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Abstract

We show a 2n/2+o(n)-time algorithm that finds a (non-zero) vector in a lattice L ⊂ Rn

with norm at most Õ(
√
n) · min{λ1(L), det(L)1/n}, where λ1(L) is the length of a shortest

non-zero lattice vector and det(L) is the lattice determinant. Minkowski showed that λ1(L) ≤√
n det(L)1/n and that there exist lattices with λ1(L) ≥ Ω(

√
n)·det(L)1/n, so that our algorithm

finds vectors that are as short as possible relative to the determinant (up to a polylogarithmic
factor).

The main technical contribution behind this result is new analysis of (a simpler variant of) a
2n/2+o(n)-time algorithm from [ADRS15], which was only previously known to solve less useful
problems. To achieve this, we rely crucially on the “reverse Minkowski theorem” (conjectured
by Dadush [DR16] and proven by [RS17]), which can be thought of as a partial converse to the
fact that λ1(L) ≤

√
n det(L)1/n.

Previously, the fastest known algorithm for finding such a vector was the 2.802n+o(n)-time
algorithm due to [LWXZ11], which actually found a non-zero lattice vector with length O(1) ·
λ1(L). Though we do not show how to find lattice vectors with this length in time 2n/2+o(n),
we do show that our algorithm suffices for the most important application of such algorithms:
basis reduction. In particular, we show a modified version of Gama and Nguyen’s slide-reduction
algorithm [GN08], which can be combined with the algorithm above to improve the time-length
tradeoff for shortest-vector algorithms in nearly all regimes—including the regimes relevant to
cryptography.
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1 Introduction

A lattice L ⊂ Rn is the set of integer linear combinations

L := L(B) = {z1b1 + · · · + znbn : zi ∈ Z}

of linearly independent basis vectors B = (b1, . . . ,bn) ∈ Rn×n. We define the length of a shortest
non-zero vector in the lattice as λ1(L) := minx∈L 6=0

‖x‖. (Throughout this paper, ‖ · ‖ is the
Euclidean norm.)

The Shortest Vector Problem (SVP) is the computational search problem whose input is a (basis
for a) lattice L ⊆ Rn, and the goal is to output a shortest non-zero vector y ∈ L with ‖y‖ = λ1(L).
For δ ≥ 1, the δ-approximate variant of SVP (δ-SVP) is the problem of finding a non-zero vector
y ∈ L of length at most δ · λ1(L) given a basis of L.

δ-SVP and its many relatives have found innumerable applications over the past forty years.
More recently, many cryptographic constructions have been discovered whose security is based on
the (worst-case) hardness of δ-SVP or closely related lattice problems. See [Pei16] for a survey.
Such lattice-based cryptographic constructions are likely to be used in practice on massive scales
(e.g., as part of the TLS protocol) in the not-too-distant future [NIS18].

For most applications, it suffices to solve δ-SVP for superconstant approximation factors. E.g.,
cryptanalysis typically requires δ = poly(n). However, our best algorithms for δ-SVP work via (non-
trivial) reductions to δ′-SVP for much smaller δ′ over lattices with smaller rank, typically δ′ = 1 or
δ′ = O(1). E.g., one can reduce nc-SVP with rank n to O(1)-SVP with rank n/(c+1) for constant
c ≥ 1 [GN08, ALNS20]. Such reductions are called basis reduction algorithms [LLL82, Sch87, SE94].

Therefore, even if one is only interested in δ-approximate SVP for large approximation factors,
algorithms for O(1)-SVP are still relevant. (We make little distinction between exact SVP and
O(1)-SVP in the introduction.)

1.1 Sieving for constant-factor-approximate SVP

There is thus a very long line of work [Kan83, AKS01, NV08, PS09, MV13, LWXZ11, WLW15,
ADRS15, AS18, AUV19] on this problem.

The fastest known algorithms for O(1)-SVP run in time 2O(n). With one exception ([MV13]),
all known algorithms with this running time are sieving algorithms. These algorithms work by
sampling 2O(n) not-too-long lattice vectors y1, . . . ,yM ∈ L from some nice distribution over the
input lattice L, and performing some kind of sieving procedure to obtain 2O(n) shorter vectors
x1, . . . ,xm ∈ L. They then perform the sieving procedure again on the xk, and repeat this process
many times.

The most natural sieving procedure was originally studied by Ajtai, Kumar, and Sivaku-
mar [AKS01]. This procedure simply takes xk := yi − yj ∈ L, where i, j are chosen so that
‖yi − yj‖ ≤ (1 − ε)minℓ ‖yℓ‖. In particular, the resulting sieving algorithm clearly finds progres-
sively shorter lattice vectors at each step. So, it is trivial to show that this algorithm will eventually
find a short lattice vector. Unfortunately (and maddeningly), it seems very difficult to say nearly
anything else about the distribution of the vectors when this very simple sieving technique is used,
and in particular, while we know that the vectors must be short, we do not know how to show that
they are non-zero. [AKS01] used clever tricks to modify the above procedure into one for which
they could prove correctness, and the current state-of-the-art is a 20.802n-time algorithm for γ-SVP
for a sufficiently large constant γ > 1 [LWXZ11, WLW15, AUV19].
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In this work, we are more interested in the“sieving by averages”technique, introduced in [ADRS15]
to obtain a 2n+o(n)-time algorithm for exact SVP. This sieving procedure takes xk := (yi + yj)/2
to be the average of two lattice vectors. Of course, L is not closed under taking averages, so one
must choose i, j so that that (yi + yj)/2 ∈ L. This happens if and only if yi,yj lie in the same
coset of 2L, yi = yj mod 2L. Equivalently, the coordinates of yi and yj in the input basis should
have the same parities. So, these algorithms pair vectors according to their cosets (and ignore all
other information about the vectors) and take their averages xk = (yi + yj)/2.

The analysis of these algorithms centers around the discrete Gaussian distribution DL,s over a
lattice, given by

Pr
X∼DL,s

[X = y] ∝ e−π‖y‖2/s2

for a parameter s > 0 and any y ∈ L. When the starting vectors come from this distribution, we are
able to say quite a bit about the distribution of the vectors at each step. (Intuitively, this is because
this algorithm only uses algebraic properties of the vectors—their cosets—and entirely ignores the
geometry.) In particular, [ADRS15] used a careful rejection sampling procedure to guarantee that
the vectors at each step are distributed exactly as DL,s for some parameter s > 0. Specifically, in
each step the parameter lowers by a factor of

√
2, which is exactly what one would expect, taking

intuition from the continuous Gaussian. More closely related to this work is [AS18], which showed
that this rejection sampling procedure is actually unnecessary.

In addition to the above, [ADRS15, Ste17] also present a 2n/2+o(n)-time algorithm that samples
from DL,s as long as the parameter s > 0 is not too small. In particular, we need s to be “large
enough that DL,s looks like a continuous Gaussian.” This algorithm is similar to the 2n+o(n)-time
algorithms in that it starts with independent discrete Gaussian vectors with some high parameter,
and it gradually lowers the parameter using a rejection sampling procedure together with a proce-
dure that takes the averages of pairs of vectors that lie in the same coset modulo some sublattice
(with index 2n/2+o(n)). But, it fails for smaller parameters because the rejection sampling procedure
that it uses must throw out too many vectors in this case. (In [Ste17], a different rejection sampling
procedure is used that never throws away too many vectors, but it is not clear how to implement
it in 2n/2+o(n) time for small parameters s <

√
2η1/2(L).) It was left as an open question whether

there is a suitable variant of this algorithm that works for small parameters, which would lead to an
algorithm to solve SVP in 2n/2+o(n) time. For example, perhaps we could show that this algorithm
solves SVP without doing any rejection sampling at all, as we showed for the 2n+o(n)-time algorithm
in [AS18].

1.2 Hermite SVP

We will also be interested in a variant of SVP called Hermite SVP (HSVP). HSVP is defined in
terms of the determinant det(L) := |det(B)| of a lattice L with basis B. (Though a lattice can
have many bases, one can check that |det(B)| is the same for all such bases, so that this quantity is
well-defined.) Minkowski’s celebrated theorem says that λ1(L) ≤ O(

√
n) ·det(L)1/n, and Hermite’s

constant γn = Θ(n) is the maximal value of λ1(L)2/det(L)2/n. (Hermite SVP is of course named
in honor of Hermite and his study of γn. It is often alternatively called Minkowski SVP.)

For δ ≥ 1, it is then natural to define δ-HSVP as the variant of SVP that asks for any non-zero
lattice vector x ∈ L such that ‖x‖ ≤ δ det(L)1/n. One typically takes δ ≥ √γn ≥ Ω(

√
n), in which

case the problem is total. In particular, there is a trivial reduction from δ
√
γn-HSVP to δ-SVP.

(There is also a non-trivial reduction from δ2-SVP to δ-HSVP for δ ≥ √γn [Lov86].)
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δ-HSVP is an important problem in its own right. In particular, the random lattices most often
used in cryptography typically satisfy λ1(L) ≥ Ω(

√
n) ·det(L)1/n, so that for these lattices δ-HSVP

is equivalent to O(δ/
√
n)-SVP. This fact is quite useful because the best known basis reduction

algorithms [GN08, MW16, ALNS20] yield solutions to both δS-SVP and δH -HSVP with, e.g.,

δH := γ
n−1

2(k−1)

k ≈ kn/(2k) δS := γ
n−k
k−1

k ≈ kn/k−1 , (1)

when given access to an oracle for (exact) SVP in dimension k ≤ n/2. Notice that δH is significantly
better than the approximation factor

√
γnδS ≈

√
nkn/k−1 that one obtains from the trivial reduction

to δS-SVP. (Furthermore, the approximation factor δH in Eq. (1) holds for any k ≤ n.)
In fact, it is easy to check that we will achieve the same value of δH if the reduction is instantiated

with a
√
γk-HSVP oracle in dimension k, rather than an SVP oracle. More surprisingly, a careful

reading of the proofs in [GN08, ALNS20] shows that a
√
γk-HSVP oracle is “almost sufficient” to

even solve δS -SVP. (We make this statement a bit more precise below.)

1.3 Our results

Our main contribution is a simplified version of the 2n/2+o(n)-time algorithm from [ADRS15] and
a novel analysis of the algorithm that gives an approximation algorithm for both SVP and HSVP.

Theorem 1.1 (Informal, approximation algorithm for (H)SVP). There is a 2n/2+o(n)-time algo-
rithm that solves δ-SVP and δ-HSVP for δ ≤ Õ(

√
n).

Notice that this algorithm almost achieves the best possible approximation factor δ for HSVP
since there exists a family of lattices for which λ1(L) ≥ Ω(

√
ndet(L)1/n) (i.e., γn ≥ Ω(n)). So, δ is

optimal for HSVP up to a polylogarithmic factor.
As far as we know, this algorithm might actually solve exact or near-exact SVP, but we do not

know how to prove this. However, by adapting the basis reduction algorithms of [GN08, ALNS20],
we show that Theorem 1.1 is nearly as good (when combined with known results) as a 2k/2-time
algorithm for exact SVP in k dimensions, in the sense that we can already nearly match Eq. (1) in
time 2k/2+o(k) with this.

In slightly more detail, basis reduction procedures break the input basis vectors b1, . . . ,bn into
blocks bi+1, . . . ,bi+k of length k. They repeatedly call their oracle on (projections of) the lattices
generated by these blocks and use the result to update the basis vectors. We observe that the
procedures in [GN08, ALNS20] only need to use an SVP oracle on the last block bn−k+1, . . . ,bn.
For all other blocks, an HSVP oracle suffices. Since we now have a faster algorithm for HSVP
than we do for SVP, we make this last block a bit smaller than the others, so that we can solve
(near-exact) SVP on the last block in time 2k/2+o(k).

When we instantiate this idea with the 20.802n-time algorithm for O(1)-SVP from [LWXZ11,
WLW15, AUV19], it yields the following result. Together with Theorem 1.1, this yields the fastest
known algorithms for δ-SVP for all δ & n1/2.

Theorem 1.2 (Informal). There is a 2k/2+o(k)-time algorithm that solves δ∗H -HSVP with

δ∗H ≈ kn/(2k) ,

for k ≤ n and δ∗S-SVP with

δ∗S ≈ k(n/k)−0.62 ,

for k ≤ n/1.63.
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Problem Approximation factor Previous Best This work

SVP

Exact 2n [*] [ADRS15] —
O(1) 20.802n [*] [WLW15] —

nc for c ∈ (0.5, 0.802] 2
0.401n

c [ALNS20] 2
n
2 [*]

nc for c ∈ (0.802, 1] 2
0.401n

c [ALNS20] —

nc for c > 1 2
0.802n
c+1 [ALNS20] 2

n
2c+1.24

HSVP

√
n 20.802n [*] [WLW15] 2

n
2 [*]

nc for c ≥ 1 2
0.401n

c [ALNS20] 2
n
4c

Table 1: Proven running times for solving (H)SVP. We mark results that do not use basis reduction
with [*]. We omit 2o(n) factors in the running time, and except in the first two rows, polylogarithmic
factors in the approximation factor.

Notice that Theorem 1.2 matches Eq. (1) with block size k exactly for δH , and up to a factor
of k0.37 for δS . This small loss in approximation factor comes from the fact that our last block is
slightly smaller than the other blocks.

Together, Theorems 1.1 and 1.2 give the fastest proven running times for nc-HSVP for all
c > 1/2 and for nc-SVP for all c > 1, as well as c ∈ (1/2, 0.802). Table 1 summarizes the current
state of the art.

1.4 Our techniques

1.4.1 Summing vectors over a tower of lattices

Like the 2n/2+o(n)-time algorithm in [ADRS15], our algorithm for Õ(
√
n)-(H)SVP constructs a

tower of lattices L0 ⊃ L1 ⊃ · · · ⊃ Lℓ = L such that for every i ≥ 1, 2Li−1 ⊂ Li. The index of
Li over Li−1 is 2α for an integer α = n/2 + o(n), and ℓ = o(n). For the purpose of illustrating
our ideas, we make a simplifying assumption here that ℓα is an integer multiple of n, and hence
L0 = L/2αℓ/n is a scalar multiple of L.

And, as in [ADRS15], we start by sampling X1, . . . ,XN ∈ L0 for N = 2α+o(n) from DL0,s. This
can be done efficiently using known techniques, as long as s is large relative to, e.g., the length
of the shortest basis of L0 [GPV08, BLP+13]. Since L0 = L/2αℓ/n, the parameter s can still be
significantly smaller than, e.g., λ1(L). In particular, we can essentially take s ≤ poly(n)λ1(L)/2αℓ/n.

The algorithm then takes disjoint pairs of vectors that are in the same coset of L0/L1, and
adds the pairs together. Since 2L0 ⊂ L1, for any such pair Xi,Xi, Yk = Xi +Xj is in L1. (This
adding is analogous to the averaging procedure from [ADRS15, AS18] described above. In that
case, L1 = 2L0, so that it is natural to divide vectors in L by two, while here adding seems more
natural.) We thus obtain approximately N/2 vectors in L1 (up to the loss due to the vectors that
could not be paired), and repeat this procedure many times, until finally we obtain vectors in
Lℓ = L, each the sum of 2ℓ of the original Xi.

To prove correctness, we need to prove that with high probability some of these vectors will be
both short and non-zero. It is actually relatively easy to show that the vectors are short—at least
in expectation. To prove this, we first use the fact that the expected squared norm of the Xi is
bounded by ns2 (which is what one would expect from the continuous Gaussian distribution). And,
the original Xi are distributed symmetrically, i.e., Xi is as likely to equal −x as it is to equal x).

Furthermore, our pairing procedure is symmetric, i.e., if we were to replace Xi with −Xi, the
pairing procedure would behave identically. (This is true precisely because 2L0 ⊂ L1—we are using
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the fact that x = −x mod L1 for any x ∈ L0.) This implies that

E[〈Xi,Xj〉 | Ei,j] = E[〈Xi,−Xj〉 | Ei,j] = 0 ,

where Ei,j is the event that Xi is paired with Xj. Therefore,

E[‖Xi +Xj‖2 | Ei,j ] = E[‖Xi‖2 | Ei,j] + E[‖Xj‖2 | Ei,j ] + 2E[〈Xi,Xj〉 | Ei,j] ≈ 2E[‖Xi‖2] .

The same argument works at every step of the algorithm. So, (if we ignore the subtle distinction
between E[‖Xi‖2 | Ei,j] and E[‖Xi‖2]), we see that our final vectors have expected squared norm

2ℓ E[‖Xi‖2] ≤ 2ℓns2 ≤ poly(n)2ℓ(1−2αn) · λ1(L)2 . (2)

By taking, e.g., α = n/2 + n/ log n < n + o(n) and ℓ = log2 n, we see that we can make this
expectation small relative to λ1(L).

The difficulty, then, is “only” to show that the distribution of the final vectors is not heavily
concentrated on zero. Of course, we can’t hope for this to be true if, e.g., the expectation in Eq. (2)
is much smaller than λ1(L)2. And, as we will discuss below, if we choose α and ℓ so that this
expectation is sufficiently large, then techniques from prior work can show that the probability of
zero is low. Our challenge is therefore to bound the probability of zero for the largest choices of α
and ℓ (and therefore the lowest expectation in Eq. (2)) that we can manage.

1.4.2 Gaussians over unknown sublattices

Peikert and Micciancio (building on prior work) showed what they called a “convolution theorem”
for discrete Gaussians. Their theorem says that the sum of discrete Gaussian vectors is statistically
close to a discrete Gaussian (with parameter increased by a factor of

√
2), provided that the

parameter s is a bit larger than the smoothing parameter η(L) of the lattice L [MP13]. This
(extremely important) parameter η(L), was introduced by Micciancio and Regev [MR07], and has
a rather technical (and elegant) definition. (See Section 2.4.) Intuitively, η(L) is minimal such that
for any s > η(L), DL,s “looks like a continuous Gaussian distribution.” E.g., for s > η(L), the
moments of the discrete Gaussian distribution are quite close to the moments of the continuous
Gaussian distribution (with the same parameter).

In fact, [MP13] showed a convolution for lattice cosets, not just lattices, i.e., the sum of a
vector sampled from DL+t1,s and a vector sampled from DL+t2,s yields a vector distributed as
DL+t1+t2,

√
2s. Since our algorithm sums vectors sampled from a discrete Gaussian over L0, con-

ditioned on their cosets modulo L1, it is effectively summing discrete Gaussians over cosets of L1.
So, as long as we stay above the smoothing parameter of L1 ⊃ L, our vectors will be statistically
close to discrete Gaussians, allowing us to easily bound the probability of zero.

However, [ADRS15] already showed how to use a variant of this algorithm to obtain samples
from exactly the discrete Gaussian above smoothing. And, more generally, there is a long line of
work that uses samples from the discrete Gaussian above smoothing to find “short vectors” from
a lattice, but the length of these short vectors is always proportional to η(L). The problem is
that in general η(L) can be arbitrarily larger than λ1(L) and det(L)1/n. (To see this, consider the
two-dimensional lattice generated by (T, 0), (0, 1/T ) for large T , which has η(L) ≈ T , λ1(L) = 1/T
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and det(L) = 1.) So, this seems useless for solving (H)SVP, instead yielding a solution to another
variant of SVP called SIVP.1

Our solution is essentially to apply these ideas from [MP13] to an unknown sublattice L′ ⊆ L.
(Here, one should imagine a sublattice generated by fewer than n vectors. Jumping ahead a bit, the
reader might consider the example L′ = Zv = {0,±v,±2v, . . . , }, the rank-one sublattice generated
by v, a shortest non-zero vector in the lattice.) Indeed, the discrete Gaussian over L, DL,s, can be
viewed as a mixture of discrete Gaussians over cosets of L′, DL,s = DL′+C,s, where C ∈ L/L′ is
some random variable over cosets of L′. (Put another way, one could obtain a sample from DL,s
by first sampling a coset C ∈ L/L′ from some appropriately chosen distribution and then sampling
from DL′+C,s.)

The basic observation behind our analysis is that we can now apply (a suitable variant of) [MP13]’s
convolution theorem in order to see that the sum of two mixtures of Gaussians over L′, X1,X2 ∼
DL′+C,s, yields a new mixture of Gaussians DL′+C′,

√
2s for some C′, provided that s is sufficiently

large relative to η(L′).
Ignoring many technical details, this shows that our algorithm can be used to output a distri-

bution of the form DL′+C,s for some random variable C ∈ L/L′ provided that s≫ η(L′). Crucially,
we only need to consider L′ in the analysis; the algorithm does not need to know what L′ is for this
to work. Furthermore, we do not care at all about the distribution of C! We already know that
our algorithm samples from a distribution that is short in expectation (by the argument above), so
that the only thing we need from the distribution DL′+C,s is that it is not zero too often. Indeed,
when C is not the zero coset (i.e., C /∈ L′), then DL′+C,s is never zero, and when C is zero, then
we get a sample from DL′,s for s ≫ η(L′), in which case well-known techniques imply that we are
unlikely to get zero.

1.4.3 Smooth sublattices

So, in order to prove that our algorithm finds short vectors, it remains to show that there exists
some sublattice L′ ⊆ L with low smoothing parameter—a “smooth sublattice.” In more detail, our
algorithm will find a non-zero vector with length less than

√
n · η(L′) for any sublattice L′. Indeed,

as one might guess, taking L′ = Zv = {0,±v,±2v, . . . , } to be the lattice generated by a shortest
non-zero vector v, we have η(L′) = polylog(n)‖v‖ = polylog(n)λ1(L) (where the polylogarithmic
factor arises because of “how smooth we need L′ to be”). This immediately yields our Õ(

√
n)-SVP

algorithm.
To solve Õ(

√
n)-HSVP, we must argue that every lattice has a sublattice L′ ⊆ L with η(L′) ≤

polylog(n) ·det(L)1/n. In fact, for very different reasons, Dadush conjectured exactly this statement
(phrased slightly differently), calling it a “reverse Minkowski conjecture” [DR16]. (The reason for
this name might not be clear in this context, but one can show that this is a partial converse to
Minkowski’s theorem.) Later, Regev and Stephens-Davidowitz proved the conjecture [RS17]. Our
result then follows from this rather heavy hammer.

1It is not known how to use an SIVP oracle for basis reduction, which makes it significantly less useful than SVP.
[MR07, MP13] and other works used these ideas to reduce SIVP to the problem of breaking a certain cryptosystem,
in order to argue that the cryptosystem is secure. They were therefore primarily interested in SIVP as an example
of a hard lattice problem, rather than as a problem that one might actually wish to solve.
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1.5 Open questions and directions for future work

We leave one obvious open question: Does our algorithm (or some variant) solve γ-SVP for a better
approximation factor? It is clear that our current analysis cannot hope to do better than δ ≈ √n,
but we see no fundamental reason why the algorithm cannot achieve, say, δ = polylog(n) or even
δ = 1! (Indeed, we have been trying to prove something like this for roughly five years.)

We think that even a negative answer to this question would also be interesting. In particular, it
is not currently clear whether our algorithm is “fundamentally an HSVP algorithm.” For example,
if one could show that our algorithm fails to output vectors of length polylog(n) · λ1(L) for some
family of input lattices L, then this would be rather surprising. Perhaps such a result would be our
first hint at a true algorithmic separation between the optimal running times for the two problems.

2 Preliminaries

We write log for the base-two logarithm. We use the notation a = 1± δ and a = e±δ to denote the
statements 1− δ ≤ a ≤ 1 + δ and e−δ ≤ a ≤ eδ , respectively.

Definition 2.1. We say that a distribution D̂ is δ-similar to another distribution D if for all x in
the support of D, we have

Pr
X∼D̂

[X = x] = e±δ · Pr
X∼D

[X = x] .

2.1 Probability

The following inequality gives a concentration result for the values of (sub-)martingales that have
bounded differences.

Lemma 2.2 ([AS04, Azuma’s inequality, Chapter 7]). Let X0,X1, . . . be a set of random variables
that form a discrete-time sub-martingale, i.e., for all n ≥ 0,

E[Xn+1 |X1, . . . ,Xn] ≥ Xn .

If for all n ≥ 0, |Xn −Xn−1| ≤ c, then for all integers N and positive real t,

Pr[XN −X0 ≤ −t] ≤ exp

( −t2
2Nc2

)
.

We will need the following corollary of the above inequality.

Corollary 2.3. Let α ∈ (0, 1), and let Y1, Y2, Y3, . . . be random variables in [0, 1] such that for all
n ≥ 0

E[Yn+1|Y1, . . . , Yn] ≥ α .

Then, for all positive integers N and positive real t,

Pr[
N∑

i=1

Yi ≤ Nα− t] ≤ exp

(−t2
2N

)
.

Proof. Let X0 = 0, and for all i ≥ 1,

Xi := Xi−1 + Yi − α =

i∑

j=1

Yi − i · α .

The statement then follows immediately from Lemma 2.2.

7



2.2 Lattices

A lattice L ⊂ Rn is the set of integer linear combinations

L := L(B) = {z1b1 + · · ·+ zkbk : zi ∈ Z}

of linearly independent basis vectors B = (b1, . . . ,bk) ∈ Rn×k. We call k the rank of the lattice.
Given a lattice L, the basis is not unique. For any lattice L, we use rank(L) to denote its rank.
We use λ1(L) to denote the length of the shortest non-zero vector in L, and more generally, for
1 ≤ i ≤ k,

λi(L) := min{r : dim span({y ∈ L : ‖y‖ ≤ r}) ≥ i} .
For any lattice L ⊂ Rn, its dual lattice L∗ is defined to be the set of vectors in the span of L

that have integer inner products with all vectors in L. More formally:

L∗ = {x ∈ span(L) : ∀y ∈ L, 〈x,y〉 ∈ Z} .

We often assume without loss of generality that the lattice is full rank, i.e., that n = k, by
identifying span(L) with Rk. However, we do often work with sublattices L′ ⊆ L with rank(L′) <
rank(L).

For any sublattice L′ ⊆ L, L/L′ denotes the set of cosets which are translations of L′ by vectors
in L. In particular, any coset can be denoted as L′ + c for c ∈ L. When there is no ambiguity, we
drop the L′ and use c to denote a coset.

2.3 The discrete Gaussian Distribution

For any parameter s > 0, we define Gaussian mass function ρs : R
n → R to be:

ρs(x) = exp
(
− π‖x‖2

s2

)
,

and for any discrete set A ⊂ Rn, its Gaussian mass is defined as ρs(A) =
∑

x∈A ρs(x).
For a lattice L ⊂ Rn, shift t ∈ Rn, and parameter s > 0, we have the following convenient

formula for the Gaussian mass of the lattice coset L+t, which follows from the Poisson Summation
Formula

ρs(L+ t) =
sn

det(L) ·
∑

w∈L∗

ρ1/s(w) cos(2π〈w, t〉) . (3)

In particular, for the special case t = 0, we have ρs(L) = snρ1/s(L∗)/det(L).

Definition 2.4. For a lattice L ⊂ Rn, u ∈ Rn, the discrete Gaussian distribution DL+u,s over
L+ u with parameter s > 0 is defined as follows. For any x ∈ L+ u,

Pr
X∼DL+u,s

[X = x] =
ρs(x)

ρs(L+ u)
.

We will need the following result about the discrete Gaussian distribution.

Lemma 2.5 ([DRS14, Lemma 2.13]). For any lattice L ⊂ Rn, s > 0, u ⊂ Rn, and t > 1√
2π
,

Pr
X∼DL+u,s

(‖X‖ > ts
√
n) <

ρs(L)
ρs(L+ u)

(√
2πet2 exp(−πt2)

)n
.

8



2.4 The smoothing parameter

Definition 2.6. For a lattice L ⊂ Rn and ε > 0, the smoothing parameter ηε(L) is defined as the
unique value that satisfies ρ1/ηε(L)(L∗\{0}) = ε.

We will often use the basic fact that ηε(αL) = αηε(L) for any α > 0 and ηε(L′) ≥ ηε(L) for any
full-rank sublattice L′ ⊆ L.

Claim 2.7 ([MR07, Lemma 3.3]). For any ε ∈ (0, 1/2), we have

ηε(Z) ≤
√

log(1/ε) .

We will need the following simple results, which follows immediately from Eq. (3).

Lemma 2.8 ([Reg09, Claim 3.8]). For any lattice L, s ≥ ηε(L), and any vectors c1, c2, we have
that

1− ε

1 + ε
≤ ρs(L + c1)

ρs(L + c2)
≤ 1 + ε

1− ε
.

Thus, for ε < 1/3,

e−3ε ≤ ρs(L+ c1)

ρs(L+ c2)
≤ e3ε .

We prove the following statement.

Theorem 2.9. For any lattice L ⊂ Rn with rank k ≥ 20,

η1/2(L) ≥ λk(L)/
√
k .

Proof. If L is not a full-rank lattice, then we can project to a subspace given by the span of L. So,
without loss of generality, we assume that L is a full-rank lattice, i.e., k = n.

Suppose λn(L) >
√
nη1/2(L). Then there exists a vector u ∈ Rn such that dist(u,L) >

1
2

√
nη1/2(L). Then, using Lemma 2.5 with t = 1/2, s = η1/2(L), we have

1 = Pr
X∼DL+u,η1/2(L)

[
‖X‖ > st

√
n
]

<
ρs(L)

ρs(L+ u)

(√
2πet2 exp(−πt2)

)n

≤ 1 + 1/2

1− 1/2
(
√

πe/2 · e−π/4)n using Lemma 2.8

≤ 3 · (0.943)n

< 1 since k = n ≥ 20 ,

which is a contradiction.

Claim 2.10. For any lattice L ⊂ Rn and any parameters s ≥ s′ ≥ η1/2(L),

ρs(L)
ρs′(L)

≥ 2s

3s′
.
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Proof. By the Poisson Summation Formula (Eq. (3)), we have

ρs(L) = sn ·
ρ1/s(L∗)
det(L) ≥ sn/det(L) ,

and similarly,

ρs′(L) = (s′)n ·
ρ1/s′(L∗)
det(L) ≤ 3(s′)n/(2 det(L)) ,

since ρ1/s′(L∗) ≤ 3/2 for s′ ≥ η1/2(L). Combining the two inequalities gives ρs(L) ≥ 2(s/s′)n/3 ≥
2(s/s′)/3, as needed.

Claim 2.11. For any lattice L ⊂ Rn and any s > 0,

E
X∼DL,s

[‖X‖2] ≤ ns2

2π
.

Lemma 2.12. For s ≥ ηε(L), and any real factor k ≥ 1, ks ≥ η
εk2

(L).

Proof.

∑

w∈L∗\{0}
ρ1/(ks)(w) =

∑

w∈L∗\{0}
e−π‖w‖k2s2

=
∑

w∈L∗\{0}
ρ1/s(w)k

2

≤
( ∑

w∈L∗\{0}
ρ1/s(w)

)k2

≤ εk
2
.

Corollary 2.13. For any lattice L ⊂ Rn and ε ∈ (0, 1/2), ηε(L) ≤
√

log(1/ε) · η1/2(L).

Proof. Let k =
√

log(1/ε) and thus (12)
k2 = ε. By Lemma 2.12, kη1/2(L) ≥ ηε(L).

We will need the following useful lemma concerning the convolution of two discrete Gaussian
distributions. See [GMPW20] for a very general result of this form (and a list of similar results).
Our lemma differs from those in [GMPW20] and elsewhere in that we are interested in a stronger
notion of statistical closeness: point-wise multiplicative distance, rather than statistical distance.
One can check that this stronger variant follows from the proofs in [GMPW20], but we give a
separate proof for completeness.

Lemma 2.14. For any lattice L ⊂ Rn, ε ∈ (0, 1/3), parameter s ≥
√
2ηε(L), and shifts t1, t2 ∈ Rn,

let Xi ∼ DL+ti,s be independent random variables. Then the distribution of X1 +X2 is 6ε-similar
to DL+t1+t2,

√
2s.
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Proof. Let y ∈ L+ t1 + t2. We have

Pr[X1 +X2 = y] =
1

ρs(L+ t1)ρs(L + t2)

∑

x∈L+t1

exp(−π(‖x‖2 + ‖y − x‖2)/s2)

=
1

ρs(L+ t1)ρs(L + t2)

∑

x∈L+t1

exp(−π(‖y‖2/2 + ‖2x− y‖2/2)/s2)

=
ρ√2s(y)

ρs(L+ t1)ρs(L + t2)
ρs/

√
2(L+ t1 − y/2)

= e±3ερ√2s(y) ·
ρs/

√
2(L)

ρs(L+ t1)ρs(L + t2)
,

where the last step follows from Lemma 2.8. By applying this for all y′ ∈ L+ t1 + t2, we see that

Pr[X1 +X2 = y] = e±3ε ·
ρ√2s(y)∑

y′∈L+t1+t2
χy′ρ√2s(y

′)

for some χy′ = e±3ε. Therefore,

Pr[X1 +X2 = y] = e±6ε ·
ρ√2s(y)

ρ√2s(L+ t1 + t2)
,

as needed.

2.5 Lattice problems

In this paper, we study the algorithms for the following lattice problems.

Definition 2.15 (r-HSVP). For an approximation factor r := r(n) ≥ 1, the r-Hermite Approxi-
mate Shortest Vector Problem (r-HSVP) is defined as follows: Given a basis B for a lattice L ⊂ Rn,
the goal is to output a vector x ∈ L\{0} with ‖x‖ ≤ r · det(L)1/n.

Definition 2.16 (r-SVP). For an approximation factor r := r(n) ≥ 1, the r-Shortest Vector
Problem (r-SVP) is defined as follows: Given a basis B for a lattice L ⊂ Rn, the goal is to output
a vector x ∈ L\{0} with ‖x‖ ≤ r · λ1(L).

It will be convenient to define a generalized version of SVP, of which HSVP and SVP are special
cases.

Definition 2.17 (η-GSVP). For a function η mapping lattices to positive real numbers, the η-
Generalized Shortest Vector Problem η-GSVP is defined as follows: Given a basis B for a lattice
L ⊂ Rn and a length bound d ≥ η(L), the goal is to output a vector x ∈ L\{0} with ‖x‖ ≤ d.

To recover r-SVP or r′-HSVP, we can take η(L) = rλ1(L) or η(L) = r′ det(L)1/n respectively.
Below, we will set η to be a new parameter, which in particular will satisfy η(L) ≤ Õ(

√
n) ·

min{λ1(L),det(L)1/n}.
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2.6 Gram-Schmidt orthogonalization

For any given basis B = (b1, . . . ,bn) ∈ Rm×n, we define the sequence of projections πi :=
π{b1,...,bi−1}⊥ where πW⊥ refers to the orthogonal projection onto the subspace orthogonal to W .
As in [GN08, ALNS20], we use B[i,j] to denote the projected block (πi(bi), πi(bi+1), . . . , πi(bj)).

The Gram-Schmidt orthogonalization (GSO) B∗ := (b∗
1, . . . ,b

∗
n) of a basis B is as follows: for

all i ∈ [1, n],b∗
i := πi(bi) = bi −

∑
j<i µi,jb

∗
j , where µi,j = 〈bi,b

∗
j 〉/‖b∗

j‖2.

Theorem 2.18 ([GPV08, Lemma 3.1]). For any lattice L ⊂ Rn with basis B := (b1, . . . ,bn) and
any ε ∈ (0, 1/2),

ηε(L) ≤
√

log(n/ε) ·max
i
‖b∗

i ‖ .

For γ ≥ 1, a basis is γ-HKZ-reduced if for all i ∈ {1, . . . , n}, ‖b∗
i ‖ ≤ γ · λ1(πi(L)).

We say that a basisB is size-reduced if it satisfies the following condition: for all i 6= j, |µi,j| ≤ 1
2 .

A size-reduced basis B satisfies that ‖B‖ ≤ √n‖B∗‖, where ‖B‖ is the length of the longest basis
vector in B. It is known that we can efficiently transform any basis into a size-reduced basis while
maintaining the lattice generated by the basis L(B) as well as the GSO B∗. We call such operation
size reduction.

2.7 Some lattice algorithms

Theorem 2.19 ([LLL82]). Given a basis B ∈ Qn×n, there is an algorithm that computes a vector
x ∈ L(B) of length at most 2n/2 · λ1(L(B)) in polynomial time.

We will prove a strictly stronger result than the theorem below in the sequel, but this weaker
result will still prove useful.

Theorem 2.20 ([ADRS15, GN08]). There is a 2r+o(r) · poly(n)-time algorithm that takes as input
a (basis for a) lattice L ⊂ Rn and 2 ≤ r ≤ n and outputs a γ-HKZ-reduced basis for L, where
γ := rn/r.

Theorem 2.21 ([BLP+13]). There is a probabilistic polynomial-time algorithm that takes as input a
basis B for an n-dimensional lattice L ⊂ Rn, a parameter s ≥ ‖B∗‖

√
10 log n and outputs a vector

that is distributed as DL,s, where ‖B∗‖ is the length of the longest vector in the Gram-Schmidt
orthogonalization of B.

2.8 Lattice basis reduction

LLL reduction. A basis B = (b1, . . . ,bn) is ε-LLL-reduced [LLL82] for ε ∈ [0, 1] if it is a
size-reduced basis and for 1 ≤ i < n, the projected block B[i,i+1] satisfies Lovász’s condition:
‖b∗

i ‖2 ≤ (1+ε)‖µi,i−1b
∗
i−1+b∗

i ‖2 . For ε ≥ 1/poly(n), an ε-LLL-reduced basis for any given lattice
can be computed efficiently.

SVP reduction and its extensions. Let B = (b1, . . . ,bn) be a basis of a lattice L and δ ≥ 1
be approximation factors.

We say that B is δ-SVP-reduced if ‖b1‖ ≤ δ ·λ1(L). Similarly, we say that B is δ-HSVP-reduced
if ‖b1‖ ≤ δ · vol(L)1/n.
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B is δ-DHSVP-reduced [GN08, ALNS20] (where D stands for dual) if the reversed dual basis
B−s is δ-HSVP-reduced and it implies that

vol(L)1/n ≤ δ · ‖b∗
n‖ .

Given a δ-(H)SVP oracle on lattices with rank at most n, we can efficiently compute a δ-(H)SVP-
reduced basis or a δ-D(H)SVP-reduced basis for any rank n lattice L ⊆ Zm. Furthermore, this also
applies for a projected block of basis. More specifically, with access to a δ-(H)SVP oracle for lattices
with rank at most k, given any basis B = (b1, . . . ,bn) ∈ Zm×n of L and an index i ∈ [1, n− k+1],
we can efficiently compute a size-reduced basis C = (b1, . . . ,bi−1, ci, . . . , ci+k−1,bi+k, . . . ,bn) such
that C is a basis for L and the projected block C[i,i+k−1] is δ-(H)SVP-reduced or δ-D(H)SVP
reduced. Moreover, we note the following:
• If C[i,i+k−1] is δ-(H)SVP-reduced, the procedures in [GN08, MW16] equipped with δ-(H)SVP-

oracle ensure that ‖C∗‖ ≤ ‖B∗‖;
• If C[i,i+k−1] is δ-D(H)SVP-reduced, the inherent LLL reduction implies ‖C∗‖ ≤ 2k‖B∗‖.

Indeed, the GSO of C[i,i+k−1] satisfies

‖(C[i,i+k−1])
∗‖ ≤ 2k/2λk(L(C[i,i+k−1]))

(by [LLL82, p. 518, Line 27]) and λk(L(C[i,i+k−1])) ≤
√
k‖B∗‖. Here, λk(·) denotes the k-th

minimum.
Therefore, with size reduction, performing poly(n, log ‖B‖) many such operations will increase

‖B∗‖ and hence ‖B‖ by at most a factor of 2poly(n,log ‖B‖). If the number of operations is bounded
by poly(n, log ‖B‖), all intermediate steps and the total running time (excluding oracle queries)
will be polynomial in the initial input size; Details can be found in e.g., [GN08, LN14]. Hence, we
will focus on bounding the number of calls to such block reduction subprocedures when we analyze
the running time of basis reduction algorithms.

Twin reduction The following notion of twin reduction and the subsequent fact comes from
[GN08, ALNS20].

A basis B = (b1, . . . ,bd+1) is δ-twin-reduced if B[1,d] is δ-HSVP-reduced and B[2,d+1] is δ-
DHSVP-reduced.

Fact 2.22. If B := (b1, . . . ,bd+1) ∈ Rm×(d+1) is δ-twin-reduced, then

‖b1‖ ≤ δ2d/(d−1)‖b∗
d+1‖ . (4)

2.9 The DBKZ algorithm

We augment Micciancio and Walter’s elegant DBKZ algorithm [MW16] with a δH -HSVP-oracle
instead of an SVP-oracle since the SVP-oracle is used as a

√
γk-HSVP oracle everywhere in their

algorithm. See [ALNS20] for a high-level sketch of the proof.

Theorem 2.23. For integers n > k ≥ 2, an approximation factor 1 ≤ δH ≤ 2k, an input basis
B0 ∈ Zm×n for a lattice L ⊆ Zm, and N := ⌈(2n2/(k − 1)2) · log(n log(5‖B0‖)/ε)⌉ for some
ε ∈ [2−poly(n), 1], Algorithm 1 outputs a basis B of L in polynomial time (excluding oracle queries)
such that

‖b1‖ ≤ (1 + ε) · (δH)
n−1
(k−1)vol(L)1/n ,

by making N · (2n − 2k + 1) + 1 calls to the δH -HSVP oracle for lattices with rank k.
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Algorithm 1 The Micciancio-Walter DBKZ algorithm [MW16, Algorithm 1]

Input: A block size k ≥ 2, number of tours N , a basis B = (b1, · · · ,bn) ∈ Zm×n, and access to a δH -HSVP
oracle for lattices with rank k.

Output: A new basis of L(B).
1: for ℓ = 1 to N do

2: for i = 1 to n− k do

3: δH -HSVP-reduce B[i,i+k−1].
4: end for

5: for j = n− k + 1 to 1 do

6: δH -DHSVP-reduce B[j,j+k−1]

7: end for

8: end for

9: δH -HSVP-reduce B[1,k].
10: return B.

3 Smooth sublattices and ηε(L)
The analysis of our algorithm relies on the existence of a smooth sublattice L′ ⊆ L of our input
lattice L ⊂ Rn, i.e., a sublattice L′ such that ηε(L′) is small (relative to, say, λ1(L) or det(L)1/n).
To that end, for ε > 0 and a lattice L ⊂ Rn, we define

ηε(L) := min
L′⊆L

ηε(L′) ,

where the minimum is taken over all sublattices L′ ⊆ L. (It is not hard to see that the minimum is in
fact achieved. Notice that any minimizer L′ must be a primitive sublattice, i.e., L′ = L∩ span(L′).)

We will now prove that ηε(L) is bounded both in terms of λ1(L) and det(L).

Lemma 3.1. For any lattice L ⊂ Rn and any ε ∈ (0, 1/2),

λ1(L)/
√
n ≤ ηε(L) ≤

√
log(1/ε) ·min{λ1(L), 10(log n+ 2) det(L)1/n} .

The bounds in terms of λ1(L) are more-or-less trivial. The bound ηε(L) .
√

log(1/ε) log n det(L)1/n
follows from the main result in [RS17] (originally conjectured by Dadush [DR16]), which is called
a “reverse Minkowski theorem” and which we present below. (In fact, Lemma 3.1 is essentially
equivalent to the main result in [RS17].)

Definition 3.2. A lattice L ⊂ Rn is a stable lattice if det(L) = 1 and det(L′) ≥ 1 for all lattices
L′ ⊆ L.

Theorem 3.3 ([RS17]). For any stable lattice L ⊂ Rn, η1/2(L) ≤ 10(log n+ 2).

Proof of Lemma 3.1. The lower bound on ηε(L) follows immediately from Theorem 2.9 together
with the fact that λ1(L) ≤ λ1(L′) ≤ λn(L′) for any sublattice L′ ⊆ L. The bound ηε(L) ≤√

log(1/ε) ·λ1(L) is immediate from Claim 2.7 applied to the one-dimensional lattice Zv generated
by v ∈ L with ‖v‖ = λ1(L).

So, we only need to prove that η1/2(L) ≤ 10(log n+2) det(L)1/n. The result for all ε ∈ (0, 1/2)
then follows from Corollary 2.13.

We prove this by induction on n. The result is trivial for n = 1. (Indeed, for n = 1 we have
det(L)1/n = λ1(L).) For n > 1, we first assume without loss of generality that det(L) = 1. If
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L ⊂ Rn is stable, then the result follows immediately from Theorem 3.3. Otherwise, there exists
a sublattice L′ ⊂ L such that det(L′) < 1. Notice that k := rank(L′) < n. Therefore, by the
induction hypothesis, η1/2(L′) ≤ 10(log k + 2) det(L′)1/k < 10(log n + 2). The result then follows
from the fact that ηε(L) ≤ ηε(L′) for any sublattice L′ ⊆ L.

3.1 Sampling with parameter poly(n) · ηε(L)
Lemma 3.4. For any lattice L ⊂ Rn, γ ≥ 1, ε ∈ (0, 1/2), γ-HKZ-reduced basis B = (b1, . . . ,bn)
of L, ε ∈ (0, 1/2), and index i ∈ {2, . . . , n} such that

‖b∗
i ‖ > γ

√
n · ηε(L) ,

we have ηε(L(b1, . . . ,bi−1)) = ηε(L) .
Proof. Suppose that L′ ⊆ L satisfies ηε(L′) = ηε(L) < ‖b∗

i ‖/(γ
√
n) with k := rank(L′). We wish

to show that L′ ⊆ L(b1, . . . ,bi−1), or equivalently, that πi(L′) = {0}. Indeed, by Theorem 2.9,
λk(L′) ≤

√
k ·ηε(L′) ≤

√
n ·ηε(L). In particular, there exist v1, . . . ,vk ∈ L′ with span(v1, . . . ,vk) =

span(L′) and
‖πi(vj)‖ ≤ ‖vj‖ ≤ λk(L′) ≤

√
n · ηε(L) < ‖b∗

i ‖/γ
for all j ∈ {1, . . . , k}. Therefore, if πi(vj) 6= 0. Then, πi(vj) ∈ πi(L) is a non-zero vector with norm
strictly less than ‖b∗

i ‖/γ, which implies that λ1(πi(L)) < ‖b∗
i ‖/γ, contradicting the assumption

that B is a γ-HKZ basis. Therefore, πi(vj) = 0 for all j, which implies that πi(L′) = {0}, i.e.,
L′ ⊆ L(b1, . . . ,bi−1), as needed.

Proposition 3.5. There is a (2r+o(r) + M) · poly(n, logM)-time algorithm that takes as input a
(basis for a) lattice L ⊂ Rn, 2 ≤ r ≤ n, an integer M ≥ 1, and a parameter

s ≥ rn/r
√

n log n · ηε(L)

for some ε ∈ (0, 1/2) and outputs a (basis for a) sublattice L̂ ⊆ L with ηε(L̂) = ηε(L) and
X1, . . . ,XM ∈ L̂ that are sampled independently from DL̂,s.

Proof. The algorithm takes as input a (basis for a) lattice L ⊂ Rn, 2 ≤ r ≤ n, M ≥ 1, and a
parameter s > 0 and behaves as follows. It first uses the procedure from Theorem 2.20 to compute
a γ-HKZ reduced basis b1, . . . ,bn, where γ := rn/r. Let i ∈ {1, . . . , n} be maximal such that
‖b∗

j‖ ≤ s/
√
log n for all j ≤ i, and let L̂ := L(b1, . . . ,bi). (If no such i exists, the algorithm

simply fails.) The algorithm then runs the procedure from Theorem 2.21 repeatedly to sample
X1, . . . ,XM ∼ DL̂,s and outputs L̂ and X1, . . . ,XM .

The running time of the algorithm is clearly (210r +M) · poly(n, logM). By Theorem 2.21, the
Xi have the correct distribution. Notice that, if the algorithm fails, then

‖b1‖ > s/
√

log n ≥ γ
√
n · ηε(L) .

Recalling that ‖b1‖ ≤ γλ1(L), it follows that
√
nηε(L) < λ1(L), which contradicts Lemma 3.1. So,

the algorithm never fails (provided that the promise on s holds).
It remains to show that ηε(L) = ηε(L(b1, . . . ,bi)). If i = n, then this is trivial. Otherwise,

i ∈ {1, . . . , n− 1}, and we have

‖b∗
i+1‖ > s/

√
log n ≥ γ

√
n · ηε(L) .

The result follows immediately from Lemma 3.4.
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4 An approximation algorithm for HSVP and SVP

In this section, we present our algorithm that solves Õ(
√
n)-HSVP and Õ(

√
n)-SVP in 2n/2+o(n)

time. More precisely, we provide a detailed analysis of a simple “pair-and-sum” algorithm, which
will solve O(

√
n) · ηε(L)-GSVP for ε = 1/poly(n). This in particular yields an algorithm that

simultaneously solves Õ(
√
n)-SVP and Õ(

√
n)-HSVP.

4.1 Mixtures of Gaussians

We will be working with random variables X that are “mixtures”of discrete Gaussians, i.e., random
variables that can be written as DL+C,s for some lattice L ⊂ Rn, parameter s > 0, and random
variable C ∈ Rn. In other words, X can be sampled by first sampling C ∈ Rn from some arbitrary
distribution and then sampling X from DL+C,s. E.g., the discrete Gaussian DL,s itself is such a

distribution, as is the discrete GaussianDL̂,s for any superlattice L̂ ⊇ L. Indeed, in our applications,

we will always have C ∈ L̂ for some superlattice L̂ ⊇ L, and we will initialize our algorithm with
samples from DL̂,s.

Our formal definition below is a bit technical, since we must consider the joint distribution of
many such random variables that are only δ-similar to these distributions and satisfy a certain
independence property. In particular, we will work with X1, . . . ,XM such that each Xi is δ-similar
to Yi ∼ DL+Ci,s, where Ci is an arbitrary random variable (that might depend on the Xj) but
once Ci is fixed, Yi is sampled from DL+Ci,s independently of everything else. Here and below, we
adopt the convention that Pr[A | B] = 0 whenever Pr[B] = 0, i.e., all probabilities are zero when
conditioned on events with probability zero.

Definition 4.1. For (discrete) random variables X1, . . . ,Xm ∈ Rn and i ∈ {1, . . . ,m}, let X−i :=
(X1, . . . ,Xi−1,Xi+1, . . . ,Xm) ∈ R(m−1)n. We say that X1, . . . ,Xm are δ-similar to a mixture of
independent Gaussians over L with parameter s > 0 if for any i ∈ {1, . . . ,m}, y ∈ Rn, and
w ∈ R(m−1)n,

Pr[Xi = y | X−i = w] = e±δ · ρs(y)

ρs(L + y)
· Pr[Xi ∈ L+ y | X−i = w] .

Additionally we will need the distribution we obtain at every step to be symmetric about the
origin as defined below.

Definition 4.2. We say that a list of (discrete) random variables X1, . . . ,Xm ∈ Rn is symmetric
if for any i ∈ {1, . . . ,m}, any y ∈ Rn, and any w ∈ R(m−1)n,

Pr[Xi = y | X−i = w] = Pr[Xi = −y | X−i = w] .

We need the following simple lemma that bounds the probability of X being 0, where X is
distributed as a mixture of discrete Gaussians over L.

Lemma 4.3. For any lattice L ⊂ Rn, let X1, . . . ,Xm ∈ L be δ-similar to a mixture of independent
Gaussians over L with parameter s ≥ βη1/2(L) for some β > 1. Then, for any i, and any w ∈
R(m−1)n

Pr[Xi = 0 | X−i = w] ≤ 3eδ

2β
.
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Proof. Let s′ := η1/2(L). We have that

Pr[Xi = 0 | X−i = w] ≤ Pr[Xi = 0 | Xi ∈ L, X−i = w] ≤ eδ

ρs(L)
≤ eδ · ρs′(L)

ρs(L)
.

The result then follows from Claim 2.10.

The following corollary shows that a mixture of discrete Gaussians must contain a short non-zero
vector in certain cases.

Corollary 4.4. For any lattices L′ ⊆ L ⊂ Rn, parameter s ≥ 10eδη1/2(L′), m ≥ 100, and ran-
dom variables X1, . . . ,Xm that are δ-similar to mixtures of independent Gaussians over L′ with
parameter s,

Pr[∃i ∈ [1,m] such that 0 < ‖Xi‖2 < 4T ] ≥ 1/10 ,

where T := 1
m

∑m
i=1 E[‖Xi‖2].

Proof. By Markov’s inequality, we have

Pr
[ m∑

i=1

‖Xi‖2 ≥ 2mT
]
≤ 1

2
.

Hence, with probability at least 1
2 , we have

∑m
i=1 ‖Xi‖2 < 2mT .

We next note that many of the Xi must be non-zero with high probability. Let Y1, . . . , Ym ∈
{0, 1} such that Yi = 0 if and only if Xi = 0. By Lemma 4.3,

E[Yi | Y1 = y1, . . . , Yi−1 = yi−1] ≥ 4/5

for any y1, . . . , yi−1 ∈ {0, 1}. By Corollary 2.3, we have that

Pr[Y1 + · · ·+ Ym ≤ 3m/5] ≤ e−m/100 ≤ 1/e .

Finally, by union bound, we see that with probability at least 1− 1/e− 1/2 > 1/10 the average
squared norm will be at most 2T and more than half of the Xi will be non-zero. It follows from
another application of Markov’s inequality that at least one of the non-zero Xi must have squared
norm less than 4T .

4.2 Summing vectors

Our algorithm will start with vectors X1, . . . ,Xm ∈ L0, where L0 ⊂ L is some very dense sublattice
of the input lattice L. It then takes sums Yk = Xi +Xj of pairs of these in such a way that the
resulting Yk lie in some appropriate sublattice L1 ⊂ L0, i.e., Yk ∈ L1. It does this repeatedly,
finding vectors in L2,L3, . . . ,Lℓ until finally it obtains vectors in Lℓ := L.

Here, we study a single step of this algorithm, as shown below.
Notice that Algorithm 2 can be implemented in time m · poly(n, logm). This can be done, e.g.,

by creating a table of theXi sorted according to Xi mod L1. Then, for each i, such a j can be found
(if it exists) by performing binary search on the table. Furthermore, the algorithm is guaranteed
to find M = ⌈(m−|L0/L1|)/2⌉ output vectors because at most |L0/L1| of the input vectors can be
unpaired.
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Algorithm 2 One step of the algorithm.

Input: Lattices L0,L1 ⊂ Rn with 2L0 ⊆ L1 ⊆ L0, and lattice vectors X1, . . . ,Xm ∈ L0 with m ≥ 2|L0/L1|.
Output: Lattice vectors Y1, . . . ,YM ∈ L1, with M := ⌈(m− |L0/L1|)/2⌉.
1: Set USEDi := false for i = 1, . . . ,m, k = 1, and i = 1.
2: while k ≤M do

3: if not USEDi and (∃j ∈ {1, . . . ,m} \ {i} such that Xj ≡ Xi mod L1 and USEDj = false) then
4: Let j 6= i be minimal such that Xj ≡ Xi mod L1 and USEDj = false.
5: Set Yk = Xi +Xj .
6: Set USEDi = USEDj = true and increment k.
7: end if

8: Increment i.
9: end while

10: return Y1, . . . ,YM

The key property that we will need from Algorithm 2 is that for any (possibly unknown)
sublattice L′ ⊆ L1 ⊆ L0, the algorithm maps mixtures of Gaussians over L′ to mixtures of Gaussians
over L′, provided that the parameter s is significantly above ηε(L′). In other words, as long as there
exists some sublattice L′ ⊆ L1 such that ηε(L′) . s, then the output of the algorithm will be a
mixture of Gaussians. Indeed, this is more-or-less immediate from Lemma 2.14.

Lemma 4.5. For any lattices L0,L1,L′ ⊂ Rn with 2L0 ⊆ L1 ⊆ L0 and L′ ⊆ L1, ε ∈ (0, 1/3),
δ > 0, and parameter s ≥

√
2ηε(L′), if the input vectors X1, . . . ,Xm ∈ L0 are sampled from the

distribution that is δ-similar to a mixture of independent Gaussians over L′ with parameter s, then
the output vectors Y1, . . . ,YM ∈ L1 are (2δ + 3ε)-similar to a mixture of independent Gaussians
over L′ with parameter

√
2s.

Proof. For a list of cosets d := (c1, . . . , cm) ∈ (L0/L′)m such that Pr[X1 = c1 mod L′, . . . ,Xm =
cm mod L′] is non-zero, let Yd,1, . . . ,Yd,M be the random variables obtained by taking Y1, . . . ,YM

conditioned on Xi ≡ ci mod L′ for all i. We similarly define Xd,i. Notice that Y1, . . . ,YM is a
convex combination of random variables of the form Yd,1, . . . ,Yd,M , and that the property of being
close to a mixture of independent Gaussians is preserved by taking convex combinations. Therefore,
it suffices to prove the statement for Yd,1, . . . ,Yd,M for all fixed d.

To that end, fix k ∈ {1, . . . ,M} and such a d ∈ (L0/L′)m. Notice that Xd,i ∈ L′+ ci ⊆ L1+ ci.
Therefore, there exist fixed i, j such that Yd,k = Xd,i+Xd,j. Furthermore, by assumption, for any
w ∈ Lm−1

0 and x ∈ L0,

Pr[Xd,i = x | Xd,−i = w] = e±δ ρs(x)

ρs(L′ + ci)
,

and likewise for j. It follows from Lemma 2.14 that for any y ∈ L1 and z ∈ LM−1
1 ,

Pr[Xd,i +Xdj
= y | Yd,−k = z] = e±(2δ+3ε)

ρ√2s(y)

ρ√2s(L′ + ci + cj)
,

as needed.

Lemma 4.6. For any lattices L0,L1 ⊂ Rn with 2L0 ⊆ L1 ⊆ L0, if the input vectors X1, . . . ,Xm ∈
L0 are sampled from a symmetric distribution, then the distribution of the output vectors Y1, . . . ,YM

will also be symmetric. Furthermore,
∑

E[‖Yk‖2] ≤
∑

E[‖Xi‖2] .
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Proof. Let d = (c1, . . . , cm) ∈ (L0/L1)m be a list of cosets such that with non-zero probability
we have X1 ∈ L1 + c1, . . . ,Xm ∈ L1 + cm. Let Xd,1, . . . ,Xd,m be the distribution obtained by
sampling the Xi conditioned on this event, and let Yd,1, . . . ,Yd,M be the corresponding output.

Notice that the distribution of Xd,1, . . . ,Xd,m is also symmetric, since L1 + c = −(L1 + c) for
any c ∈ L0/L1. (Here, we have used the fact that 2L0 ⊆ L1 ⊆ L0.)

And, for fixed d and k ∈ {1, . . . ,M} there exist fixed (distinct) i, j ∈ {1, . . . ,m} such that

Yd,k = Xd,i +Xd,j .

But, since theXd,1, . . . ,Xd,m are distributed symmetrically, we see immediately that for any y ∈ L1
and w ∈ LM−1

1 ,

Pr[Yd,k = y | Yd,−k = w] = Pr[Yd,k = −y | Yd,−k = w] .

In other words, the distribution of Yd,1, . . . ,Yd,M is symmetric.
Furthermore,

E[‖Xd,i +Xd,j‖2] = E[‖Xd,i‖2] + E[‖Xd,j‖2] + 2E[〈Xi,Xj〉] = E[‖Xd,i‖2] + E[‖Xd,j‖2] ,

where in the last step we have used the symmetry of Xd,1, . . . ,Xd,m. Since the Yd,k are sums of
disjoint pairs of the Xd,i, it follows immediately that

M∑

k=1

E[‖Yd,k‖2] ≤
m∑

i=1

E[‖Xd,i‖2] .

The results for X1, . . . ,Xm,Y1, . . . ,YM then follow immediately from the fact that this dis-
tribution can be written as a convex combination of Xd,1, . . . ,Xd,m,Yd,1, . . . ,Yd,M for different
coset lists d ∈ (L0/L1)m, since both symmetry and the inequality on expectations are preserved by
convex combinations.

4.3 A tower of lattices

We will repeatedly apply Algorithm 2 on a“tower” of lattices similar to [ADRS15]. We use (a slight
modification of) the definition and construction of the tower of lattices from [ADRS15].

Definition 4.7 ([ADRS15]). For an integer α satisfying n/2 ≤ α ≤ n, we say that (L0, . . . ,Lℓ)
is a tower of lattices in Rn of index 2α if for all i we have 2Li−1 ⊆ Li ⊂ Li−1,Li/2 ⊆ Li−2,
|Li−1/Li| = 2α, and 2⌈iα/n⌉L0 ⊆ Li ⊆ 2⌊iα/n⌋L0 for all i.

Theorem 4.8 ([ADRS15]). There is a polynomial-time algorithm that takes as input integers ℓ ≥ 1
and n/2 ≤ α ≤ n as well as a lattice L ⊆ Rn and outputs a tower of lattice (L0, . . . ,Lℓ) with Lℓ = L.
Proof. We give the construction below. The desired properties are immediate from the construction.
Let b1, . . . ,bn be a basis of L. The tower is then defined by “cyclically halving α coordinates”,
namely,

Lℓ = L(b1, . . . ,bn),

Lℓ−1 = L(b1/2, . . . ,bα/2,bα+1, . . .bn),

Lℓ−2 = L(b1/4, . . . ,b2α−n/4,b2α−n+1/2, . . .bn/2),

etc. The required properties can be easily verified.
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The following proposition shows that starting with discrete Gaussian samples from L0 and
then repeatedly applying Algorithm 2 gives us a list of vectors in Lℓ that is close to a mixture of
Gaussians, provided that there exists an appropriate “smooth sublattice” L′ ⊆ Lℓ.

Proposition 4.9. There is an algorithm that runs in m · poly(n, ℓ, logm) time; takes as input a
tower of lattices (L0, . . . ,Lℓ) in Rn of index 2α, and vectors X1, . . . ,Xm ∈ L0 with m := 2ℓ+α+1;
and outputs Y1, . . . ,YM ∈ Lℓ with M := 2α with the following properties. If the input vectors
X1, . . . ,Xm are symmetric and 0-similar to a mixture of Gaussians over L′ ⊆ L0 with parameter
s > 10 · 2(α/n−1/2)ℓηε(L′) for some (possibly unknown) sublattice L′ ⊆ L0 and ε ∈ (0, 1/3); then
the output distribution is (10ℓε)-similar to a mixture of independent Gaussians over 2⌈ℓα/n⌉L′ ⊆ Lℓ
with parameter 2ℓ/2s, and

M∑

k=1

E[‖Yk‖2] ≤
m∑

i=1

E[‖Xi‖2] .

Proof. The algorithm simply applies Algorithm 2 repeatedly, first using the input vectors in L0
to obtain vectors in L1, then using these to obtain vectors in L2, etc., until eventually it obtains
vectors Y1, . . . ,YM ∈ Lℓ. The running time is clearly m · poly(n, ℓ, logm), as claimed.

By Lemma 4.6 and a simple induction argument, we see that every call to Algorithm 2 results
in a symmetric distribution, and the sum of the expected squared norms is non-increasing after
each step. In particular,

M∑

k=1

E[‖Yk‖2] ≤
m∑

i=1

E[‖Xi‖2] ,

as needed.
We suppose for induction that the distribution of the output of the ith call to Algorithm 2 is

10iε-similar to a mixture of independent Gaussians over 2⌈iα/n⌉L′ ⊆ 2⌈iα/n⌉L0 ⊆ Li with parameter
2i/2s (which is true by assumption for i = 0). Then, this distribution is also 10iε-similar to a
mixture of independent Gaussians over 2⌈(i+1)α/n⌉L′ ⊆ 2⌈iα/n⌉L′ (since a mixture of Gaussians
over a lattice is also a mixture of Gaussians over any sublattice). Furthermore, ηε(2

⌈(i+1)α/n⌉L′) =
2⌈(i+1)α/n⌉ηε(L′) < 2i/2s/

√
2. Therefore, we may apply Lemma 4.5 to conclude that the distribution

of the output of the (i + 1)st call to Algorithm 2 is 10i+1ε-similar to a mixture of independent
Gaussians over 2⌈(i+1)α/n⌉L′ ⊆ Li+1 with parameter 2(i+1)/2s. In particular, the final output
vectors are 10ℓε-similar to a mixture of independent Gaussians over 2⌈ℓα/n⌉L′, as needed.

4.4 The algorithm

Theorem 4.10. For any ε = ε(n) ∈ (0, n−200), there is a 2n/2+O(n log(n)/ log(1/ε))+o(n)-time algo-
rithm that solves (100

√
nηε)-GSVP. In particular, if ε = n−ω(1), then the running time is 2n/2+o(n).

Proof. The algorithm takes as input a (basis for a) lattice L ⊂ Rn with n ≥ 50 and behaves as
follows. Without loss of generality, we may assume that ε > 2−n and that the algorithm has
access to a parameter s > 0 with 50ηε(L) ≤ s ≤ 100ηε(L). Let ℓ := ⌊log(1/ε)/ log(10)⌋ − 1 and
α := ⌈n/2 + 100n log n/ log(1/ε)⌉.

The algorithm first runs the procedure from Theorem 4.8 on input ℓ, α, and L, receiving as
output a tower of lattices (L0, . . . ,Lℓ) with Lℓ = L. The algorithm then runs the procedure from
Proposition 3.5 on input L0, r := n/5, m := 2ℓ+α+1, and parameter s′ := 2−ℓ/2s, receiving as
output a sublattice L̂ ⊆ L0, and vectors X1, . . . ,Xm ∈ L̂ ⊆ L0. Finally, the algorithm runs
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the procedure from Proposition 4.9 on input (L0, . . . ,Lℓ) and X1, . . . ,Xm, receiving as output
Y1, . . . ,YM ∈ Lℓ = L. It then simply outputs the shortest non-zero vector amongst the Yi ∈ L.
(If all of the Yi are zero, the algorithm fails.)

The running time of the algorithm is clearly (m+2r+o(r))·poly(n, ℓ, logm) = 2n/2+O(n logn/ log(1/ε))+o(n).
We first show that the promise s′ ≥ rn/r

√
n log n·ηε(L0) needed to apply Proposition 3.5 is satisfied.

Indeed, by the definition of a tower of lattices, we have L ⊆ 2⌊ℓα/n⌋L0, so that

s′ ≥ 50 · 2−ℓ/2 · ηε(L) ≥ 50 · 2⌊ℓα/n⌋−ℓ/2 · ηε(L0) ≥ rn/r
√

n log n · ηε(L0) ,

as needed. Therefore, the procedure from Proposition 3.5 succeeds, i.e. we have ηε(L̂) = ηε(L0)
and that the Xi are distributed as independent samples from DL̂,s′ .

In particular, let L′ ⊆ L̂ ⊆ L0 such that ηε(L′) = ηε(L̂) = ηε(L0). Then, the distribution of
X1, . . . ,Xm is symmetric and 0-similar to a mixture of Gaussians over L′ with parameter s′ > 10 ·
2(α/n−1/2)ℓηε(L′). We may therefore apply Proposition 4.9 and see that the Y1, . . . ,YM ∈ L are δ-
similar to a mixture of independent Gaussians over 2⌈ℓα/n⌉L′ with parameter s and δ := 10ℓε ≤ 1/10.
Furthermore,

M∑

k=1

E[‖Yk‖2] ≤
m∑

i=1

E[‖Xi‖2] ≤
nm(s′)2

2π
= 2−ℓ · nms2

2π
,

where the last inequality is Claim 2.11.
Finally, we notice that

s ≥ 50ηε(L) ≥ 50 · 2⌊ℓα/n⌋ηε(L0) = 50ηε(2
⌊ℓα/n⌋L′) ≥ 25ηε(2

⌈ℓα/n⌉L′) ≥ 10eδη1/2((2
⌈ℓα/n⌉L′) .

Therefore, we may apply Corollary 4.4 to Y1, . . . ,YM to conclude that with probability at least
1/10, there exists k ∈ {1, . . . ,M} such that

0 < ‖Yk‖2 <
4

M
·

M∑

i=1

E[‖Yi‖2] ≤ 2−ℓ · nms2

2πM
≤ ns2 ≤ 1002nηε(L)2 .

In other words, Yk ∈ L is a valid solution to (100
√
nηε)-GSVP, as needed.

Corollary 4.11. There is a 2n/2+o(n)-time algorithm that solves γ-SVP for any γ = γ(n) >
ω(
√
n log n).

Proof. Theorem 4.10 gives an algorithm with the desired running time that finds a non-zero lattice
vector with norm bounded by 100

√
nηε(L) for

ε := 2−γ2/(1002n) < n−ω(1) .

The result follows from Lemma 3.1, which in particular tells us that

ηε(L) ≤
√

log(1/ε)λ1(L) ≤ γ/(100
√
n) · λ1(L) ,

as needed.

Corollary 4.12. There is a 2n/2+o(n)-time algorithm that solves γ-HSVP for any γ = γ(n) >

ω(
√

n log3 n).
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Proof. Theorem 4.10 gives an algorithm with the desired running time that finds a non-zero lattice
vector with norm bounded by 100

√
nηε(L) for

ε := 2−γ2/(1010n log2 n) < n−ω(1) .

The result follows from Lemma 3.1, which in particular tells us that

ηε(L) ≤ 10
√

log(1/ε)(log n+ 2) det(L)1/n ≤ γ/(100
√
n) · det(L)1/n ,

as needed (where we have assumed without loss of generality that n is sufficiently large).

5 Approximate SVP via Basis Reduction

Basis reduction algorithms solve δ-(H)SVP in dimension n by making polynomially many calls to
a δ′-SVP algorithm on lattices in dimension k < n. We will show in this section how to modify the
basis reduction algorithm from [GN08, ALNS20] to prove Theorem 1.2.

5.1 Slide-reduced bases

Here, we introduce our notion of a reduced basis. This differs from prior work in that we consider
the possibility that the length ℓ of the last block is not equal to k, and we use HSVP reduction
where other works use SVP reduction. E.g., taking ℓ = k and replacing (D)HSVP reduction with
(D)SVP reduction in Item 2 recovers the definition from [ALNS20]. (Taking ℓ = k and q = 0 and
replacing all (D)HSVP reduction with (D)SVP reduction recovers the original definition in [GN08].)

Definition 5.1 (Slide reduction). Let n, k, p, q, ℓ be integers such that n = pk + q + ℓ with p ≥
1, k, ℓ ≥ 2 and 0 ≤ q ≤ k − 1. Let δH ≥ 1 and δS ≥ 1. A basis B ∈ Rm×n is (δH , k, δS , ℓ)-slide-
reduced if it is size-reduced and satisfies the following four sets of constraints.

1. The block B[1,k+q+1] is η-twin-reduced for η := δ
k+q−1
k−1

H .

2. For all i ∈ [1, p − 1], the block B[ik+q+1,(i+1)k+q+1] is δH-twin-reduced.

3. The block B[pk+q+1,n] is δS-SVP-reduced.

Theorem 5.2. For any δH , δS ≥ 1, k ≥ 2, ℓ ≥ 2, if B ∈ Rn×n is a (δH , k, δS , ℓ)-slide-reduced basis
of a lattice L with λ1(L(B[1,n−ℓ])) > λ1(L) then

‖b1‖ ≤ δS(δ
2
H)

n−ℓ
k−1λ1(L) .

Proof. By Fact 2.22, ‖b1‖ ≤ η
2(k+q)
k+q−1 ‖b∗

k+q+1‖ = δ
2(k+q)
k−1

H ‖b∗
k+q+1‖. Also, for all i ∈ [1, p − 1],

‖b∗
ik+q+1‖ ≤ δ

2k
k−1

H ‖b∗
(i+1)k+q+1‖. All together we have:

‖b1‖ ≤ (δ2H)
k+q+(p−1)k

k−1 ‖b∗
pk+q+1‖ = (δ2H)

n−ℓ
k−1 ‖b∗

pk+q+1‖

Lastly, since λ1(L(B[1,n−ℓ])) > λ1(L), ‖b∗
pk+q+1‖ ≤ δSλ1(L(B[pk+q+1,n])) ≤ δSλ1(L). The result

does follow.
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5.2 The slide reduction algorithm

We show our algorithm for generating a slide-reduced basis. We stress that this is essentially the
same algorithm as in [ALNS20] (which itself is a generalization of the algorithm in [GN08]) with the
a slight modification that allows the last block to have arbitrary length ℓ. Our proof for bounding
the running time of the algorithm is therefore essentially identical to the proof in [GN08, ALNS20].

Algorithm 3 Our slide-reduction algorithm

Input: Block size k ≥ 2, slack ε > 0, approximation factor δH , δS ≥ 1, basis B = (b1, . . . ,bn) ∈ Zm×n of a
lattice L of rank n = pk+ q+ ℓ for 0 ≤ q ≤ k− 1, and access to a δH -HSVP oracle for lattices with rank
k as well as a δS-SVP oracle for lattices with rank ℓ.

Output: A ((1 + ε)δH , k, δS , ℓ)-slide-reduced basis of L(B).
1: while vol(B[1,ik+q])

2 is modified by the loop for some i ∈ [1, p] do

2: (1 + ε)η-HSVP-reduce B[1,k+q] using Alg. 1 for η := (δH)
k+q−1

k−1 .
3: for i = 1 to p− 1 do

4: δH -HSVP-reduce B[ik+q+1,(i+1)k+q] .
5: end for

6: δS-SVP-reduce B[pk+q+1,n].
7: if B[2,k+q+1] is not (1 + ε)η-DHSVP-reduced then

8: (1 + ε)1/2η-DHSVP-reduce B[2,k+q+1] using Alg. 1.
9: end if

10: for i = 1 to p− 1 do

11: Find a new basis C := (b1, . . . ,bik+q+1, cik+q+2, . . . , c(i+1)k+q+1,bik+q+2, . . . ,bn) of L by δH -
DHSVP-reducing B[ik+q+2,(i+1)k+q+1].

12: if (1 + ε)‖b∗

(i+1)k+q+1‖ < ‖c∗(i+1)k+q+1‖ then
13: B← C.
14: end if

15: end for

16: end while

17: return B.

Theorem 5.3. For ε ∈ [1/poly(n), 1], Algorithm 3 runs in polynomial time (excluding oracle
calls), makes polynomially many calls to its δH-HSVP oracle and δS-SVP oracle, and outputs a
((1 + ε)δH , k, δS , ℓ)-slide-reduced basis of the input lattice L.
Proof. First, notice that if Algorithm 3 ever terminates, the output must be ((1 + ε)δH , k, δS , ℓ)-
slide-reduced basis. It remains to show that the algorithm terminates in polynomially many steps
(excluding oracle calls).

Let B0 ∈ Zm×n be the input basis and let B ∈ Zm×n denote the current basis during the
execution of Algorithm 3. Following the analysis of basis reduction algorithms in [LLL82, GN08,
LN14, ALNS20], we consider an integral potential of the form

P (B) :=

p∏

i=1

vol(B[1,ik+q])
2 ∈ Z+.

At the beginning of the algorithm, the potential satisfies log P (B0) ≤ 2n2 · log ‖B0‖. For each of the
primal steps (i.e., Steps 2, 4 and 6), the lattice L(B[1,ik+q]) for any i ≥ 1 is unchanged. Hence P (B)
does not change. On the other hand, the dual steps (i.e., Steps 8 and 13) either leave vol(B[1,ik+q])
unchanged for all i or decrease P (B) by a multiplicative factor of at least (1 + ε).
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Therefore, there are at most log P (B0)/ log(1 + ε) updates on P (B) by Algorithm 3. This
directly implies that the algorithm makes at most 4pn2 log ‖B0‖/ log(1 + ε) calls to the HSVP
oracle, the SVP oracle, and Algorithm 1. We then conclude that Algorithm 3’s running time is
bounded by some polynomial in the size of input (excluding the running time of oracle calls).

Corollary 5.4. For any constant c ≥ 1, there is a randomized algorithm that solves Õ(nc)-SVP
that runs in 2k/2+o(k) time for k := n

c+5/(8.02) .

Proof. Let ℓ = 0.5k
0.802 and run Algorithm 3, instantiating the oracles with the O(polylog(n)

√
n)-

HSVP algorithm from Corollary 4.12 and the O(1)-SVP algorithm from [LWXZ11] to get a ((1 +
ε)polylog(k)

√
k, k,O(1), ℓ)-slide-reduced basis B for any input lattice L. Now consider two cases:

• λ1(L(B[1,n−ℓ])) > λ1(L): By Theorem 5.2, ‖b1‖ ≤ δS(δ
2
H)

n−ℓ
k−1λ1(L) ≤ O(polylog(k)cnc)λ1(L)

as desired.

• λ1(L(B[1,n−ℓ])) = λ1(L): Then we repeat the algorithm on the lattice L(B[1,n−ℓ]) with lower
dimension. This can happen at most n/ℓ times, introducing at most a polynomial factor in
the running time.

For the running time, the algorithm from Corollary 4.12 runs in time 20.5k+o(k). The algorithm
from [LWXZ11] runs in time 20.802ℓ+o(ℓ), which is the same as 20.5k+o(k), by our choice of ℓ. This
completes the proof.
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