Skip to main content

Decentralized Multi-authority ABE for DNFs from LWE

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2021 (EUROCRYPT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12696))

Abstract

We construct the first decentralized multi-authority attribute-based encryption (\(\mathsf {MA}\text {-}\mathsf {ABE}\)) scheme for a non-trivial class of access policies whose security is based (in the random oracle model) solely on the Learning With Errors (LWE) assumption. The supported access policies are ones described by \(\mathsf {DNF}\) formulas. All previous constructions of \(\mathsf {MA}\text {-}\mathsf {ABE}\) schemes supporting any non-trivial class of access policies were proven secure (in the random oracle model) assuming various assumptions on bilinear maps.

In our system, any party can become an authority and there is no requirement for any global coordination other than the creation of an initial set of common reference parameters. A party can simply act as a standard ABE authority by creating a public key and issuing private keys to different users that reflect their attributes. A user can encrypt data in terms of any \(\mathsf {DNF}\) formulas over attributes issued from any chosen set of authorities. Finally, our system does not require any central authority. In terms of efficiency, when instantiating the scheme with a global bound s on the size of access policies, the sizes of public keys, secret keys, and ciphertexts, all grow with s.

Technically, we develop new tools for building ciphertext-policy ABE (\(\mathsf {CP}\text {-}\mathsf {ABE}\)) schemes using LWE. Along the way, we construct the first provably secure \(\mathsf {CP}\text {-}\mathsf {ABE}\) scheme supporting access policies in \(\mathsf {NC}^1\) under the LWE assumption that avoids the generic universal-circuit-based key-policy to ciphertext-policy transformation. In particular, our construction relies on linear secret sharing schemes with new properties and in some sense is more similar to \(\mathsf {CP}\text {-}\mathsf {ABE}\) schemes that rely on bilinear maps. While our \(\mathsf {CP}\text {-}\mathsf {ABE}\) construction is not more efficient than existing ones, it is conceptually intriguing and further we show how to extend it to get the \(\mathsf {MA}\text {-}\mathsf {ABE}\) scheme described above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All previous multi-authority ABE schemes were designed in the so called global identifier (\(\mathsf {GID}\)) model where each user in the system is identified by a unique global identity string \(\mathsf {GID}\in \{0,1\}^*\). The global identity of a user remains fixed for the entire lifetime of the system and users have no freedom to choose their global identities. Kim [39] introduced a drastically relaxed model, the so called “OT model”, where each user can self-generate some key-request string and produce it to the attribute authorities while requesting secret keys. To briefly see why this model fails to guarantee collusion resistance, imagine that there are two users A who has attribute u and B who has attribute v. Suppose there is a ciphertext encrypting to the policy “\(u \;\mathsf {AND}\; v\)”. User A and B can collude to decrypt it. Morally, the issue is that user A can go with the authority for attribute u and produce a key with identity George. User B can then present the same identity to the authority for attribute v. Then they can combine their keys.

  2. 2.

    Note that following the simple encoding technique devised in [42, 58], we can alleviate the injective restriction on the row labeling functions to allow an attribute to appear an a priori bounded number of times within the LSSS access policies.

References

  1. Agrawal, S., Biswas, R., Nishimaki, R., Xagawa, K., Xie, X., Yamada, S.: Cryptanalysis of Boyen’s attribute-based encryption scheme in TCC 2013 (2020, private communication)

    Google Scholar 

  2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  3. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_6

    Chapter  MATH  Google Scholar 

  4. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_2

    Chapter  Google Scholar 

  5. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for nondeterministic finite automata from LWE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 765–797. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_26

    Chapter  Google Scholar 

  6. Agrawal, S., Wichs, D., Yamada, S.: Optimal broadcast encryption from LWE and pairings in the standard model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 149–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_6

    Chapter  Google Scholar 

  7. Agrawal, S., Yamada, S.: CP-ABE for circuits (and more) in the symmetric key setting. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 117–148. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_5

    Chapter  Google Scholar 

  8. Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and LWE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 13–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_2

    Chapter  Google Scholar 

  9. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1

    Chapter  Google Scholar 

  10. Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. IACR Cryptology ePrint Archive 2011/613 (2011)

    Google Scholar 

  11. Attrapadung, N.: Unbounded dynamic predicate compositions in attribute-based encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 34–67. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_2

    Chapter  MATH  Google Scholar 

  12. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_3

    Chapter  Google Scholar 

  13. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: S&P 2007, pp. 321–334. IEEE (2007)

    Google Scholar 

  14. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_19

    Chapter  Google Scholar 

  15. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30

    Chapter  Google Scholar 

  16. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_8

    Chapter  Google Scholar 

  17. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC 2013, pp. 575–584. ACM (2013)

    Google Scholar 

  18. Brakerski, Z., Vaikuntanathan, V.: Lattice-inspired broadcast encryption and succinct ciphertext-policy ABE. IACR Cryptology ePrint Archive 2020/191 (2020)

    Google Scholar 

  19. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_13

    Chapter  Google Scholar 

  20. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  21. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_28

    Chapter  Google Scholar 

  22. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority attribute-based encryption. In: CCS 2009, pp. 121–130. ACM (2009)

    Google Scholar 

  23. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_20

    Chapter  Google Scholar 

  24. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_19

    Chapter  Google Scholar 

  25. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for DNFs from LWE. IACR Cryptology ePrint Archive 2020/1386 (2020)

    Google Scholar 

  26. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  27. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_27

    Chapter  Google Scholar 

  28. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_20

    Chapter  Google Scholar 

  29. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206. ACM (2008)

    Google Scholar 

  30. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  31. Gong, J., Waters, B., Wee, H.: ABE for DFA from k-Lin. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 732–764. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_25

    Chapter  Google Scholar 

  32. Gong, J., Wee, H.: Adaptively secure ABE for DFA from k-Lin and more. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 278–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_10

    Chapter  Google Scholar 

  33. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC 2013, pp. 545–554. ACM (2013)

    Google Scholar 

  34. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_23

    Chapter  Google Scholar 

  35. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning with errors. In: STOC 2018, pp. 660–670. ACM (2018)

    Google Scholar 

  36. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS 2017, pp. 612–621. IEEE (2017)

    Google Scholar 

  37. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)

    Google Scholar 

  38. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference 1993, pp. 102–111. IEEE (1993)

    Google Scholar 

  39. Kim, S.: Multi-authority attribute-based encryption from LWE in the OT model. IACR Cryptology ePrint Archive 2019/280 (2019)

    Google Scholar 

  40. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for \(\sf NC^1\) from k-Lin. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_1

    Chapter  Google Scholar 

  41. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

    Chapter  Google Scholar 

  42. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_31

    Chapter  Google Scholar 

  43. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_30

    Chapter  Google Scholar 

  44. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute based encryption without a central authority. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 426–436. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5_33

    Chapter  Google Scholar 

  45. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  46. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_2

    Chapter  Google Scholar 

  47. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  Google Scholar 

  48. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00730-9_2

    Chapter  Google Scholar 

  49. Müller, S., Katzenbeisser, S., Eckert, C.: On multi-authority ciphertext-policy attribute-based encryption. Bull. Korean Math. Soc. 46, 803–819 (2009)

    Article  MathSciNet  Google Scholar 

  50. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: CCS 2007, pp. 195–203. ACM (2007)

    Google Scholar 

  51. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC 2009, pp. 333–342. ACM (2009)

    Google Scholar 

  52. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93. ACM (2005)

    Google Scholar 

  53. Rouselakis, Y., Waters, B.: Efficient statically-secure large-universe multi-authority attribute-based encryption. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 315–332. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_19

    Chapter  Google Scholar 

  54. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  55. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: FOCS 1994, pp. 124–134. IEEE (1994)

    Google Scholar 

  56. Tsabary, R.: Fully secure attribute-based encryption for t-CNF from LWE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 62–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_3

    Chapter  Google Scholar 

  57. Wang, Z., Fan, X., Liu, F.-H.: FE for inner products and its application to decentralized ABE. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 97–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_4

    Chapter  Google Scholar 

  58. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratish Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datta, P., Komargodski, I., Waters, B. (2021). Decentralized Multi-authority ABE for DNFs from LWE. In: Canteaut, A., Standaert, FX. (eds) Advances in Cryptology – EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Computer Science(), vol 12696. Springer, Cham. https://doi.org/10.1007/978-3-030-77870-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77870-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77869-9

  • Online ISBN: 978-3-030-77870-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics