Skip to main content

Rotational Cryptanalysis from a Differential-Linear Perspective

Practical Distinguishers for Round-Reduced FRIET, Xoodoo, and Alzette

  • Conference paper
  • First Online:
Book cover Advances in Cryptology – EUROCRYPT 2021 (EUROCRYPT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12696))

Abstract

The differential-linear attack, combining the power of the two most effective techniques for symmetric-key cryptanalysis, was proposed by Langford and Hellman at CRYPTO 1994. From the exact formula for evaluating the bias of a differential-linear distinguisher (JoC 2017), to the differential-linear connectivity table (DLCT) technique for dealing with the dependencies in the switch between the differential and linear parts (EUROCRYPT 2019), and to the improvements in the context of cryptanalysis of ARX primitives (CRYPTO 2020), we have seen significant development of the differential-linear attack during the last four years. In this work, we further extend this framework by replacing the differential part of the attack by rotational-xor differentials. Along the way, we establish the theoretical link between the rotational-xor differential and linear approximations, revealing that it is nontrivial to directly apply the closed formula for the bias of ordinary differential-linear attack to rotational differential-linear cryptanalysis. We then revisit the rotational cryptanalysis from the perspective of differential-linear cryptanalysis and generalize Morawiecki et al.’s technique for analyzing Keccak, which leads to a practical method for estimating the bias of a (rotational) differential-linear distinguisher in the special case where the output linear mask is a unit vector. Finally, we apply the rotational differential-linear technique to the permutations involved in FRIET, Xoodoo, Alzette, and SipHash. This gives significant improvements over existing cryptanalytic results, or offers explanations for previous experimental distinguishers without a theoretical foundation. To confirm the validity of our analysis, all distinguishers with practical complexities are verified experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unlike the estimation of the probability of a differential with a large number of characteristics, a partial evaluation of the differential-linear distinguisher without the full enumeration of intermediate masks can be inaccurate, since both positive and negative biases occur.

  2. 2.

    https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective.

  3. 3.

    https://github.com/YunwenL/Rotational-cryptanalysis-from-a-differential-linear-perspective.

References

  1. Ashur, T., Liu, Y.: Rotational cryptanalysis in the presence of constants. IACR Trans. Symmetric Cryptol. 2016(1), 57–70 (2016)

    Article  Google Scholar 

  2. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_28

    Chapter  Google Scholar 

  3. Aumasson, J.-P., Jovanovic, P., Neves, S.: Analysis of NORX: investigating differential and rotational properties. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 306–324. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9_17

    Chapter  Google Scholar 

  4. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Part I. LNCS, vol. 11476, pp. 313–342. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_11

    Chapter  Google Scholar 

  5. Barbero, S., Bellini, E., Makarim, R.H.: Rotational analysis of ChaCha permutation. CoRR abs/2008.13406 (2020). https://arxiv.org/abs/2008.13406

  6. Beierle, C., et al.: Alzette: a 64-Bit ARX-box. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. Part III. LNCS, vol. 12172, pp. 419–448. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_15

    Chapter  Google Scholar 

  7. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with applications to ARX ciphers. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. Part III. LNCS, vol. 12172, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_12

    Chapter  Google Scholar 

  8. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryptol. 2017(4), 1–38 (2017)

    Article  Google Scholar 

  9. Blondeau, C., Leander, G., Nyberg, K.: Differential-linear cryptanalysis revisited. J. Cryptol. 30(3), 859–888 (2017). https://doi.org/10.1007/s00145-016-9237-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Canteaut, A.: Lecture notes on cryptographic Boolean functions (2016). https://www.rocq.inria.fr/secret/Anne.Canteaut/

  11. Carlet, C.: Boolean functions for cryptography and error correcting codes (2006). https://www.rocq.inria.fr/secret/Anne.Canteaut/

  12. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053450

    Chapter  Google Scholar 

  13. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table: a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. Part II. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_22

    Chapter  Google Scholar 

  14. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

    Article  Google Scholar 

  15. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.: Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. Part I. LNCS, vol. 10031, pp. 484–513. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_18

    Chapter  Google Scholar 

  16. He, L., Yu, H.: Cryptanalysis of reduced-round SipHash. IACR Cryptology ePrint Archive 2019/865 (2019)

    Google Scholar 

  17. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_19

    Chapter  Google Scholar 

  18. Khovratovich, D., Nikolic, I., Pieprzyk, J., Sokolowski, P., Steinfeld, R.: Rotational cryptanalysis of ARX revisited. In: Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, 8–11 March 2015, Revised Selected Papers, pp. 519–536 (2015)

    Google Scholar 

  19. Khovratovich, D., Nikolić, I., Rechberger, C.: Rotational rebound attacks on reduced skein. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 1–19. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_1

    Chapter  Google Scholar 

  20. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. Part I. LNCS, vol. 9215, pp. 161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_8

    Chapter  Google Scholar 

  21. Kraleva, L., Ashur, T., Rijmen, V.: Rotational cryptanalysis on MAC algorithm Chaskey. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. Part I. LNCS, vol. 12146, pp. 153–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4_8

    Chapter  Google Scholar 

  22. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_3

    Chapter  Google Scholar 

  23. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_12

    Chapter  Google Scholar 

  24. Leander, G., Minaud, B., Rønjom, S.: A generic approach to invariant subspace attacks: cryptanalysis of Robin, iSCREAM and Zorro. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. Part I. LNCS, vol. 9056, pp. 254–283. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_11

    Chapter  Google Scholar 

  25. Liu, Y., Sun, S., Li, C.: Rotational cryptanalysis from a differential-linear perspective, practical distinguishers for round-reduced Friet, Xoodoo, and Alzette. IACR Cryptology ePrint Archive 2021/189 (2021)

    Google Scholar 

  26. Liu, Y., Witte, G.D., Ranea, A., Ashur, T.: Rotational-XOR cryptanalysis of reduced-round SPECK. IACR Trans. Symmetric Cryptol. 2017(3), 24–36 (2017)

    Article  Google Scholar 

  27. Liu, Z., Gu, D., Zhang, J., Li, W.: Differential-multiple linear cryptanalysis. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 35–49. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5_3

    Chapter  Google Scholar 

  28. Lu, J., Liu, Y., Ashur, T., Sun, B., Li, C.: Rotational-XOR cryptanalysis of Simon-like block ciphers. In: Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 105–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55304-3_6

    Chapter  Google Scholar 

  29. Lu, J.: A methodology for differential-linear cryptanalysis and its applications. Des. Codes Cryptogr. 77(1), 11–48 (2014). https://doi.org/10.1007/s10623-014-9985-x

    Article  MathSciNet  MATH  Google Scholar 

  30. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33

    Chapter  Google Scholar 

  31. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-reduced Keccak. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 241–262. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_13

    Chapter  Google Scholar 

  32. Simon, T., et al.: Friet: an authenticated encryption scheme with built-in fault detection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. Part I. LNCS, vol. 12105, pp. 581–611. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_21

    Chapter  Google Scholar 

  33. Tiessen, T.: Polytopic cryptanalysis. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. Part I. LNCS, vol. 9665, pp. 214–239. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_9

    Chapter  Google Scholar 

  34. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. Part I. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12

    Chapter  Google Scholar 

  35. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack: practical attack on full SCREAM, iSCREAM, and Midori64. J. Cryptol. 32(4), 1383–1422 (2019). https://doi.org/10.1007/s00145-018-9285-0

    Article  MathSciNet  MATH  Google Scholar 

  36. Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_18

    Chapter  Google Scholar 

  37. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12

    Chapter  Google Scholar 

Download references

Acknowledgement

We would like to thank the reviewers of Eurocrypt 2021 for their comments and suggestions to improve this paper. This work is supported by National Key R&D Program of China (2017YFB0802000, 2018YFA0704704), Natural Science Foundation of China (NSFC) under Grants 61902414, 61722213, 62032014, 61772519, and 61772545 and the Chinese Major Program of National Cryptography Development Foundation (MMJJ20180102).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Sun, S., Li, C. (2021). Rotational Cryptanalysis from a Differential-Linear Perspective. In: Canteaut, A., Standaert, FX. (eds) Advances in Cryptology – EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Computer Science(), vol 12696. Springer, Cham. https://doi.org/10.1007/978-3-030-77870-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77870-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77869-9

  • Online ISBN: 978-3-030-77870-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics