    Google Scholar 

  30. Lécuyer, A., Burkhardt, J.M., Etienne, L.: Feeling bumps and holes without a haptic interface: the perception of pseudo-haptic textures. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 239–246 (2004)

    Google Scholar 

  31. Lécuyer, A., Burkhardt, J.M., Tan, C.H.: A study of the modification of the speed and size of the cursor for simulating pseudo-haptic bumps and holes. ACM Trans. Appl. Percept. (TAP) 5(3), 1–21 (2008)

    Article  Google Scholar 

  32. Lecuyer, A., Coquillart, S., Kheddar, A., Richard, P., Coiffet, P.: Pseudo-haptic feedback: can isometric input devices simulate force feedback? In: Proceedings IEEE Virtual Reality 2000 (Cat. No. 00CB37048), pp. 83–90. IEEE (2000)

    Google Scholar 

  33. Lécuyer, A., Cuquillart, S., Coiffet, P.: Simulating haptic information with haptic illusions in virtual environments. Technical report, Anatole Lécuyer Suresnes (France) Aerospatiale Matra CCR (2001)

    Google Scholar 

  34. Lee, J.C., Dietz, P.H., Leigh, D., Yerazunis, W.S., Hudson, S.E.: Haptic pen: a tactile feedback stylus for touch screens. In: Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology, pp. 291–294 (2004)

    Google Scholar 

  35. Li, M., Ridzuan, M.B., Sareh, S., Seneviratne, L.D., Dasgupta, P., Althoefer, K.: Pseudo-haptics for rigid tool/soft surface interaction feedback in virtual environments. Mechatronics 24(8), 1092–1100 (2014)

    Article  Google Scholar 

  36. Maereg, A.T., Nagar, A., Reid, D., Secco, E.L.: Wearable vibrotactile haptic device for stiffness discrimination during virtual interactions. Front. Robot. AI 4, 42 (2017)

    Article  Google Scholar 

  37. Mandryk, R.L., Rodgers, M.E., Inkpen, K.M.: Sticky widgets: pseudo-haptic widget enhancements for multi-monitor displays. In: CHI 2005 Extended Abstracts on Human Factors in Computing Systems, pp. 1621–1624 (2005)

    Google Scholar 

  38. Matsumoto, K., Ban, Y., Narumi, T., Yanase, Y., Tanikawa, T., Hirose, M.: Unlimited corridor: redirected walking techniques using visuo haptic interaction. In: ACM SIGGRAPH 2016 Emerging Technologies, pp. 1–2. Association for Computing Machinery, New York (2016)

    Google Scholar 

  39. Montague, A.: Touching: The Human Significance of the Skin. Harper & Row (1986)

    Google Scholar 

  40. Murata, K.A., et al.: A touch panel for presenting softness with visuo-haptic interaction. In: International Conference on Artificial Reality and Telexistence & Eurographics Symposium on Virtual Environments 2018 (ICAT-EGVE), pp. 123–130 (2018)

    Google Scholar 

  41. Paljic, A., Burkhardtt, J.M., Coquillart, S.: Evaluation of pseudo-haptic feedback for simulating torque: a comparison between isometric and elastic input devices. In: 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems 2004 (HAPTICS 2004), pp. 216–223. IEEE (2004)

    Google Scholar 

  42. Pasquero, J., Hayward, V.: STReSS: a practical tactile display system with one millimeter spatial resolution and 700 HZ refresh rate. In: Proceedings of Eurohaptics 2003, pp. 94–110 (2003)

    Google Scholar 

  43. Poupyrev, I., Maruyama, S.: Tactile interfaces for small touch screens. In: Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, pp. 217–220 (2003)

    Google Scholar 

  44. Pusch, A., Martin, O., Coquillart, S.: Hemp-hand-displacement-based pseudo-haptics: a study of a force field application. In: 2008 IEEE Symposium on 3D User Interfaces, pp. 59–66. IEEE (2008)

    Google Scholar 

  45. Ridzuan, M.B., Makino, Y., Takemura, K.: Direct touch haptic display using immersive illusion with interactive virtual finger. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7282, pp. 432–444. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31401-8_39

    Chapter  Google Scholar 

  46. Rock, I., Victor, J.: Vision and touch: an experimentally created conflict between the two senses. Science 143(3606), 594–596 (1964)

    Article  Google Scholar 

  47. Sagardia, M., et al.: VR-OOS: the DLR’s virtual reality simulator for telerobotic on-orbit servicing with haptic feedback. In: 2015 IEEE Aerospace Conference, pp. 1–17. IEEE (2015)

    Google Scholar 

  48. Samad, M., Gatti, E., Hermes, A., Benko, H., Parise, C.: Pseudo-haptic weight: changing the perceived weight of virtual objects by manipulating control-display ratio. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2019)

    Google Scholar 

  49. Srinivassan, M.A.: The impact of visual information on the haptic perception of stiffness in virtual environments. Proc. ASME Dynamic Syst. Control Div. 58, 555–559 (1996)

    Google Scholar 

  50. Takasaki, M., Kotani, H., Mizuno, T., Nara, T.: Transparent surface acoustic wave tactile display. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3354–3359. IEEE (2005)

    Google Scholar 

  51. Tatsumi, H., Murai, Y., Sekita, I., Tokumasu, S., Miyakawa, M.: Cane walk in the virtual reality space using virtual haptic sensing: toward developing haptic VR technologies for the visually impaired. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2360–2365. IEEE (2015)

    Google Scholar 

  52. The Apache Software Foundation: Apache cordova (2020). https://cordova.apache.org/. Accessed 25 June 2020

  53. The R Foundation: The R project for statistical computing (2020). https://www.r-project.org/. Accessed 09 July 2020

  54. Ujitoko, Y., Ban, Y., Hirota, K.: Modulating fine roughness perception of vibrotactile textured surface using pseudo-haptic effect. IEEE Trans. Visual Comput. Graphics 25(5), 1981–1990 (2019)

    Article  Google Scholar 

  55. Ujitoko, Y., Ban, Y., Narumi, T., Tanikawa, T., Hirota, K., Hirose, M.: Yubi-Toko: finger walking in snowy scene using pseudo-haptic technique on touchpad. In: SIGGRAPH Asia 2015 Emerging Technologies, pp. 1–3. Association for Computing Machinery, New York (2015)

    Google Scholar 

  56. Vladimir Kharlampidi: Framework7 (2020). https://framework7.io/. Accessed 25 June 2020

  57. Watanabe, J.: Pseudo-haptic sensation elicited by background visual motion. ITE Trans. Media Technol. Appl. 1(2), 199–202 (2013)

    Article  Google Scholar 

  58. Yabe, S.I., Kishino, H., Kimura, T., Nojima, T.: Pseudo-haptic feedback on softness induced by squeezing action. In: 2017 IEEE World Haptics Conference (WHC), pp. 557–562. IEEE (2017)

    Google Scholar 

  59. Yamamoto, A., Ishii, T., Higuchi, T.: Electrostatic tactile display for presenting surface roughness sensation. In: IEEE International Conference on Industrial Technology, vol. 2, pp. 680–684. IEEE (2003)

    Google Scholar 

  60. Yang, G.H., Kyung, K.U., Srinivasan, M.A., Kwon, D.S.: Quantitative tactile display device with pin-array type tactile feedback and thermal feedback. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 3917–3922. IEEE (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmilson Domaredzki Verona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verona, E.D., Brum, B.R., de Oliveira, C., Sanches, S.R.R., Corrêa, C.G. (2021). Pseudo-haptic Perception in Smartphones Graphical Interfaces: A Case Study. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2021. Lecture Notes in Computer Science(), vol 12770. Springer, Cham. https://doi.org/10.1007/978-3-030-77599-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77599-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77598-8

  • Online ISBN: 978-3-030-77599-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics