
Force-Directed Layout of Order Diagrams using
Dimensional Reduction

Dominik Dürrschnabel1,2[0000−0002−0855−4185] and
Gerd Stumme1,2[0000−0002−0570−7908]

1 Knowledge & Data Engineering Group, University of Kassel, Germany
2 Interdisciplinary Research Center for Information System Design

University of Kassel, Germany
{duerrschnabel,stumme}@cs.uni-kassel.de

Abstract. Order diagrams allow human analysts to understand and an-
alyze structural properties of ordered data. While an experienced expert
can create easily readable order diagrams, the automatic generation of
those remains a hard task. In this work, we adapt force-directed ap-
proaches, which are known to generate aesthetically-pleasing drawings
of graphs, to the realm of order diagrams. Our algorithm ReDraw thereby
embeds the order in a high dimension and then iteratively reduces the
dimension until a two-dimensional drawing is achieved. To improve aes-
thetics, this reduction is equipped with two force-directed steps where
one optimizes on distances of nodes and the other on distances of lines
in order to satisfy a set of a priori fixed conditions. By respecting an
invariant about the vertical position of the elements in each step of our
algorithm we ensure that the resulting drawings satisfy all necessary
properties of order diagrams. Finally, we present the results of a user
study to demonstrate that our algorithm outperforms comparable ap-
proaches on drawings of lattices with a high degree of distributivity.

Keywords: Ordered Sets · Order Diagram Drawing · Lattice Drawing
· Force-Directed Algorithms · Dimensional Reduction · Graph Drawing

1 Introduction

Order diagrams, also called line diagrams, Hasse diagrams (or simply diagrams)
are a graphical tool to represent ordered sets. In the context of ordinal data
analysis, i.e., data analysis investigating ordered sets, they provide a way for a
human reader to explore and analyze complex connections. Every element of the
ordered set is thereby visualized by a dot and two elements are connected by a
straight line if one is lesser than the other and there is no element “in between”.

The general structure of such an order diagram is therefore fixed by these
conditions. Nonetheless, finding good coordinates for the dots representing the
elements such that the drawing is perceived as “readable” by humans is not a
trivial task. An experienced expert with enough practice can create such a draw-
ing; however, this is a time-consuming and thus uneconomical task and therefore

ar
X

iv
:2

10
2.

02
68

4v
1

 [
cs

.C
G

]
 4

 F
eb

 2
02

1

2 Dominik Dürrschnabel and Gerd Stumme

rather uncommon. Still, the availability of such visualizations of order diagrams is
an integral requirement for developing ordinal data science and semi-automated
data exploration into a mature utensil; thus, making the automatic generation of
such order diagrams an important problem. An example of a research field that
is especially dependent on the availability of such diagrams is Formal Concept
Analysis, a field that orders concepts derived from binary datasets in lattices.

The generated drawings have to satisfy a set of hard constraints in order to
guarantee that the drawing accurately represents the ordered set. First of all, for
comparable elements the greater element dot has to have a larger y-coordinate
then the lesser element dot. Secondly, no two element dots are allowed to be
positioned on the same coordinates. Finally, element dots are not allowed to
touch non-adjacent lines. Beside those hard criteria, there is a set of commonly
accepted soft criteria that are generally considered to make a drawing more read-
able, as noted in [16]. Those include maximizing the distances between element
dots and lines, minimizing the number of crossing lines, maximizing the angles of
crossing lines, minimizing the number of different edge directions or organizing
the nodes in a limited number of layers. While it is not obvious how to develop
an algorithm that balances the soft criteria and simultaneously guarantees that
the hard criteria are satisfied, such an algorithm might not even yield readable
results as prior works such as [3] suggests. Furthermore, not every human reader
might perceive the same aspects of an order diagram as “readable”; conversely, it
seems likely that every human perceives different aspects of a good drawing as
important. It is thus almost impossible to come up with a good fitness function
for readable graphs. Those reasons combined make the automatic generation of
readable graph drawing - and even their evaluation - a surprisingly hard task.

There are some algorithms today that can produce readable drawings to
some extent; however, none of them is able to compete with the drawings that
are manually drawn by an expert. In this paper we address this problem by
proposing our new algorithm ReDraw that adapts the force-directed approach
of graph drawing to the realm of order diagram drawing. Thereby, a physical
simulation is performed in order to optimize a drawing by moving it to a state
of minimal stress. Thus, the algorithm proposed in this paper provides a way
to compute sufficiently readable drawings of order diagrams. We compare our
approach to prior algorithms and show that our drawings are more readable
under certain conditions or benefits from lesser computational costs. We provide
the source code1 so that other researchers do own experiments and extend it.

2 Related Work

Order diagram drawing can be considered to be a special version of the graph
drawing problem, where a graph is given as a set of vertices and a set of edges and
a readable drawing of this graph is desired. Thereby, each vertex is once again
represented by a dot and two adjacent vertices are connected by a straight line.

1 https://github.com/domduerr/redraw

https://github.com/domduerr/redraw

Force-Directed Layout of Order Diagrams using Dimensional Reduction 3

The graph drawing problem suffers from a lot of the same challenges as order
diagram drawing and thus a lot of algorithms that were developed for graph
drawing can be adapted for diagram drawing. For a graph it can be checked in
linear time whether it is planar [11]), i.e., whether it has a drawing that has no
crossing edges. In this case a drawing only consisting of straight lines without
bends or curves can always be computed [12, Sect. 4.2 & 4.3] and should thus
be preferred. For a directed graph with a unique maximum and minimum, like
for example a lattice, it can be checked in linear time whether an upward planar
drawing exists. Then such a drawing can be computed in linear time [2, Sect. 6].
The work [2, Sect. 3.2] provides an algorithm to compute straight-line drawings
for “serial parallel graphs”, which is a special family of planar, acyclic graphs. As
symmetries are often preferred by readers, the algorithm was extended [10] to
reflect them in the drawings based on the automorphishm group of the graph.
However, lattices that are derived from real world data using methods like Formal
Concept Analysis rarely satisfy the planarity property [1]. The work of Sugiyama
et al. [14], usually referred to as Sugiyama’s framework, from 1981 introduces an
algorithm to compute layered drawings of directed acyclic graphs and can thus
be used for drawing order diagram. Force-directed algorithms were introduced
in [5] and further refined in [7]. They are a class of graph drawing algorithms
that are inspired by physical simulations of a system consisting of springs.

The most successful approaches for order diagram drawing are a work of
Sugiyama et al. [14] which is usually referred to as Sugiyama’s framework and a
work of Freese [6]. Those algorithms both use the structure of the ordered set to
decide on the height of the element dots; however, the approach choosing the hor-
izontal coordinates of a vertex dot differ significantly. While Sugiyama’s frame-
work minimizes the number of crossing lines between different vertical layers,
Freese’s layout adapts a force-directed algorithm to compute a three-dimensional
drawing of the ordered set. DimDraw [4] on the other hand is not an adapted
graph drawing algorithm, but tries to emphasize the dimensional structure that
is encapsulated in the ordered set itself. Even though this approach is shown to
outperform Freese’s and Sugiyama’s approach in [4], it is not feasible for larger
ordered sets because of its exponential nature. in [4] proposes a method to draw
order diagrams based on structural properties of the ordered set. In doing so,
two maximal differing linear extensions of the ordered set are computed. The
work in [8] emphasizes additive order diagrams of lattices. Another force-directed
approach that is based on minimizing a “conflict distance” is suggested in [17].

In this work we propose the force-directed graph drawing algorithm ReDraw
that, similarly to Freese’s approach, operates not only in two but in higher
dimensions. Compared to Freese’s layout, our algorithm however starts in an
arbitrarily high dimension and improves it then by reducing the number of di-
mensions in an iterative process. Thus, it minimizes the probability to stop the
algorithm early with a less pleasing drawing. Furthermore, our approach gets rid
of the ranking function to determinate the vertical position of the elements and
instead uses the force-directed approach for the vertical position of dots as well.
We achieve this by defining a vertical invariant which is respected in each step of

4 Dominik Dürrschnabel and Gerd Stumme

the algorithm. This invariant guarantees that the resulting drawing will respect
the hard condition of placing greater elements higher than lesser elements.

3 Fundamentals and Basics

In this section we recall fundamentals and lay the foundations to understand de-
sign choices of our algorithm. This includes recalling mathematical notation and
definitions as well as introducing the concept of force-directed graph drawing.

3.1 Mathematical Notations and Definitions

We start by recalling some standard notations that are used throughout this
work. An ordered set is a pair (X,≤) with ≤ ⊆ (X×X) that is reflexive ((a, a) ∈
≤ for all a ∈ X), antisymmetric (if (a, b) ∈ ≤ and (b, a) ∈ ≤, then a = b) and
transitive (if (a, b) ∈ ≤ and (b, c) ∈ ≤, then (a, c) ∈ ≤). The notation (a, b) ∈ ≤
is used interchangeable with a ≤ b and b ≥ a. We call a pair of elements a, b ∈ X
comparable if a ≤ b or b ≤ a, otherwise we call them incomparable. A subset of
X where all elements are pairwise comparable is called a chain. An element a is
called strictly less than an element b if a ≤ b and a 6= b and is denoted by a < b,
the element b is then called strictly greater than a. For an ordered set (X,≤),
the associated covering relation ≺ ⊆ < is given by all pairs (a, c) with a < c for
which no element b with a < b < c exists. A graph is a pair (V,E) with E ⊆

(
V
2

)
.

The set V is called the set of vertices and the set E is called the set of edges,
two vertices a and b are called adjacent if {a, b} ∈ E.

From here out we give some notations in a way that is not necessarily stan-
dard but will be used throughout our work. A d-dimensional order diagram
or drawing of an ordered set (X,≤) is denoted by (~pa)a∈X ⊆ Rd whereby
~pa = (xa,1, . . . , xa,d−1, ya) for each a ∈ X and for all a ≺ b it holds that ya < yb.
Similarly, a d-dimensional graph drawing of a graph (V,E) is denoted by (~pa)a∈V
with ~pa = (xa,1, . . . , xa,d−1, ya) for each a ∈ V . If the dimension of a order dia-
gram or a graph drawing is not qualified, the two-dimensional case is assumed.
In this case an order diagram can be depicted in the plane by visualizing the
elements as a dot or nodes and connecting element pairs in the covering rela-
tion by a straight line. In the case of a graph, vertices are depicted by a dot
and adjacent vertices are connected by a straight line. We call ya the vertical
component and xa,1, . . . , xa,d−1 the horizontal components of of ~pa and denote
(~pa)x = (xa,1, . . . , xa,d−1, 0). The forces operating on the vertical component are
called the vertical force and the forces operating on the horizontal components
the horizontal forces. The Euclidean distance between the representation of a and
b is denoted by d(~pa, ~pb) = |~va−~vb|, while the distance between the vertical com-
ponents is denoted by dy(~pa, ~pb) and the distance in the horizontal components is
denoted by dx(~pa, ~pb) = d((~pa)x, (~pb)x). The unit vector from ~pa to ~pb is denoted
by ~u(~pa, ~pb), the unit vector operating in the horizontal dimensions is denoted by
~ux(~pa, ~pb). Finally, the cosine-distance between two vector pairs (~a,~b) and (~c, ~d)

with ~a,~b,~c, ~d ∈ Rd is given by dcos((~a, b), (~c, ~d)) := 1−
∑d

i=1(bi−ai)·(di−ci)
d(a,b)·d(c,d) .

Force-Directed Layout of Order Diagrams using Dimensional Reduction 5

3.2 Force-Directed Graph Drawing

The general idea of force-directed algorithms is to represent the graph as
a physical model consisting of steel rings each representing a vertex. For every
pair of adjacent vertices, their respective rings are connected by identical springs.
Using a physical simulation, this system is then moved into a state of minimal
stress, which can in turn be used as the drawing. Many modifications to this
general approach, that are not necessarily based on springs, were proposed in
order to encourage additional conditions in the resulting drawings.

The idea of force-directed algorithms was first suggested by Eades [5]. His
algorithmic realization of this principle is done using an iterative approach where
in each step of the simulation the forces that operate on each vertex are computed
and summed up (cf. Algorithm 1). Based on the sum of the forces operating on
each vertex, they are then moved. This is repeated for either a limited number of
rounds or until there is no stress left in the physical model. While a system con-
sisting of realistic springs would result in linear forces between the vertices, Eades
claims that those are performing poorly and thus introduces an artificial spring
force. This force operates on each vertex a for adjacent pairs {a, b} ∈ E and is
given as fspring(~pa, ~pb) = −cspring · log

(
d(~pa,~pb)

l

)
·~u(~pa, ~pb), whereby cspring is the

spring constant and l is the equilibrium length of the spring. The spring force
repels two vertices if they are closer then this optimal distance l while it operates
as an attracting force if two vertices have a distance greater then l, see Figure 1.
To enforce that non-connected vertices are not placed too close to each other, he
additionally introduces the repelling force that operates between non-adjacent
vertex pairs as frep(~pa, ~pb) =

crep
d(~pa,~pb)2

· ~u(~pa, ~pb). The value for crep is once again
constant. In a realistic system, even a slightest movement of a vertex changes the
forces that are applied to its respective ring. To depict this realistically a damping
factor δ is introduced in order to approximate the realistic system. The smaller
this damping factor is chosen, the closer the system is to a real physical system.
However, a smaller damping factor results in higher computational costs. In some
instances this damping factor is replaced by a cooling function δ(t) to guarantee
convergence. The physical simulation stops if the total stress of the system falls

Algorithm 1 Force-Directed Algorithm by Eades
Input: Graph: (V,E) Constants: K ∈ N, ε > 0, δ > 0

Initial drawing: p = (~pa)a∈V ⊆ R2

Output: Drawing: p = (~pa)a∈V ⊆ R2

t = 1
while t < K and maxa∈V ‖Fa(t)‖ > ε :

for a ∈ V :
Fa(t) :=

∑
{a,b}6∈E frep(~pa, ~pb) +

∑
{a,b}∈E fspring(~pa, ~pb)

for a ∈ V :
~pa := ~pa + δ · Fa(t)

t = t+ 1

6 Dominik Dürrschnabel and Gerd Stumme

Fig. 1: The forces for
graphs as introduced by
Eades in 1984. The fspring
force operates between
adjacent vertices and has
an equilibrium at l, the
force frep is always a re-
pelling force and operates
on non-adjacent pairs.

Fig. 2: Horizontal forces
for drawing order di-
agrams introduced by
Freese in 2004. The force
fattr operates between
comparable pairs, the
force frep between incom-
parable pairs. There is no
vertical force.

Fig. 3: Our forces for
drawing order diagrams.
fvert operates vertically
between node pairs in
the covering relation, the
force fattr between com-
parable pairs and the
force frep between incom-
parable pairs.

below a constant ε. Building on this approach, a modification is proposed in the
work of Fruchterman and Reingold [7] from 1991. In their algorithm, the force
fattr(~pa, ~pb) = −d(~pa,~pb)

2

l · ~u(~pa, ~pb) is operating between every pair of connected
vertices. Compared to the spring-force in Eades’ approach, this force is always
an attracting force. Additionally the force frep(~pa, ~pb) = l2

d(~pa,~pb)
·~u(~pa, ~pb) repels

every vertex pair. Thus, the resulting force that is operating on adjacent ver-
tices is given by fspring(~pa, ~pb) = fattr(~pa, ~pb)+frep(~pa, ~pb) and has once again its
equilibrium at length l. These forces are commonly considered to achieve better
drawings than Eades’ approach and are thus usually preferred.

While the graph drawing algorithms described above lead to sufficient re-
sults for undirected graphs, they are not suited for order diagram drawings as
they do not take the direction of an edge into consideration. Therefore, they will
not satisfy the hard condition that greater elements have a higher y-coordinate.
Freese [6] thus proposed an algorithm for lattice drawing that operates in three
dimensions, where the ranking function rank(a) = height(a)−depth(a) fixes the
vertical component. The function height(a) thereby evaluates to the length of
the longest chain between a and the minimal element and the function depth(a)
to the length of the longest chain to the maximal element. While this ranking
function guarantees that lesser elements are always positioned below greater ele-
ments, the horizontal coordinates are computed using a force-directed approach.
Freese introduces an attracting force between comparable elements that is given
by fattr(~pa, ~pb) = −cattr ·dx(~pa, ~pb) ·~ux(~pa, ~pb), and a repelling force that is given
by frep(~pa, ~pb) = crep · dx(~pa,~pb)

|yb−ya|3+|xb,1−xa,1|3+|xb,2−xa,2|3 ·~ux(~pa, ~pb) operating on in-
comparable pairs only, (cf. Figure 2). The values for cattr and crep are constants.
A parallel projection is either done by hand or chosen automatically in order to
compute a two-dimensional depiction of the three-dimensional drawing.

Force-Directed Layout of Order Diagrams using Dimensional Reduction 7

4 The ReDraw Algorithm

Our algorithm ReDraw uses a force-directed approach similar to the one that is
used in Freese’s approach. Compared to Freese’s algorithm, we however do not
use a static ranking function to compute the vertical positions in the drawing.
Instead, we use forces which allow us to incorporate additional properties like
the horizontal distance of vertex pairs, into the vertical distance. By respecting
a vertical invariant, that we will describe later, the vertical movement of the ver-
tices is restricted so that the hard constraint on the y-coordinates of comparable
nodes can be always guaranteed. However, the algorithm is thus more likely to
get stuck in a local minimum. We address this problem by computing the first
drawing in a high dimension and then iteratively reducing the dimension of this
drawing until a two-dimensional drawing is achieved. As additional degrees of
freedom allow the drawing to move less restricted in higher dimensions it thus
reduces the probability for the system to get stuck in a local minimum.

Our algorithm framework (cf. Algorithm 2) consists of three individual al-
gorithmic steps that are iteratively repeated. We call one repetition of all three
steps a cycle. In each cycle the algorithm is initialized with the d-dimensional
drawing and returns a (d − 1)-dimensional drawing. The first step of the cycle,
which we refer to as the node step, improves the d-dimensional drawing by opti-
mizing the proximity of nodes in order to achieve a better representation of the
ordered set. In the second step, which we call the line step, the force-directed ap-
proach is applied to improve distances between different lines as well as between
lines and nodes. The resulting drawing thereby achieves a better satisfaction of
soft criteria and thus improve the readability for a human reader. Finally, in the
reduction step the dimension of the drawing is reduced to (d − 1) by using a
parallel projection into a subspace that preserves the vertical dimension. In the
last (two-dimensional) cycle, the dimension reduction step is omitted.

The initial drawing used in the first cycle is randomly generated. The vertical
coordinate of each element dot is given by its position in a randomly chosen linear
extension of the ordered set. The horizontal coordinates of each element are set
to a random value between -1 and 1. This guarantees that the algorithm does

Algorithm 2 ReDraw Algorithm
Input: Ordered set: O = (X,≤) Constants: K ∈ N, ε > 0, δ > 0,

Initial dimension: d cvert > 0, chor > 0,
Output: Drawing: p = (~pa)a∈V ⊆ R2 cpar > 0, cang > 0, cdist > 0

p = in i t i a l_draw ing (O)
while d ≥ 2 :

node_step (O, p, d,K, ε, δ, cvert, chor)
l ine_step (O, p, d,K, ε, δ, cpar, cang, cdist)
i f d > 2 :

d imension_reduction (O, p, d)
d = d− 1

8 Dominik Dürrschnabel and Gerd Stumme

not start in an unstable local minimum. Every further cycle then uses the output
of the previous cycle as input to further enhance the resulting drawing.

Compared to the approach taken by Freese we do not fix the vertical com-
ponent by a ranking function. Instead, we recompute the vertical position of
each element in each step using our force-directed approach. To ensure that the
resulting drawing is in fact a drawing of the ordered set we guarantee that in
every step of the algorithm the following property is satisfied:

Definition 1. Let (X,≤) be an ordered set with a drawing (~pa)a∈X . The drawing
(~pa)a∈X satisfies the vertical constraint, iff. ∀a, b ∈ X : a < b⇒ ya < yb.

This vertical invariant is preserved in each step of the algorithm and thus that
in the final drawing the comparabilities of the order are correctly depicted.

4.1 Node Step

The first step of the iteration is called the node step, which is used in order
to compute a d-dimensional representation of the ordered set. It thereby em-
phasizes the ordinal structure by positioning element pairs in a similar hor-
izontal position, if they are comparable. In this step we define three differ-
ent forces that operate simultaneously. For each a ≤ b on a the vertical force
fvert(~pa, ~pb) =

(
0, . . . , 0,−cvert ·

(
1+dx(~pa,~pb)
dy(~pa,~pb)

− 1
))

operates while on b the force
−fvert(~pa, ~pb) operates. If two elements have the same horizontal coordinates it
has its equilibrium if the vertical distance is at the constant cvert. Then, if two
elements are closer then this constant it operates repelling and if they are farther
away the force operates as an attracting force. Thus, the constant cvert is a pa-
rameter that can be used to tune the optimal vertical distance. By incorporating
the horizontal distance into the force, it can be achieved that vertices with a high
horizontal distance will also result in a higher vertical distance. Note, that this
force only operates on the covering relation instead of all comparable pairs, as
Otherwise, chains would be contracted to be positioned close to a single point.

Algorithm 3 ReDraw - Node step
Input: Ordered set: (X,≤) Constants: K ∈ N, ε > 0, δ > 0,

Drawing p = (~pa)a∈X ⊆ Rd cvert > 0, chor > 0

Output: Drawing: p = (~pa)a∈X ⊆ Rd

t = 1
while t < K and maxa∈X ‖Fa(t)‖ > ε :

for a ∈ X :
Fa(t) :=

∑
a≺b fvert(~pa, ~pb)−

∑
b≺a fvert(~pa, ~pb)

+
∑

a≤b fattr(~pa, ~pb) +
∑

a6≤b frep(~pa, ~pb)

for a ∈ X :
~pa := over shoot ing_protec t i on (~pa + δ · Fa(t))

t = t+ 1

Force-Directed Layout of Order Diagrams using Dimensional Reduction 9

On the other hand there are two different forces that operate in horizon-
tal direction. Similar to Freese’s layout, there is an attracting force between
comparable and a repelling force between incomparable element pairs; however,
the exact forces are different. Between all comparable pairs a and b the force
fattr(~pa, ~pb) = −min

(
dx(~pa, ~pb)

3, chor
)
· ~ux(~pa, ~pb) is operating. Note that in

contrast to fvert this force operates not only on the covering but on all com-
parable pairs and thus encourages chains to be drawn in a single line. Similarly,
incomparable elements should not be close to each other and thus the force
frep(~pa, ~pb) =

chor
dx(~pa,~pb)

· ~ux(~pa, ~pb), repels incomparable pairs horizontally.
We call the case that an element would be placed above a comparable greater

element or below a lesser element, overshooting. However, to ensure that every
intermediate drawing that is computed in the node step still satisfies the vertical
invariant we have to prohibit overshooting. Therefore, we add overshooting pro-
tection to the step in the algorithm where (~pa)a∈X is recomputed. This is done by
restricting the movement of every element such that it is placed maximally cvert

10
below the lowest positioned greater element, or symmetrically above the greatest
lower element. If the damping factor is chosen sufficiently small overshooting is
rarely required. This is, because our forces are defined such that the closer two
elements are positioned the stronger they repel each other, see Figure 3.

All three forces are then consolidated into a single routine that is repeated at
most K times or until the total stress falls below a constant ε, see Algorithm 3.
The general idea of our forces is similar to the forces described in Freese’s ap-
proach, as comparable elements attract each other and incomparable elements
repel each other. However, we are able to get rid of the ranking function that
fixes y-coordinate and thus have an additional degree of freedom which allows
us to include the horizontal distance as a factor to determine the vertical po-
sitions. Furthermore, our forces are formulated in a general way such that the
drawings can be computed in arbitrary dimensions, while Freese is restricted to
three dimensions. This overcomes the problem of getting stuck in local minima
and enables us to recompute the drawing in two dimensions in the last cycle.

4.2 Line Step

While the goal of the node step is to get a good representation of the in-
ternal structure by optimizing on the proximity of nodes, the goal of the line
step is to make the resulting drawing more aesthetically pleasing by optimizing
distances between lines. Thus, in this step the drawing is optimized on three soft
criteria. First, we want to maximize the number of parallel lines. Secondly, we
want to achieve large angles between two lines that are connected to the same
element dot. Finally, we want to have a high distance between elements and
non-adjacent lines. We achieve a better fit to these criteria by applying a force-
directed algorithm with three different forces, each optimizing on one criterion.
While the previous step does not directly incorporate the path of the lines, this
step incorporates those into its forces. Therefore, we call this step the line step.

The first force of the line step operates on lines (a, b) and (c, d) with a 6= c
and b 6= d if their cosine distance is below a threshold cpar. The horizontal

10 Dominik Dürrschnabel and Gerd Stumme

Algorithm 4 ReDraw - Line Step
Input: Ordered set: (X,≤) Constants: K ∈ N, ε > 0, δ > 0,

Drawing p = (~pa)a∈X ⊆ Rd cpar > 0, cang > 0, cdist > 0

Output: Drawing: p = (~pa)a∈X ⊆ Rd

t = 1
while t < K and maxa∈X ‖Fa(t)‖ > ε :
A = {{(a, b), (c, d)} | a ≺ b, c ≺ d, dcos((~pa, ~pb), (~pc, ~pd)) < cpar}
B = {{(a, c), (b, c)} | (a ≺ c, b ≺ c) or (c ≺ a, c ≺ b), dcos((~pa, ~pc), (~pb, ~pc)) < cang}
C = {(a, (b, c)) | a ∈ X, b ≺ c, d(~pa, (~pb, ~pc)) < cdist}
for a ∈ X :
Fa(t) :=

∑
{(a,b),(c,d)}∈A fpar((~pa, ~pb), (~pc, ~pd)) +

∑
(a,(b,c))∈C fdist(~pa, (~pb, ~pc))

−
∑
{(b,a),(c,d)}∈A fpar((~pa, ~pb), (~pc, ~pd))− 1

2

∑
(b,(a,c))∈C fdist(~pa, (~pb, ~pc))

+
∑
{(a,c),(b,c)}∈B fang((~pa, ~pc), (~pb, ~pc))

for a ∈ X :
~pa := over shoot ing_protec t i on (~pa + δ · Fa(t))

t = t+ 1

force fpar((~pa, ~pb), (~pc, ~pd)) = −
(
1− dcos((~pa,~pb),(~pc,~pd))

cpar

)
·
(

(~pb−~pa)x
yb−ya

− (~pd−~pc)x
yd−yc

)
operates on a and the force −fpar((~pa, ~pb), (~pc, ~pd)) operates to b. This result of
this force is thus that almost parallel lines are moved to become more parallel.
Note, that this force becomes stronger the more parallel the two lines are.

The second force operates on lines that are connected to the same dot and
have a small angle, i.e., lines with cosine distance below a threshold cang.

Let (a, c) and (b, c) be such a pair then the horizontal force operating on a is
given by fang((~pa, ~pc), (~pb, ~pc)) =

(
1− dcos((~pa,~pc),(~pb,~pc))

cang

)
·
(

(~pc−~pa)x
yc−ya

− (~pc−~pb)x
yc−yb

)
.

In this case, once again the force is stronger for smaller angles; however, the force
is operating in the opposite direction compared to fpar and thus makes the two
lines less parallel. Symmetrically, for each pair (c, a) and (c, b) the same force
operates on a. There are artifacts from fpar that operate against fang in opposite
direction. This effect should be compensated for by using a much higher thresh-
old constant cang than cpar, otherwise the benefits of this force are diminishing.

Finally, there is a force that operates on all pairs of element dots a and lines
(b, c), for which the distance between the element and the line is closer then cdist.
The force fdist(~pa, (~pb, ~pc)) =

1
d(~pa,(~pb,~pc))

·
(
(~pa − ~pc)− (~pa−~pc)·(~pb−~pc)

(~pb−~pc)·(~pb−~pc)
(~pb − ~pc)

)
is applied to a and −fdist(a, (c, d))/2 is applied to b and c. This results in a
force whose strength is linearly stronger, the closer the distance d(~pa, (~pb, ~pc)).
It operates in perpendicular direction to the line and repels the dot and the line.

Similar to the node step, all three forces are combined into a routine that is
repeated until the remaining energy in the physical system drops below a certain
stress level ε. Furthermore a maximal number of repetitions K is fixed. We
also once again include the overshooting protection as described in the previous
section to make sure that the vertical invariant stays satisfied.

Force-Directed Layout of Order Diagrams using Dimensional Reduction 11

The line step that is described in this section is a computational demanding
task, as in every repetition of the iterative loop the sets of almost parallel edges,
small angles and elements that are close to lines have to be recomputed. To
circumvent this problem on weaker hardware, there are a number of possible
speedup techniques. First of all, the sets described above do not have to be
recomputed every iteration, but can be cashed over a small number of iterations.
In Algorithm 4 these are the sets A, B and C. By recomputing those sets only
every k-th iteration a speedup to almost factor k can be achieved. Another
speedup technique that is possible is to only execute the line step in the last
round. Both of these techniques however have a trade off for the quality of the
final drawing and are thus not further examined in this paper.

4.3 Dimension Reduction

In the dimension reduction step, we compute a (d − 1)-dimensional drawing
from the d-dimensional drawing with the goal of reflecting the structural details
of the original drawing like proximity and angles. Our approach to solve this is
to compute a (d−1)-dimensional linear subspace of the d-dimensional space. By
preserving the vertical dimension we can ensure that the vertical invariant stays
satisfied. Then a parallel projection into this subspace is performed.

As such a linear subspace always contains the origin, we center our drawing
around the origin. Thereby, the whole drawing (~pa)a∈X is geometrically trans-
lated such that the mean of every coordinate becomes 0. The linear subspace
projection is performed as follows: The last coordinate of the linear subspace will
be the vertical component of the d-dimensional drawing to ensure that the verti-
cal invariant is preserved. For the other (d− 1) dimensions of the original space,
a principle component analysis [13] is performed to reduce them to a (d − 2)-
dimensional subspace. By combining this projection with the vertical dimension
a (d − 1)-dimensional drawing is achieved, that captures the structure of the
original, higher-dimensional drawing and represents its structural properties.

It is easily possible to replace PCA in this step by any other dimension reduc-
tion technique. It would thus be thinkable to just remove the first coordinate in
each step and hope that the drawing in the resulting subspace has enough infor-
mation encapsulated in the remaining coordinates. Also other ways of choosing
the subspace in which is projected could be considered. Furthermore, non-linear
dimension reduction methods could be tried in order to achieve drawings, how-
ever our empirical experiments suggest, that PCA hits a sweet spot. The payoff
of more sophisticated dimension reduction methods seems to be negligible as
each drawing is further improved in lower dimensions. On the other hand we
observed local minima if we used simpler dimension reduction methods.

5 Evaluation

As we described in the previous sections, it is not a trivial task to evaluate the
quality of an order diagram drawing. Drawings that one human evaluator might

12 Dominik Dürrschnabel and Gerd Stumme

(a) Sugiyama (b) Freese (c) DimDraw (d) ReDraw w/o
line step

(e) ReDraw with
line step

(a) Sugiyama (b) Freese (c) DimDraw (d) ReDraw w/o
line step

(e) ReDraw with
line step

Fig. 4: Top: Drawing of the lattices for the formal contexts “forum romanum”
(top) and “living beings and water” (bottom) from the test dataset.

consider as favorably might not be perceived as readable by others. Therefore,
we evaluate our generated drawing with a large quantity of domain experts.

5.1 Run-Time Complexity

The run-time of the node step is limited by O(n2) with n being the number of
elements, as the distances between every element pair are computed. The run-
time of the edge step is limited by O(n4), as the number of lines is bounded
by O(n2). Finally, the run-time of the reduction step is determined by PCA
which is known to be bounded by O(n3). Therefore, the total run-time of the
algorithm is polynomial in O(n4). This is an advantage compared to DimDraw
and Sugiyama’s framework, which both solve exponential problems; however,
Sugiyama is usually applied with a combination of heuristics to overcome this
problem. Freese’s layout has by its nature of being a force-directed order dia-
gram drawing algorithm, similar to our approach, polynomial run-time. Thus,
for larger diagrams, only ReDraw, Freese’s algorithm and Sugiyama’s framework
(the latter with its heuristics) are suitable, while DimDraw is not.

5.2 Tested Datasets

Our test dataset consists of 77 different lattices including all classical examples
of lattices described in [9]. We enriched these by lattices of randomly generated

Force-Directed Layout of Order Diagrams using Dimensional Reduction 13

(a) Sugiyama (b) Freese (c) DimDraw (d) ReDraw w/o
line step

(e) ReDraw with
line step

(a) Sugiyama (b) Freese (c) DimDraw (d) ReDraw w/o
line step

(e) ReDraw with
line step

Fig. 5: Top: Drawing of the lattices for the formal contexts “therapy” (top) and
“ice cream” (bottom) from the test dataset.

contexts and some sampled contexts from large binary datasets. An overview of
all related formal contexts for these lattices, together with their drawing gener-
ated by ReDraw is published together with its source code. We restrict the test
dataset to lattices, as lattice drawings are of great interest for the formal con-
cept analysis community. This enables us to perform a user study using domain
experts for lattices from the FCA community to evaluate the algorithm.

5.3 Recommended Parametrizations

As it is hardly possible to conduct a user study for every single combination of
parameters, our recommendations are based on empirical observations. We used
a maximal number of K = 1000 algorithm iterations or stopped if the stress in
the physical system fell below ε = 0.0025. Our recommended damping factor
δ = 0.001. In the node step we set cvert = 1 as the optimal horizontal distance
and chor = 5. We used the thresholds cpar = 0.005, cang = 0.05 and cdist = 1
in the line step. The drawing algorithms are started with 5 dimensions as we
did not observe any notable improvements with higher dimensional drawings.
Finally the resulting drawing is scaled in horizontal direction by a factor of 0.5.

5.4 Empirical Evaluation

To demonstrate the quality of our approach we compare the resulting drawings to
the drawings generated by a selected number of different algorithms in Figure 4

14 Dominik Dürrschnabel and Gerd Stumme

and Figure 5. The different drawings are computed using Sugiyama’s framework,
Freese’s layout, DimDraw and our new approach. Additionally, a drawing of our
approach before the line step is presented to show the impact of this line step.
In the opinion of the authors of this paper, the approach proposed in this paper
achieves satisfying results for these ordered sets. In most cases, we still prefer the
output of DimDraw (and sometimes Sugiyama), but ReDraw is able to cope with
much larger datasets because of its polynomial nature. Modifications of ReDraw
that combine the node step and the edge step into a single step were tried by the
authors; however, the then resulting algorithm did not produce the anticipated
readability, as the node and edge forces seem to work against each other.

5.5 User Evaluation

To obtain a measurable evaluation we conducted a user study to compare the
different drawings generated by our algorithm to two other algorithms. We de-
cided to compare our approach to Freese’s and Sugiyama’s algorithm, as those
two seem to be the two most popular algorithms for lattice drawing at the mo-
ment. We decided against including DimDraw into this study as, even though it
is known to produce well readable drawings, it struggles with the computational
costs for drawings of higher order dimensions due to its exponential nature.

Experimental Setup. In each step of the study, all users are presented
with three different drawings of one lattice from the dataset in random order
and have to decide which one they perceive as “most readable”. The term “most
readable” was neither further explained nor restricted.

Results. The study was conducted with nine experts from the formal con-
cept analysis community to guarantee expertise with order diagrams among the
participants. Thus, all ordered sets in this study were lattices. The experts voted
582 times in total; among those votes, 35 were cast for Freese’s algorithm, 266
for our approach and 281 for Sugiyama. As a common property of lattices is to
contain a high degree of truncated distributivity [15], which makes this property
of special interest, we decided to compute the share of distributive triples for
each lattice excluding those resulting in the bottom-element. We call the share
of such distributive triples of all possible triples the truncated relative distribu-
tivity (RTD). Based on the RTD we compared the share of votes for Sugiyama’s
framework and ReDraw for all order diagrams that are in a specific truncated dis-
tributivity range. The results of this comparison are depicted in Figure 6. The
higher the RTD, the better ReDraw performs in comparison. The only exception
in the range 0.64-0.68 can be traced back to a small test set with n = 4.

Discussion. As one can conclude from the user study, our force-directed
algorithm performs on a similar level to Sugiyama’s framework while outper-
forming Freese’s force-directed layout. In the process of developing ReDraw we
also conducted a user-study that compared an early version to DimDraw which
suggested that ReDraw can’t compete with DimDraw. However, DimDraw’s ex-
ponential run-time makes computing larger order drawings unfeasible. From the
comparison of ReDraw and Sugiyama’s, that takes the RTD into account, we can
follow that our algorithm performs better on lattices the higher the RTD. We

Force-Directed Layout of Order Diagrams using Dimensional Reduction 15

Fig. 6: Results of the user study. L: Number of votes for each algorithm. R: Share
of votes for ordered sets divided into ranges of different truncated distributivity.

observed similar results when we computed the relative normal distributivity.
The authors of this paper thus recommend to use ReDraw for larger drawings
that are highly distributive. Furthermore, the authors observed, that ReDraw
performs better if there are repeating structures or symmetries in the lattice as
each instance of such a repetition tends to be drawn similarly. This makes it the
algorithm of choice for ordered sets that are derived from datasets containing
high degrees of symmetries. Anyway, the authors of this paper are convinced
that there is no single drawing algorithm that can produce readable drawings
for all different kinds of order diagrams. It is thus always recommended to use a
combination of different algorithms and then decide on the best drawing.

6 Conclusion and Outlook

In this work we introduced our novel approach ReDraw for drawing diagrams.
Thereby we adapted a force-directed algorithm to the realm of diagram drawing.
In order to guarantee that the emerging drawing satisfies the hard conditions of
order diagrams we introduced a vertical invariant that was satisfied in every step
of the algorithm. The algorithm consists of two main ingredients, the first being
the node step that optimizes the drawing in order to represent structural proper-
ties using the proximity of nodes. The second is the edge step that improves the
readability for a human reader by optimizing the distances of lines. Of particular
interest is the line step that enhances the quality of the produced drawings as,
to our knowledge, it is the first of its kind. To avoid local minima, our draw-
ings are first computed in a high dimension and then iterativly reduced into two
dimensions. To make the algorithm easily accessible, we published the source
code and gave recommendations for parameters. Generated drawings were, in
our opinion, suitable to be used for ordinal data analysis. A study using domain
experts to evaluate the quality of the drawings confirmed this observation.

Further work in the realm of order diagram drawing could be to modify the
line step and combine it with algorithms such as DimDraw. Also modifications

16 Dominik Dürrschnabel and Gerd Stumme

that produce additive drawings are of great interest and should be investigated
further. Finally, in the opinion of the authors the research fields of ordinal data
analysis and graph drawing would benefit significantly from the establishment
of a “readability measure” or at least of a decision procedure that, given two
visualizations of the same ordered set identifies the more readable one.

References

1. Albano, A., Chornomaz, B.: Why concept lattices are large: extremal theory for
generators, concepts, and vc-dimension. Int. J. Gen. Syst. 46(5), 440–457 (2017)

2. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

3. Demel, A., Dürrschnabel, D., Mchedlidze, T., Radermacher, M., Wulf, L.: A greedy
heuristic for crossing-angle maximization. In: Biedl, T.C., Kerren, A. (eds.) Graph
Drawing and Network Visualization - 26th International Symposium, GD 2018,
Barcelona, Spain, September 26-28, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 11282, pp. 286–299. Springer (2018)

4. Dürrschnabel, D., Hanika, T., Stumme, G.: Drawing order diagrams through two-
dimension extension. CoRR abs/1906.06208 (2019)

5. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160
(1984)

6. Freese, R.: Automated lattice drawing. In: Eklund, P.W. (ed.) Concept Lattices,
Second International Conference on Formal Concept Analysis, ICFCA 2004, Syd-
ney, Australia, February 23-26, 2004, Proceedings. Lecture Notes in Computer
Science, vol. 2961, pp. 112–127. Springer (2004)

7. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exp. 21(11), 1129–1164 (1991)

8. Ganter, B.: Conflict avoidance in additive order diagrams. Journal of Universal
Computer Science 10(8), 955–966 (2004)

9. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.
Springer (1999)

10. Hong, S., Eades, P., Lee, S.H.: Drawing series parallel digraphs symmetrically.
Comput. Geom. 17(3-4), 165–188 (2000)

11. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568
(1974)

12. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing, Lecture Notes Series on
Computing, vol. 12. World Scientific (2004)

13. Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
2(11), 559–572 (1901)

14. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)

15. Wille, R.: Truncated distributive lattices: Conceptual structures of simple-
implicational theories. Order 20(3), 229–238 (2003)

16. Yevtushenko, S.A.: Computing and visualizing concept lattices. Ph.D. thesis,
Darmstadt University of Technology, Germany (2004)

17. Zschalig, C.: An fdp-algorithm for drawing lattices. In: Eklund, P.W., Diatta, J.,
Liquiere, M. (eds.) Proceedings of the Fifth International Conference on Concept
Lattices and Their Applications, CLA 2007, Montpellier, France, October 24-26,
2007. CEUR Workshop Proceedings, vol. 331. CEUR-WS.org (2007)

	Force-Directed Layout of Order Diagrams using Dimensional Reduction

