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One-way functions and malleability oracles:
Hidden shift attacks on isogeny-based protocols

Péter Kutas1, Simon-Philipp Merz2, Christophe Petit3,1, and Charlotte
Weitkämper1

1 University of Birmingham, UK
2 Royal Holloway, University of London, UK
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Abstract. The supersingular isogeny Diffie-Hellman (SIDH) is a post-
quantum key exchange protocol based on the presumed hardness of com-
puting an isogeny between two supersingular elliptic curves given some
additional torsion point information. Unlike other isogeny-based proto-
cols, SIDH has been widely believed to be immune to subexponential
quantum attacks because of the non-commutative structure of the endo-
morphism rings of supersingular curves.
We contradict this belief in this paper. More precisely, we highlight the
existence of an abelian group action on the SIDH key space, and we show
that for sufficiently unbalanced and overstretched SIDH parameters, this
action can be efficiently computed using the torsion point information
revealed in the protocol. This reduces the underlying hardness assump-
tion to an instance of the hidden shift problem which can be solved in
quantum subexponential time.
We formulate our attack in a new framework allowing the inversion of
one-way functions in quantum subexponential time provided a malleabil-
ity oracle with respect to some commutative group action. This frame-
work unifies our new attack with earlier subexponential quantum attacks
on isogeny-based protocols, and it may be of further interest for crypt-
analysis.

1 Introduction

The hardness of solving mathematical problems such as integer factorization or
the computation of discrete logarithms in finite fields and elliptic curve groups
guarantees the security of most currently deployed cryptographic protocols. How-
ever, these classical problems can be solved efficiently using quantum algorithms.
Quantum computers with sufficient processing power to threaten cryptographic
primitives currently in use do presumably not yet exist, but progress is being
made in quantum computing. The possibility of large scale quantum computers
and the need for long-term security in some applications necessitate the devel-
opment of quantum-secure cryptographic algorithms.

Different approaches to attain quantum-resistance are based on lattices, codes,
multivariate polynomials over finite fields, and elliptic curve isogenies. Within the
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field of post-quantum cryptography, isogeny-based cryptography is a relatively
new area which is particularly interesting due to the small key sizes required.
The main underlying problem in this branch of post-quantum cryptography is
to find an isogeny ϕ : E1 → E2 between two given isogenous elliptic curves E1

and E2 over some finite field Fq.
An early isogeny-based cryptographic system utilizing ordinary elliptic curves

was proposed by Couveignes, but at first only circulated privately [9]. Mean-
while, the first construction using supersingular curves was a hash function de-
veloped by Charles, Lauter and Goren [6]. Later, Rostovtsev and Stolbunov in-
dependently rediscovered and further developed Couveignes’ construction [29].
In 2010, Childs, Jao and Soukharev [7] showed how to break this scheme in
quantum subexponential time using a reduction to an instance of the injective
abelian hidden shift problem. While this attack is tolerable for sufficiently large
parameters, the main drawback of the Couveignes-Rostovtsev-Stolbunov (CRS)
construction is its unacceptable lack of speed. Adapting the CRS scheme to
supersingular elliptic curves, Castryck et al. managed to eliminate most of the
performance issues allowing for larger practical parameters when introducing
CSIDH [5].

The attack due to Childs, Jao and Soukharev crucially relies on the commu-
tativity of the ideal class groups acting on the endomorphism rings of the rele-
vant elliptic curves over Fq. This motivated Jao and De Feo [18] to consider the
full isogeny graph for supersingular elliptic curves whose endomorphism rings
are maximal orders in a quaternion algebra (in particular, the endomorphism
rings are non-commutative). The result of their work, the Supersingular Isogeny
Diffie-Hellman (SIDH) key agreement scheme, underlies the SIKE submission
to NIST’s post-quantum standardization process [1, 17].

The hard problem SIDH is based on is to find an isogeny between two isoge-
nous curves, further given the images of certain torsion points under this isogeny.
The supply of this additional public information has fueled cryptanalytic re-
search which aims to recover secret information when parameters are sufficiently
overstretched [4, 22, 26]. However, folklore widespread amongst cryptographers
assumes that due to SIDH’s non-commutative nature there is no quantum attack
reducing the SIDH problem to an abelian hidden shift problem. In particular,
many believe that no reasonable variant of Childs-Jao-Soukharev’s attack applies
in the supersingular case [18, p. 18, Section 5].

Our contributions. We provide a new quantum attack on overstretched
SIDH which uses a reduction of the underlying computational problem to an
injective abelian hidden shift problem. This can be solved in quantum subexpo-
nential time and thus disproves the folkloric belief mentioned above.

The idea underlying our attack is to construct endomorphisms on the starting
curve of the SIDH instance which act freely and transitively on a set containing
the secret. Forcing these endomorphisms to be of a certain degree, we exploit
the torsion point information supplied in SIDH to compute some information
associated to the action of the endomorphisms on the secret without knowing
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the latter. Solving a hidden shift problem on the function identifying the endo-
morphisms with the associated information then reveals the secret.

While this attack does not threaten SIDH with balanced parameter sets as
originally proposed by Jao and De Feo [18] and used in SIKE [17], it shows that
an attack using a hidden shift algorithm is possible despite the non-commutative
nature of SIDH.

We describe our new attack as a special instance of a general framework.
This allows us to unify other quantum attacks on isogeny-based schemes such
as the one due to Childs, Jao and Soukharev [7] constructing isogenies between
ordinary curves or a similar application of Kuperberg’s hidden shift algorithm to
CSIDH [5], which has recently been improved by Bonnetain-Schrottenloher [3]
and by Peikert [25].

This framework might be of interest beyond isogeny-based cryptography. To
define one of the key properties required, we introduce the notion of a mal-
leability oracle for a function with respect to some group action. Under some
additional assumptions, access to this oracle is sufficient to compute preimages
of the function via solving an injective hidden shift problem.

Outline. In Section 2, we provide an overview of the notation used, we
recall some mathematical background for isogeny-based cryptography and we
review some quantum algorithms used in our attack. In Section 3, we present our
general framework, namely sufficient conditions for computing preimages of one-
way functions via reduction to a hidden shift problem and give a presentation of
our new attack on overstretched SIDH in Section 4. In Section 5, we additionally
instantiate our general framework with the attack of Childs, Jao and Soukharev
as well as the application of quantum hidden shift algorithms to CSIDH. We
conclude the paper in Section 6 with a discussion on potential improvements
and future work.

2 Preliminaries

In this section, we introduce terminology and notation, and we recall relevant
background on isogeny-based protocols and quantum algorithms.

2.1 Terminology

We call a function µ : N→ R negligible if for every positive integer c there exists
an integer Nc such that |µ(x)| < 1

xc for every x > Nc. We call an algorithm
efficient if the execution time is bounded by a polynomial in the security pa-
rameter of the underlying cryptographic scheme. Given any function, we take
having oracle access to this function to mean that it is feasible to evaluate the
function at any possible element in an efficient way. In particular, we assume
that the oracle acts like a black box such that one query with an element from
the domain outputs the corresponding value of the function.

Further, we call a function f : {0, 1}∗ → {0, 1}∗ one-way, if f can be com-
puted by a polynomial time algorithm, but for all polynomial time randomized
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algorithms F , all positive integers c and all sufficiently large n = length(x),
Pr[f(F (f(x))) = f(x)] < n−c, where the probability is taken over the choice of
x from the discrete uniform distribution on {0, 1}n, and the randomness of F .

2.2 Mathematical background on isogenies

For more complete introductions to elliptic curves and to isogeny-based cryp-
tography we refer to Silverman [31] and De Feo [10], respectively.

Let Fq be a finite field of characteristic p. In the following we assume p ≥ 3
and therefore an elliptic curve E over Fq can be defined by its short Weierstrass
form

E(Fq) = {(x, y) ∈ F2
q | y2 = x3 +Ax+B} ∪ {OE}

where A,B ∈ Fq and OE is the point (X : Y : Z) = (0 : 1 : 0) on the associated
projective curve Y 2Z = X3 + AXZ2 + BZ3. The set of points on an elliptic
curve is an abelian group under the “chord and tangent rule” with OE being the

identity element. The j-invariant of an elliptic curve is j(E) = 1728 4A3

4A3+27B2

and there is an isomorphism of curves f : E0 → E1 if and only if j(E0) = j(E1).
Given two elliptic curves E0 and E1 over a finite field Fq, an isogeny is a

non-constant rational map φ : E0 → E1 which is also a group homomorphism
from E0(Fq) to E1(Fq), or equivalently, a rational map for which φ(OE0

) = OE1
.

Two curves are called isogenous if there exists an isogeny between them. The
degree of an isogeny φ is its degree as a rational map. For separable isogenies,
the degree is also equal to the number of elements in the kernel of φ. Note that
we will always consider the separable case in the following.

Since an isogeny defines a group homomorphism E0 → E1, its kernel is a
subgroup of E0. Conversely, any subgroup S ⊂ E0 determines a (separable)
isogeny φ : E0 → E1 with kerφ = S and E1 = E0/S.

An endomorphism of an elliptic curve E defined over Fq is an isogeny defined
over an extension of Fq mapping E onto itself. The set of endomorphisms of E
together with the zero map forms a ring under pointwise addition and function
composition. This ring is the endomorphism ring of E, denoted End(E), and
it is isomorphic either to an order in a quaternion algebra and E is called su-
persingular, or to an order in an imaginary quadratic field and E is referred
to as an ordinary curve [31]. An isogeny between two curves having the same
endomorphism ring is called a horizontal isogeny.

For any isogeny φ : E0 → E1, there exists another isogeny φ̂, called the dual
isogeny, satisfying φ ◦ φ̂ = φ̂ ◦ φ = [deg(φ)]. Therefore, the property of being
isogenous is an equivalence relation on the set of isomorphism classes of elliptic
curves defined over Fq.

2.3 Hard homogeneous spaces and CSIDH

Recall the notion of Couveignes’ hard homogeneous spaces (HHS) [9], a finite
commutative group action for which some operations are easy to compute and
others are hard.
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Instances of Couveignes’ hard homogeneous spaces can be constructed using
elliptic curve isogenies and have been the basis of one branch of isogeny-based
cryptography which uses the group action we will describe in the following.

Denote the set of all isomorphism classes over Fq of isogenous curves with n
points and endomorphism ring O by Ellq,n(O), and represent the isomorphism
class of a curve E in Ellq,n(O) by the j-invariant j(E). Any horizontal isogeny
ϕ : E → Eb between curves in Ellq,n(O) is determined by E and kerϕ up to
isomorphism. This kernel corresponds to an ideal [b] in O. Since principal ideals
in O correspond to isomorphisms, ideals that are equivalent in the ideal class
group of O, Cl(O), induce the same isogeny up to isomorphism. Hence, we have
a well-defined group action

· : Cl(O)× Ellq,n(O)→ Ellq,n(O),

([b], j(E)) 7→ j(Eb),

which is free and transitive ([33], Thm. 4.5, and erratum Thm. 4.5 of [30]).

Given two elliptic curves E0, E1 in Ellq,n(O) up to isomorphism, it is in
general assumed to be hard to find an isogeny ϕ : E0 → E1.

A similar construction can be performed with endomorphism rings of super-
singular curves. This occurrence of hard homogenous spaces is used for the Com-
mutative SIDH (CSIDH) protocol [5] proposed for post-quantum non-interactive
key exchange. Since the endomorphism rings of such curves are orders in a
quaternion algebra, they are non-commutative and hence yield a group action
with less desirable properties than in the construction for ordinary curves. There-
fore, Castryck et al. suggest restricting the endomorphism ring to the subring
of Fp-rational endomorphisms which is an order in an imaginary quadratic field,
and as such commutative. Again, the ideal class group of this order O, Cl(O),
acts on Ellp(O), the set of all isomorphism classes of supersingular isogenous
curves over Fp with Fp-rational endomorphism ring (isomorphic to) O.

Given that the set Ellp(O) is non-empty, the group action is free and transi-
tive (see [5], Thm. 7, summarizing results from [33], [30]), and can be used to per-
form a Diffie-Hellman-type key exchange. Note that this construction is strictly
speaking not an instance of a HHS, as was pointed out by De Feo-Meyer [12].

There have been multiple proposals to attack concrete parameter suggestions
for CSIDH with quantum algorithms. Peikert [25] uses Kuperberg’s collimation
sieve algorithm to solve the hidden shift instance with quantum accessible clas-
sical memory and subexponential quantum time, a strategy independently also
explored by Bonnetain-Schrottenloher [3].

2.4 SIDH

We recall the Supersingular Isogeny Diffie-Hellman (SIDH) protocol which was
introduced by Jao and De Feo in [18] and forms the basis of the Supersingular
Isogeny Key Encapsulation (SIKE) mechanism [17] which has been submitted
to NIST’s post-quantum competition.
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Fix some supersingular elliptic curve E0 over a field Fp2 , where p is a prime,
and let N1 and N2 be two smooth integers coprime to p with (N1, N2) = 1.
Further choose some points PA, QA, PB , QB ∈ E0 such that PA and QA gener-
ate the N1-torsion of E0, E0[N1], and similarly, 〈PB , QB〉 = E0[N2]. Then the
protocol is as follows:

1. Alice chooses a random cyclic subgroup of E0[N1] generated by a point of
the form A = PA + [xA]QA and Bob chooses some random cyclic subgroup
of E0[N2] generated by B = PB + [xB ]QB .

2. Alice then computes her secret isogeny ϕA : E0 → E0/〈A〉 and Bob computes
his secret isogeny ϕB : E0 → E0/〈B〉.

3. Alice sends the curve EA := E0/〈A〉 and the two points ϕA(PB), ϕA(QB) to
Bob while Bob sends

(
EB := E0/〈B〉, ϕB(PA), ϕB(QA)

)
to Alice.

4. Alice and Bob both compute the shared secret curve EAB := E0/〈A,B〉 using
the given torsion information. Alice obtains EAB as EAB = EB/〈ϕB(A)〉 =
EB/〈ϕB(PA)+[xA]ϕB(QA)〉, Bob proceeds analogously to compute the same
curve.

For SIDH, one chooses the prime p of the form p = N1N2f − 1 with N1 and
N2 being powers of 2 and 3, respectively. As the above protocol is vulnerable to
adaptive attacks (see e.g., [14]), SIKE applies a variant of the Fujisaki-Okamoto
transformation due to Hofheinz, Hövelmanns and Kiltz [16] to standard SIDH. To
ensure that both Alice and Bob enjoy the same level of security, the recommended
parameter sets for SIDH and SIKE suggest balanced parameters, i.e., N1 ≈ N2.

The active attack on standard SIDH presented by Galbraith-Petit-Shani-
Ti [14] utilizes the additional information on torsion points to recover a secret key
through multiple executions of the protocol with malformed messages. Further,
the given torsion point information is exploited in Petit’s passive attack [26] on a
non-standard variant of SIDH with unbalanced and comparatively large torsion
parameters. The requirements on unbalancedness and size of parameters have
recently been improved upon by Kutas et al. [22] who additionally show that,
even with balanced parameters, there exist certain primes which facilitate an
effective torsion point attack on SIDH.

For our quantum attack to work, we need to relax the balancedness condition
of standard SIDH and require one of N1 and N2 to be larger than the other by
a certain factor. In particular, we need N1N2 � p which prohibits choosing p
as suggested by Jao-De Feo. We call this variant of SIDH overstretched. Note
that this variant of SIDH is still polynomial time as long as N1 and N2 are
powersmooth numbers, albeit much slower in practice than with the suggested
parameters.

SIDH is believed to be immune to subexponential quantum attacks [1, 17, 18].
In particular, it has been claimed and been widely accepted that no reasonable
variant of Childs et al.’s attack [7] exists for SIDH [18, p.18, Section 5]. Yet, we
will show in this paper how to reduce SIDH with overstretched parameters to
an abelian hidden shift problem.
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2.5 Quantum algorithms for hidden shift problems

We first recall what is meant when two functions are said to be shifts of each
other, or equivalently that these two functions hide a shift.

Definition 2.1. Let F0, F1 : G→ X be two functions defined on some group G,
such that there exists some s ∈ G satisfying F0(g) = F1(g · s) for all g ∈ G.
The hidden shift problem is the problem of finding s given oracle access to the
functions F0 and F1.

We now proceed to give an overview of how this problem is solved in quantum
subexponential time given that the functions satisfy some additional properties.
To this end, we first describe a quantum property testing algorithm which deter-
mines whether two functions are shifts of one another with high probability, and
then summarize the quantum algorithms solving the injective abelian hidden
shift problem in the following.

Testing for the hidden shift property. Assume we are given two functions
F0, F1 : G → X mapping a finite abelian group G (with exponent k ∈ Z+) to
some finite set X. Before trying to immediately solve a hidden shift instance
on F0 and F1, we want to decide whether these functions actually satisfy the
hidden shift promise fully or at least for a large proportion of the elements in
the domain. For a concise overview of the technique of property testing, we refer
the reader to [24].

Here, we can use a special case of Friedl et al.’s testing algorithm [13] which
utilizes quantum Fourier sampling and has a query complexity ofO(k log(|G|)/δ),
where 0 < δ < 1 parametrizes how rigorous the algorithm is in rejecting samples.
Any input pair of hidden shift functions will be accepted by the tester with full
certainty while a pair which disagrees with functions hiding a shift on at least
2|G|δ values is rejected with some constant probability.

Finding the hidden shift. Multiple approaches utilizing quantum compu-
tation have been proposed to solve the hidden shift problem efficiently. Some of
these works have considered different group structures as well as variations on
the promise.

The first quantum subexponential algorithm is due to Kuperberg [20] and
reduces the hidden shift problem to the hidden subgroup problem in the di-
hedral group DG ' C2 n G, i.e., to finding a subgroup of DG such that a
function obtained from combining the input functions of the hidden shift prob-
lem is constant exactly on its cosets. It requires quantum subexponential time,

namely 2O(
√

log |G|) quantum queries, for a finite abelian group G. A modifica-
tion of this method proposed by Regev [28] reduces the memory required by
Kuperberg’s approach (from super-polynomial to polynomial) while keeping the
running time quantum subexponential. Another, slightly faster algorithm, the
collimation sieve, using polynomial quantum space was proposed later by Ku-
perberg [21]. In this variant, parameter tradeoffs between classical and quantum
running time and quantumly accessible memory are possible.
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These algorithms suggested for the hidden shift problem where the group
G is abelian generally begin by producing some random quantum states, each
with an associated classical “label”, by evaluating the group action on a uniform
superposition over the group G. For this generation of states, oracle access to
the two functions F0 and F1 is needed. Then, the hidden shift s is extracted
bitwise through performing measurements on specific quantum states (i.e., ones
with desirable labels) which are generated from the random states via some sieve
algorithm.

3 Malleability oracles and hidden shift attacks

In this section, we introduce the notion of a malleability oracle for a one-way func-
tion. Under some conditions, such an oracle allows the computation of preimages
of given elements in quantum subexponential time by reduction to the hidden
shift problem.

3.1 Malleability oracles

Recall the definition of a free and transitive group action.

Definition 3.1. Let G be a group with neutral element e, and let I be a set. A
(left) group action ϕ of G on I is a function ϕ : G × I → I, (g, x) 7→ ϕ(g, x),
that satisfies ϕ(e, x) = x for all x, and ϕ(gh, x) = ϕ(g, ϕ(h, x)) for all x ∈ I and
g, h ∈ G.

The group action is called transitive if and only if I is non-empty and for
every pair of elements x, y ∈ I there exists g ∈ G such that ϕ(g, x) = y. The
group action is called free if and only if ϕ(g, x) = x implies g = e.

From now on we will denote the action of a group element g ∈ G on a set
element i ∈ I by g · i.

Next, we define an oracle capturing the main premise required for our attack
to compute preimages of one-way functions.

Definition 3.2. Let f : I → O be an injective (one-way) function, let AG be
the action of a group G on I and let g · i denote the image of g ∈ G acting on
i ∈ I. A malleability oracle for G at o := f(i) provides the value of f(g · i) for
any input g ∈ G, i.e., the malleability oracle evaluates the map

g 7→ f(g · i).

We call the function f malleable, if a malleability oracle is available at every
o ∈ f(I).

In Section 4 we show how a polynomial time malleability oracle can be con-
structed in the context of SIDH with overstretched parameters, and in Section 5
we see that in other contexts it may arise naturally.
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3.2 Reduction to hidden shift problem

Given a malleability oracle at o = f(i), computing a preimage of o reduces to a
hidden shift problem.

Theorem 3.3. Let f : I → O be an injective (one-way) function and let G be
a group acting transitively on I. Given a malleability oracle for G at o := f(i),
a preimage of o can be computed by solving a hidden shift problem.

Proof. Given o ∈ f(I), our goal is to compute i such that f(i) = o. Let k be an
arbitrary but fixed element in I and define

Fk : G→ O , θ 7→ f(θ · k).

Note that i is unique since f is an injective function, thus Fi is well-defined.
Moreover, the malleability oracle allows us to evaluate the function Fi on any
θ ∈ G, since Fi(θ) = f(θ · i).

Fix some arbitrary j ∈ I. Since we know j, we can evaluate Fj on any group
element θ by evaluating f(θ · j) through simply computing the group action.
Due to the transitivity of the group action of G, there exists σ ∈ G such that
i = σ · j. Since for all θ ∈ G

Fi(θ) = f(θ · i) = f(θσ · j) = Fj(θσ),

the functions Fj and Fi are shifts of each other.
Solving the hidden shift problem for Fi and Fj therefore allows us to recover

σ, and thus to compute i = σ · j.

The following corollary will be used in our attack on overstretched SIDH.

Corollary 3.4. Let f : I → O be an injective (one-way) function and let G
be a finitely generated abelian group acting freely and transitively on I. Given
a malleability oracle for G at o := f(i), a preimage of o can be computed in
quantum subexponential time.

Proof. To obtain a hidden shift instance solvable by a subexponential quantum
algorithm such as Kuperberg’s, we only have to show that for every k ∈ I the
function Fk(θ) = f(θ · k) is injective. Then the claim follows from Theorem 3.3
and the discussion in Section 2.5.

Suppose that Fk(g) = Fk(h) for some g, h ∈ G. This means f(g ·k) = f(h ·k).
Since f is injective and the group action is free, we get g = h.

4 Attack on overstretched SIDH in quantum
subexponential time

Despite the non-commutative nature of SIDH, we show in this section that one
can find an abelian group action on its private key space. Moreover for sufficiently
overstretched SIDH parameters, the torsion point information allows us to build
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a malleability oracle under this group action. This gives rise to an attack using
quantum subexponential hidden shift algorithms as proposed in our framework
in Section 3.2.

This section is organized as follows: We first sketch our approach to exploit
the torsion point information in Section 4.1. We then solve two technical issues
in Sections 4.2 and 4.3. These issues require to tweak our general approach
slightly, and we summarize the resulting algorithm in Section 4.4. Finally in
Section 4.5, we present a hybrid approach to combine guessing part of the secret
and computing the remaining part using our attack framework; this allows to
extend the attack to further parameter sets.

Throughout this section, we use the following notation. Let p ≡ 3 (mod 4)
be prime, let E0 be the supersingular elliptic curve with j-invariant 1728, given
by the equation y2 = x3 + x, and let O0 = End(E0) be its endomorphism ring.
Note that O0 is well-known. More precisely, it is the Z-module generated by
1, ι, 1+j2 and ι+j

2 , where ι denotes the non-trivial automorphism of E0 mapping
(x, y) 7→ (−x, iy) and j is the Frobenius endomorphism.

Remark 4.1. The attack we describe can be expanded to other curves with
known endomorphism rings that are close to E0, such as the curve used in
the updated parameters of SIKE for the second round of NIST’s post-quantum
standardisation effort [1], by guessing the action on torsion points.

4.1 Overview of the attack

Let I be the set of cyclic subgroups of E0 of order N1, and let O be the set of
j-invariants of all supersingular curves that are N1-isogenous to E0. Let f be
the function sending any element of I to the j-invariant of the codomain of its
corresponding isogeny, i.e.,

f : I → O, K 7→ j(E0/K). (1)

The function f can be efficiently computed on any input using Vélu’s formu-
lae [32], provided N1 is sufficiently smooth and that the N1-torsion is defined
over a sufficiently small extension field of Fp. In SIDH, the latter is achieved
by choosing N1|p − 1, but for sufficiently powersmooth N1 this is true more
generally.

On the other hand, inverting f amounts to finding an isogeny of degree N1

from E0 to a curve in a given isomorphism class, or equivalently to finding the
subgroup of E0 defining this isogeny. The conjectured hardness of this problem
is at the heart of isogeny-based cryptography.

In the SIDH protocol, additional torsion point information is transmitted
publicly as part of the exchange, and thus also given to potential attackers. For
the security proof it is assumed that a variant of the following problem [18] is
hard when N1 ≈ N2.

Problem 4.2. Let p be a large prime, let N1 and N2 be two large powersmooth
coprime integers, and let K ∈ I be a cyclic subgroup of order N1 of E0 chosen
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uniformly at random. Let ϕ : E0 → E0/K. Given the supersingular curves E0

and E0/K together with the restriction of ϕ to E0[N2], compute K.

Our attack exploits the information provided by the restriction of the secret
isogeny to E0[N2] to construct a malleability oracle for f at the (unknown) secret.
This gives rise to an attack on overstretched SIDH following the framework of
Section 3.

Let G be a subgroup of (O0/N1O0)∗. Then G induces a group action on I
given by

AG : G× I → I , (θ,K) 7→ θ(K).

Indeed, the degree of any non-trivial representative θ is coprime to N1 and thus
preserves the order of any generator of K.

By applying f , we identify a group actionAG ofG on I with a mapG×I → O.
With a slight abuse of terminology, we will refer to the image under f of an orbit
of G in I as an orbit of G in O in the following.

Note that the full group (O0/N1O0)∗ is not abelian. Our attack will require
an abelian subgroup G acting on I such that G acts freely and transitively on
the orbit of the secret key under this group action, as well as one element in this
orbit. This leads to the following task.

Task 4.3. Let K ∈ I be any cyclic subgroup of E0 of order N1 chosen uniformly
at random and let ϕ : E0 → EA := E0/K. Compute an element L ∈ I and an
abelian subgroup G of (O0/N1O0)∗, such that G acts freely and transitively on
the orbit G · L, f is injective on G · L and EA is contained in f(G · L) in O.

We solve this task in Section 4.2. More precisely, we partition I into three
subsets restricted to which f is injective and give abelian groups that induce the
required action on these subsets. One of these subsets of I always contains the
secret K.

In order to apply our general framework from Section 3, it remains to con-
struct a malleability oracle for f at j(E0/K) for any secret K ∈ I. To construct
this oracle, we use both the torsion point information provided in the SIDH
protocol and a solution to the following task.

Task 4.4. Given an endomorphism θ ∈ G of degree coprime to N1 and an
integer N2 coprime to N1, compute an endomorphism θ′ of degree N2 such that
θ and θ′ induce the same action on the set I of cyclic subgroups of E0[N1] of
order N1.

An algorithm solving a small variation of this task when using sufficiently
large N2 and unbalanced N1 and N2 is presented in Section 4.3.

The following lemma results from the coprimality of deg(θ) and N1 when
considering an SIDH key exchange instance with “secret” isogenies θ and ϕ as
displayed in Figure 1.
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E0 EA

E0 E0/θ(kerϕ) ∼= EA/ϕ(ker θ)

ϕ

θ

Fig. 1. SIDH key exchange instance with isogenies ϕ and the endomorphism θ.

Lemma 4.5. Let ϕ : E0 → EA be an isogeny of degree N1 and let θ ∈ End(E0)
be of degree coprime to N1. Then EA/ϕ(ker θ) is isomorphic to E0/θ(kerϕ).

Let N3 be the degree of θ. We cannot compute the curve E0/θ(kerϕ) in
general without the knowledge of the isogeny ϕ or its action on the N3-torsion.
However, we can compute the curve if we find an endomorphism θ′ of degree
N ′3 such that θ and θ′ have the same action on the N1-torsion and ϕ|E0[N ′

3]
is

known. This is the motivation behind Task 4.4 as we know the action of ϕ on the
N2-torsion in Problem 4.2. A solution to this task yields a malleability oracle for
f with respect to the previously described group action of G on I in the SIDH
setting.

This strategy to implement the malleability oracle is sketched in Algorithm 1,
and Proposition 4.30 will prove its correctness.

Algorithm 1: Computation of f(θ(K)), given f(K) and θ ∈ G
Input: Let ϕ : E0 → EA := E0/K be an isogeny of degree N1, let N2 be

coprime to N1 and G ⊂ (O0/N1O0)∗ one of the groups provided in
Section 4.2. The input is E0, f(K) = j(EA), ϕ|E0[N2] and θ ∈ G.

Output: f(θ(K)) = j(E0/θ(K)).
1 Compute endomorphism θ′ of degree N2 having the same action as θ on cyclic

N1-order subgroups of E0[N1] using the lifting procedure of Section 4.3;
2 Using the knowledge of ϕ on E0[N2], determine ϕ(ker θ′);
3 Compute f(θ(K)) = E0/θ(K) = EA/ϕ(ker θ′);
4 return f(θ(K)) = j(E0/θ(K))

For parameters that allow us to construct a malleability oracle, we can then
solve Problem 4.2 underlying SIDH-like protocols via a reduction to an injective
abelian hidden shift problem using the framework introduced in Section 3.2.

Informal result 4.6. Suppose the parameters allow the solution of Task 4.4
efficiently, then Problem 4.2 can be solved in quantum subexponential time.

We use the remainder of this section to prove this result more formally under
certain assumptions. To this end, we first give solutions to Task 4.3 and, for
some parameters, to Task 4.4. Then we construct a malleability oracle using
the torsion point information provided in SIDH and the solution for Task 4.4.



Hidden shift attacks on isogeny-based protocols 13

Apart from some technical details that we will address in the following, the
informal result follows from Corollary 3.4. An overview of the attack is depicted
in Algorithm 2.

Algorithm 2: Solving SIDH’s underlying hardness assumption via an
abelian hidden shift problem

Input: Let ϕ : E0 → EA := E0/K be an isogeny of degree N1 and P,Q a
basis of E0[N2]. The input is E0, EA, ϕ(P ), ϕ(Q).

Output: K defining ϕ.
1 Compute an abelian group G ⊂ (O0/N1O0)∗ acting freely and transitively on

the orbit G(K) and one J ∈ G(K) ⊂ I;
2 Define FK : G→ O, g 7→ f(g(K)) and FJ : G→ O, g 7→ f(g(J));
3 Compute injective abelian hidden shift θ ∈ G of FK and FJ , i.e., θ ∈ G such

that FK(g) = FJ(θg) for all g ∈ G, with algorithm such as Kuperberg’s. To
this end, one evaluates FK using Alg. 1 and FJ using the knowledge of J ;

4 return K := θ(J)

4.2 A free and transitive group action

Recall that E0 is the supersingular curve with j-invariant 1728, given by the
equation y2 = x3 + x. In this section we provide a solution to Task 4.3. We will
do so by partitioning I into three orbits under the free and transitive action
of abelian subgroups of (O0/N1O0)∗. Moreover, we show that restricting the
function f to any of the three subsets yields an injective function. One of these
three options will then always be a solution to Task 4.3.

For simplicity, we treat N1 as a power of two in this section, but the results
generalize to any power of a small prime. A generalization to powers of 3 is
sketched in Appendix B.

Definition 4.7. Let d be a positive integer. We say a supersingular elliptic curve
E is at distance d from E0 if there exists a separable isogeny φ with cyclic kernel
of degree d from E0 to E.

Recall that f maps I to the set of j-invariants of curves at distance N1 from
E0 due to the well-known correspondence between separable isogenies of degree
N1 and cyclic subgroups of E0[N1] of order N1. However, the correspondence is
not necessarily one-to-one. In particular, if E0 has a non-scalar endomorphism
of degree N2

1 , then that endomorphism can be decomposed as τ̂1 ◦ τ2 where τ1
and τ2 are non-isomorphic isogenies of degree N1 from E0 to the same curve E.
For small enough N1, the following lemma shows that two kernels correspond
to the same curve if and only if they are linked by the automorphism ι : E0 →
E0, (x, y) 7→ (−x, iy).

Lemma 4.8. Suppose that N2
1 <

p+1
4 . Then the only endomorphisms of degree

N2
1 of E0 are N1 · [1] and N1 · ι, where ι : E0 → E0, (x, y) 7→ (−x, iy) is the

non-trivial automorphism.
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Proof. Due to the condition that N2
1 <

p+1
4 , an endomorphism θ of degree N2

1

lies in Z[ι]. Let θ = a+bι for some a, b ∈ Z. Then the degree of θ is a2 +b2. Now
we have to prove that the only ways to decompose N2

1 as a sum of two squares
are trivial, i.e., N2

1 = N2
1 + 02 = 02 +N2

1 .
Let N1 = 2k, and we prove the statement by induction on k. For k = 1 the

statement is trivial. Suppose that k > 1 and that N2
1 = a2 + b2. Then a and

b cannot both be odd as N2
1 is divisible by four. If they are both even, then

dividing by four yields a decomposition of (N1/2)2 = (a/2)2 + (b/2)2. By the
induction hypothesis, this decomposition is trivial implying that N2

1 can also
only be decomposed in a trivial way.

Corollary 4.9. Suppose that N2
1 <

p+1
4 . Let φ and φ′ be two isogenies of degree

N1 from E0 to a curve E. Then either kerφ = kerφ′ or kerφ = ι(kerφ′).

Proof. Consider the endomorphism τ = φ̂′ ◦ φ of E0. The degree of τ is N2
1 ,

so τ = N1 or τ = N1 · ι by Lemma 4.8. In the former case, the isogenies φ
and φ′ are identical by the uniqueness of the dual. In the latter case, we have
kerφ = ι(kerφ′).

Consider again the function f : I → O as defined in (1) sending a cyclic
subgroup of E0[N1] of order N1 to the j-invariant of the corresponding elliptic
curve, and note that it is not injective. However, an element in the image of f
has precisely one preimage if the kernel of the corresponding isogeny is fixed by
the automorphism ι.

To solve Task 4.3, we partition the set I of N1-order subgroups of E0[N1] in
a way that f restricted to those subsets is injective. Furthermore, we define a
free and transitive group action on each of these subsets.

Let P be a point such that {P, ι(P )} is a basis of E[N1], and define

SP := {E/〈P + αι(P )〉 with 2|α}. (2)

We show that f restricted to SP is injective.

Proposition 4.10. Let j(E0) = 1728, let P ∈ E0[N1] be such that {P, ι(P )}
is a basis of E0[N1]. Suppose that N2

1 < p+1
4 . Then SP is a set of pairwise

non-isomorphic curves.

Proof. We apply Corollary 4.9. It is clear that P + αι(P ) and P + α′ι(P ) are
not scalar multiples of each other if α 6= α′ because P, ι(P ) generate E0[N1]. It
remains to show that for any even α, α′, the points P +αι(P ) and −α′P + ι(P )
are not scalar multiples of each other. Suppose that there exists an odd λ such
that

P + αι(P ) = λ(−α′P + ι(P )).

Note that we can restrict to odd λs as the order of both points is N1. Since
{P, ι(P )} is a basis of the N1-torsion, this implies that 1 ≡ −λα′ (mod N1).
However, this cannot happen since α′ is even. This contradiction concludes the
proof.
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Our next goal is to define a free and transitive group action on SP . The set
SP does not include all elliptic curves at distance N1 from E0, i.e., all curves
in f(I). Nonetheless, we first restrict ourselves to SP and define the free and
transitive group action for the remaining curves later when we address the cases
where α is odd.

Every curve at distance N1 from E0 is of the form E0/〈P + αι(P )〉 for some
α ∈ Z/N1Z. This follows from the observation that the curves E0/〈β1P+β2ι(P )〉
and E0/〈−β2P + β1ι(P )〉 are isomorphic if their kernels are linked by ι.

Recall that E0 is a curve with well-known endomorphism ring, and we are
interested in the endomorphisms that are of degree coprime to N1. While there
are infinitely many such endomorphisms, we are only concerned with their action
on E0[N1], i.e., we are looking at the group (O0/N1O0)∗ which is finite and can
be mapped injectively into GL2(Z/N1Z). Furthermore, we are only concerned
with the action of the endomorphisms on I, i.e., on cyclic subgroups of E0[N1]
of order N1, and we can therefore identify even more endomorphisms with each
other by the following lemma.

Lemma 4.11. Let θ = a + bι + cj + dk and θ′ = a′ + b′ι + c′j + d′k, where ι
denotes the non-trivial automorphism of E0, j the Frobenius endomorphism and
k := ij, and let I be the set of cyclic subgroups of E0[N1] of order N1. Then
θ(K) = θ′(K) for every K ∈ I if and only if there exists some λ ∈ (Z/N1Z)∗

such that
(a, b, c, d) ≡ λ(a′, b′, c′, d′) (mod N1).

Proof. Considering the respective restrictions to E0[N1], two endomorphisms are
equal if they lie in the same class in (O0/N1O0)∗. Moreover, let θ1, θ2 be two
endomorphisms such that θ1 = [λ]θ2 for some integer λ, and let P be an element
of order N1. Since scalar multiplication commutes with any endomorphism, it is
easy to see that θ1(P ) and θ2(P ) generate the same subgroup in E0[N1] if and
only if λ is coprime to N1.

Now, we are ready to give a solution to Task 4.3 if K ∈ I lies in SP .

Proposition 4.12. Let G be the group of equivalence classes of elements

{a+ bι | a odd , b even } ⊂ Z[ι] ⊂ End(E0)

where we identify two elements if and only if they differ by multiplication by
an odd scalar modulo N1. Then G is an abelian group, and it acts freely and
transitively on SP .

Proof. It is easy to see that the endomorphisms in Z[ι] of degree coprime to N1

form an abelian subgroup of End(E0). Using any basis for E0[N1] of the form
{P, ι(P )}, we can write the elements of this subgroup as matrices of the form(
a b
−b a

)
, where a2 + b2 is coprime to N1, a is odd and b is even. By identifying

two endomorphisms a1 + b1ι and a2 + b2ι if there exists an integer λ coprime
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to N1 and an endomorphism δ such that a1 − λa2 + (b1 − λb2) = N1δ, which
we can do by Lemma 4.11, we obtain G. As G is closed under multiplication
and reduction modulo N1, it is a subgroup of an abelian group and therefore
abelian itself. Note that G contains all equivalence classes under Lemma 4.11 of
endomorphisms of the form a+ bι for even b, independently of the chosen basis.

Recall that endomorphisms act on I, the set of cyclic order-N1 subgroups
of E0[N1]. To examine the orbit of an element in I, it is sufficient to look at
the orbit of a generator of this cyclic group in I. We consider the orbit of P
which has coordinates (1, 0) with respect to our basis under the group action

of G. The image of (1, 0) under an element

(
1 b
−b 1

)
is (1,−b). Inspecting the

cyclic subgroups of E0 these points generate, it becomes clear that the orbit of
G · 〈P 〉 ⊂ I is in one-to-one correspondence with SP .

Dealing with an odd α. So far we have defined a free and transitive group
action on SP . However, when the secret kernel is generated by P + αι(P ) with
α odd, the corresponding curve is not contained in SP . Now we handle the case
where α is odd. One can show that the action of the previously defined group G
on the set I has three orbits (see Appendix A for details). We have already seen
that SP is one orbit, but the odd α cases will split into two orbits. This means
that the action of G cannot be free and transitive on these orbits, since the size
of the orbits is smaller than the cardinality of the group. We avoid this issue by
choosing a different (but similar) group of cardinality N1/4 to act on the curves
corresponding to odd α.

Let Q = P + ι(P ). This first lemma shows when a linear combination of Q
and ι(Q) is 0.

Lemma 4.13. The linear combination xQ+yι(Q) = 0 holds if and only if x ≡ y
(mod N1) and x ≡ 0 (mod N1/2).

Proof. Observe that xQ + yι(Q) = (x − y)P + (x + y)ι(P ) which equals zero
exactly when x ≡ y (mod N1) and x + y ≡ 0 (mod N1), which is what we
wanted to prove.

Lemma 4.14. Let SP,1 and SP,2 be defined in the following way:

SP,1 :=

{
E0/〈Q+ αι(Q)〉 | α even and α ∈

[
0,
N1

2
− 1

]}
,

SP,2 :=

{
E0/〈Q+ αι(Q)〉 | α even and α ∈

[
N1

2
, N1 − 1

]}
.

Then the curves in SP,1 and SP,2, respectively, are pairwise non-isomorphic.

Proof. Let α, α′ be such that the corresponding curves are both in SP,1, or SP,2,
respectively. First we show that Q + αι(Q) is an odd multiple of Q + α′ι(Q) if
and only if α ≡ α′ (mod N1/2). Suppose there exists an odd λ such that

Q+ αι(Q) = λ(Q+ α′ι(Q)).
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Then Lemma 4.13 implies that 1−λ ≡ 0 (mod N1/2) and α−λα′ ≡ 0 (mod N1/2)
which implies α ≡ α′ (mod N1/2). Now we have to show that Q+αι(Q) is never
an odd multiple of −αQ+ ι(Q). Suppose there exists an odd λ such that

Q+ αι(Q) = λ(−α′Q+ ι(Q)).

Lemma 4.13 implies that 1 + α′λ ≡ α− λ ≡ 0 (mod N1/2). However, this leads
to a contradiction, as α−λ ≡ 0 (mod N1/2) implies λ is even while 1 +α′λ ≡ 0
(mod N1/2) implies that λ must be odd. This shows that the curves in SP,1 are
pairwise non-isomorphic, and the same is true for curves in SP,2.

Our next goal is to give a free and transitive group action on SP,1 and SP,2.
We start by defining the acting group.

Let us identify two endomorphisms a+ bι and a′ + b′ι if there exists an odd
λ ∈ Z/(N1/2)Z such that a ≡ λa′ (mod N1/2) and b ≡ λb′ (mod N1/2) and let
us call the resulting group G0. Let H be the subgroup of G0 containing elements
with even b.

Proposition 4.15. H acts freely and transitively on SP,1 and SP,2.

Proof. It is enough to show that H acts transitively on SP,1 and SP,2 as the
cardinality of H, SP,1 and SP,2 is the same. We show that the orbit of E/〈Q〉
contains every element in SP,1. This follows from the fact that (1 + αι)Q =
Q+αι(Q). Now we are left to show that H acts transitively on SP,2. This follows
from the fact that (1 +αι)(Q+N1ι(Q)/2) = (1−αN1/2)Q+ (α+N1/2)ι(Q) =
Q+ (α+N1/2)ι(Q) because α is even, so (αN1/2)Q = 0.

What remains to be shown is that the curve E/〈P + αι(P )〉 with odd α is
contained in either SP,1 or SP,2.

Proposition 4.16. Let α be an odd integer. E/〈P + αι(P )〉 is contained in
exactly one of SP,1 or SP,2.

Proof. Observe that

P + αι(P ) =
1 + α

2
(P + ι(P )) +

α− 1

2
(−P + ι(P )) =

1 + α

2
Q+

α− 1

2
ι(Q).

Note that the sum of 1+α
2 and α−1

2 is odd which implies that one of the fractions
is even while the other one is odd. If α−1

2 is even, then it is clear that the curve
is contained in either SP,1 or SP,2. Now we may assume that 1+α

2 is even. In this
case, E/〈 1+α2 Q+ α−1

2 ι(Q)〉 is isomorphic to E/〈 1−α2 Q+ α+1
2 ι(Q)〉 (because their

kernels are related by ι) and we have again shown that this curve is contained
in either SP,1 or SP,2.

In this subsection, we have partitioned I into three subsets corresponding to
curves in SP , SP,1 and SP,2, restricted to which f is injective. Moreover, for each
of these sets we have given an abelian subgroup of (O0/N1O0)∗ that acts freely
and transitively on it. Thus, we solve Task 4.3 as long as one determines which
of the three sets contains EA.



18 P. Kutas, S.-P. Merz, C. Petit, C. Weitkämper

Remark 4.17. The reason for the even α case being simpler than the odd α
case and using different groups is the following. Let G be the group defined
in Proposition 4.12. Then one can show (for details see Appendix A) that the
action of G has three orbits, one with N1

2 and two with N1

4 elements. The larger
orbit corresponds to an even α and the two smaller ones correspond to odd αs.
In order to have a free and transitive group action, the cardinality of the acting
group has to be the same as the one of its orbit. This is why we need a smaller
group acting on the orbits corresponding to odd αs. In particular, the action of
G is no longer transitive on curves corresponding to odd αs as it has two orbits.

4.3 Lifting θ ∈ Z[i] to an element of norm N2 or eN2

In the previous subsection, we described how to choose suitable abelian sub-
groups of (O0/N1O0)∗ in order to solve Task 4.3 after identifying whether
EA = E0/K is a curve in SP , SP,1 or SP,2. Note that with the chosen groups,
every acting group element can be trivially lifted to Z[i] = Q[ι] ∩ End(E0). In
this section we will describe how to lift these representatives to another endo-
morphism of E0 with N2-divisible degree which has the same action on I.

Let q = 4 denote the discriminant of Z[i]. In this subsection, we solve the
following task, which is a variant of Task 4.4, efficiently.

Task 4.18. Let N1, N2 be integers such that N2 > |q|p2N4
1 and let e denote

the smallest positive quadratic non-residue modulo N1. Given an endomorphism
θ ∈ G of degree coprime to N1 and an integer N2 corpime to N1, compute an
endomorphism θ′ of degree N2 or eN2 such that θ(K) = θ′(K) for all K ∈ I.

This is a relaxation of Task 4.4 in two ways. First, we require N2 to be
sufficiently large and unbalanced compared to N1. Second, we allow θ′ to be
either of degree N2 or eN2 for some small integer e.

Note that e only depends on the fixed integer N1 and not on the endomor-
phism θ. Assuming the conjecture due to Bach and Huelsbergen [2] we can bound
e as follows.

Conjecture 4.19. ([2]) Let e denote the smallest integer that is a quadratic non-
residue modulo an integer N1. We have

e ≤ log(2)−1 logN1 log logN1.

We now describe an algorithm to solve Task 4.18. By Lemma 4.11 it suffices
to solve the following, which is similar to the problem solved at the core of the
KLPT algorithm [19].

Task 4.20. Given θ = a0 + b0i + (c0 + d0i)j, find θ′ = a′ + b′i + (c′ + d′i)j of
degree eN2 with coefficients (a′, b′, c′, d′) ≡ λ(a0, b0, c0, d0) (mod N1) for some
scalar λ ∈ (Z/N1Z)∗.



Hidden shift attacks on isogeny-based protocols 19

Let θ′ = λa0 +N1a1 + i(λb0 +N1b1) + (λc0 +N1c1 + i(λd0 +N1d1))j. Then
its norm equals

Norm(θ′) = h(λa0 +N1a1, λb0 +N1b1) + ph(λc0 +N1c1, λd0 +N1d1), (3)

where h(x, y) = Norm(x + yi) is a principal quadratic form of discriminant q.
Since θ ∈ Z[i] implies c0 = d0 = 0, Equation (3) simplifies to

Norm(θ′) = h(λa0 +N1a1, λb0 +N1b1) + pN2
1h(c1, d1). (4)

Let e be 1 if N2/h(a0, b0) is a quadratic residue modulo N1, and the small-
est positive non-quadratic residue modulo N1 otherwise. Compute θ′ such that
Norm(θ′) = eN2. Considering Equation (4) modulo N1, we obtain

eN2 ≡ λ2h(a0, b0) (mod N1). (5)

Since both eN2 and h(a0, b0) = deg(θ) are coprime to N1, the choice of e implies
that there exists a solution for λ. Compute any such solution, and lift it to the
integers in [1, N1−1] in a natural way. Note that this is without loss of generality
as any other lift of λ corresponds to a change in a1, b1 instead.

Then consider the equation modulo N2
1 . This gives an affine relation between

a1 and b1 modulo N1, i.e.,

2λ(a0a1 + b0b1) ≡ Norm(θ′)− λ2h(a0, b0)

N1
(mod N1).

Take the affine relation between a1 and b1 moduloN1, say ebb1 = eaa1+ec+mN1

for some fixed integers ea, eb, ec and a variable integerm. Assume eb 6≡ 0 (mod p)
as lifting would be trivial otherwise, and substitute b1 in Equation (4) modulo
the prime p, i.e.,

eN2 ≡ h(λa0 +N1a1 , λb0 +N1e
−1
b (eaa1 + ec +mN1)) (mod p).

Note that fixing any value for m leaves a quadratic equation in a1 modulo p.
Fix m = 0 and complete the square in the equation to solve it, if there exists
a solution. Otherwise, increase m by one and repeat. Heuristically, one expects
this degree-2 polynomial modulo p to be split with probability 1/2 and hence
we expect to iterate twice before finding a solution.

Once a solution for a1 is obtained modulo p, lift it to the integers. One is left
with the problem of representing an integer as the norm of an element in Z[i],
i.e., finding c1 and d1 such that

h(c1, d1) = r :=
Norm(θ′)− h(λa0 +N1a1, λb0 +N1b1)

pN2
1

if they exist. Clearly, r can only be a norm if it is positive. This happens when
the parameters N1 and N2 are overstretched, and more precisely if Norm(θ′) >
|q|p2N4

1 , where q denotes the discriminant of h.
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If the prime decomposition of r is known, Cornacchia’s algorithm [8] can effi-
ciently answer the question whether r can be decomposed that way and compute
a solution if one exists. Assuming the values of h(λa0+N1a1, λb0+N1b1) behave
as random values around |q|p2N4

1 , one expects to choose log(|q|p2N4
1 ) different

values for m with a solution to the quadratic equation modulo p before finding
a solution with Cornacchia’s algorithm.

Remark 4.21. Cornacchia’s algorithm requires the factorization of r. This could
be done in subexponential time on a classical computer or in quantum polyno-
mial time. To avoid such computations, we apply Cornacchia’s algorithm only
when r is a prime and keep sampling further values for m otherwise.

Since we do not apply Cornacchia’s algorithm until r is prime, we expect to
sample roughly log(|q|p2N4

1 ) values for m until r is prime.
It is easy to see that a solution for (a1, b1, c1, d1) as computed with the

routine described above satisfies Equation (4). The full algorithm is summarized
in Algorithm 3.

Since Algorithm 3 provides θ′ of normN2 or eN2, where e denotes the smallest
quadratic non-residue modulo N1, Conjecture 4.19 facilitates the derivation of
the following lemma.

Lemma 4.22. Assuming Conjecture 4.19, a solution of Algorithm 3 to Task 4.18
is of norm at most eN2, where e ≤ log−1(2) logN1 log logN1.

An examination of algorithm 3 shows that it aborts after a fixed number of
trials for m. Recalling the discussion at the beginning of this section, we can
then state the following.

Lemma 4.23. Algorithm 3 always terminates and is correct if it returns a so-
lution.

We conclude this section by investigating the heuristic probability of the
lifting algorithm being successful despite aborting, as well as its complexity.

The success probability is based on the following heuristic assumptions:

1. The discriminant of h(λa0 + N1a1 , λb0 + N1b1) in Line 10 of Algorithm 3
is uniformly distributed modulo p.

2. r in Line 13 of Algorithm 3 behaves like a random value around |q|p2N4
1 .

Lemma 4.24. Let ε > 0 and let B := log(ε) log(|q|p2N4
1 )/ log(1−log−1(|q|p2N4

1 ))
be the limit for the number of values of m over which we iterate in Algorithm 3
(Step 9). Under the heuristic assumptions mentioned in the preceding paragraph,
the algorithm returns a lift with probability 1− ε and an error ⊥ otherwise.

Proof. Based on the heuristic that the discriminant of h(λa0+N1a1 , λb0+N1b1)
in Step 10 of Algorithm 3 is uniformly distributed modulo p, we expect to find
a solution for a1 (mod p) for half of the chosen m. Moreover, if r (Line 13,
Algorithm 3) behaves like a random value around |q|p2N4

1 , we expect it to be
prime with probability roughly 1/ log(|q|p2N4

1 ) and Cornacchia’s algorithm to
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Algorithm 3: Lift element from Z[i] to quaternion of norm N2 or eN2

Input: θ = a0 + b0i ∈ End(E0), q := Disc(Z[i]) and parameters p, ε, N1,
N2 > p2N4

1

Output: θ′ = λa0 +N1a1 + (λb0 +N1b1)i+N1c1j +N1d1k and
Norm(θ′) = N2 or eN2 with probability 1− ε and ⊥ otherwise

1 Let h(x, y) := Norm(x+ yi);
2 if λ in N2 = λ2h(a0, b0) (mod N1) has solution for λ then
3 Compute λ;

4 else
5 e← smallest quadratic non-residue (mod N1);
6 Compute λ in eN2 = λ2h(a0, b0) (mod N1);

7 Compute linear relation between a1 and b1 mod N1, say ebb1 = eaa1 + ec
(mod N1) for some integers ea, eb, ec, using

2λ(a0a1 + b0b1) =
eN2 − h(λa0, λb0)

N1
(mod N1);

8 B ← 2 log(ε) log(|q|p2N4
1 )/ log(1− log−1(|q|p2N4

1 ));
9 for m = 0, 1, . . . , B do

10 Substitute b1 using expression ebb1 = eaa1 + ec +mN1 in

eN2 = h( λa0 +N1a1 , λb0 +N1b1 ) (mod p);

11 if solution for a1 (mod p) exists then
12 Compute a1 and b1 modulo p and lift them to integers in [−p/2, p/2];

13 r ← eN2−h(λa0+N1a1,λb0+N1b1)

pN2
1

;

14 if r is prime then
15 Use Cornacchia’s algorithm to find solutions for c1, d1 in

h(c1, d1) = r or determine that no solution exists;

16

17 if solution is found then
18 return θ′ = λa0 +N1a1 + (λb0 +N1b1)i+N1c1j +N1d1k;

19 return ⊥

provide a solution with probability roughly 1/(log(|q|p2N4
1 )) due to Landau [23]

and Ramanujan [27]. Iterating over B values of m, we therefore expect our
algorithm to return ⊥ with probability

(
1− 1

log(|q|p2N4
1 )

)B/2(log(|q|p2N4
1 )

.

In particular, iterating over B ≥ 2 log(ε) log(|q|p2N4
1 )/ log(1−log−1(|q|p2N4

1 )) as
in Algorithm 3, we fail to find a solution with probability less than ε heuristically.
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Lemma 4.25. Algorithm 3 runs in time polynomial in log p, logN1 and log−1(ε)
for every ε > 0.

Proof. For any ε > 0, the worst-case runtime of the algorithm stems from the
iteration over up to 2 log(ε) log(|q|p2N4

1 )/ log(1 − log−1(p2N4
1 )) values of m. In

each iteration one needs to solve at most one quadratic equation modulo p, and
apply Cornacchia’s algorithm to a prime of size polynomial in p and N1.

We have implemented the lifting algorithm in magma and the experiments
are consistent with the theoretical results. The main drawback of our lifting
algorithm is the necessity of having the unbalancedness N2 > p2N4

1 . While the
algorithm presented in this section might be improved, the following remark
discusses why we can a priori not expect to find a lifting algorithm for balanced
parameters.

Remark 4.26. The bound of N2 > p2N4
1 is partly caused by inefficiencies in the

lifting algorithm. This raises the question of what is the best bound that could
be achieved with unbounded computational power in the lifting algorithm.

Since we cannot expect a non-homogeneous quadratic equation in two vari-
ables to have a solution, we cannot expect to find a lift of norm eN2 in Z[i].
Therefore, pN2

1 is a lower bound for the degree of the lifted endomorphisms.
However, using a heuristic argument and the pigeonhole principle we see that
pN3

1 could be feasible. More precisely, after fixing λ it remains to find a1 < A
and b1 < B for two bounds A,B ∈ Z, such that

h(λa0 +N1a1, λb0 +N1b1)− eN2

N1
≡ 0 (mod pN1).

Hence, if A ≈ B ≈
√
pN1 and we rely on the heuristic that different a1, b1

will lead to distinct values in the above equation modulo pN1, we expect the
existence of a solution by the pigeonhole principle. By the definition of h, we
have h(λa0 +N1a1, λb0 +N1b1) ≈ max{(AN1)2, (BN1)2}. Therefore, a solution
with A ≈ B ≈

√
pN1 gives roughly

h(λa0 +N1a1, λb0 +N1b1) ≈ eN2 ≈ pN3
1 .

We conclude this section with some final remarks on the lifting algorithm.

Remark 4.27. If N2 is even larger than p2N4
1 and a factor of e divides N2,

our algorithm can start by setting Norm(θ′) to be a divisor of N2, reducing the
degree of the lifted endomorphism.

Remark 4.28. The lifting algorithm requires only constant memory.

Remark 4.29. In Algorithm 2, which solves the problem underlying overstretched
SIDH, the lifting algorithm is used for every element of the acting group G. In
our case this group is of size N1. Since the lifting fails with probability ε in every
single run and the functions in Algorithm 2 are only exact shifts of each other
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when it does not fail a single time, we need to choose ε sufficiently small. Assum-
ing independence between the different executions of the lifting algorithm, we
expect to find two functions satisfying the promise of a hidden shift with prob-
ability (1− ε)N1 ≈ 1− εN1 by first order Taylor approximation. Thus, choosing
ε < 1

2N1
we would expect our lifting to work with probability roughly 1

2 on all
endomorphisms of G. Note that the lifting remains polynomial in logN1 and
log p for such an ε. Clearly, one could choose ε even smaller to achieve an even
larger heuristic success probability of the algorithm on all elements of G.

4.4 Algorithm summary

We start the summary of our attack by proving that a solution to Task 4.4 allows
us to construct a malleability oracle for f .

Proposition 4.30. Let f|I′ : I ′ → O be the function defined in (1) restricted
to a domain I ′ so it is injective, let G be an abelian subgroup of (O0/N1O0)∗

acting freely and transitively on I ′ and let ϕ : E0 → E0/K, where K ∈ I ′ is
chosen uniformly at random and unknown. Suppose the public parameters allow
the solution of Task 4.4 for endomorphisms in G efficiently. Given ϕ|E0[N2], we
have a malleability oracle for G at f|I′(K).

Proof. We need to show that there exists an efficient algorithm that, on input
f(K) = f|I′(K) = j(E0/K) =: j(EA) and θ ∈ G, computes f(θ(K)). Let ϕ be
the isogeny corresponding to the cyclic subgroup K ⊂ E0 of order N1.

The endomorphism θ has degree coprime toN1 and using the efficient solution
to Task 4.4, we can compute some θ′ of degree N2 such that it has the same
action on the N1-torsion as θ. Therefore, f(θ(K)) = E0/θ(K) = E0/θ

′(K)
up to isomorphism. By Lemma 4.5, this equals EA/ϕ(ker θ′). Since ker θ′ lies
in E0[N2], we can compute its image under ϕ and therefore we can calculate
f(θ(K)) = EA/ϕ(ker θ′) efficiently.

Proposition 4.30 calls for solutions to the Tasks 4.3 and 4.4. In Sections 4.2
and 4.3 we presented solutions to slight variants of these tasks. We use the
remainder of this section to summarize the impact of these variations on the
success of our approach.

Clearly, restricting the function f : I → O to a subset I ′ such that f|I′ is
injective and that it contains the secret kernel one aspires to recover requires
information on the secret we do not posses. However, we showed in Section 4.2
that one can find three subsets of I such that their union contains all of I and
f restricted to any of the subsets is injective, i.e., one of the three will yield the
desired result. These three subsets corresponded to the sets of curves SP , SP,1
and SP,2 at distance N1 from E0. Moreover, we provided abelian subgroups of
Q[i]∩ (O0/N1O0)∗ acting freely and transitively on their respective subset of I.

Then, we gave an algorithm to solve Task 4.18, a variant of Task 4.4 when
N1 and N2 are sufficiently unbalanced, lifting endomorphisms contained in the
abelian subgroups of (O0/N1O0)∗ to one with the same action on I of degree N2
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or eN2. Here, e is a small integer bounded by Conjecture 4.19. As a consequence,
to use the torsion point information of E0[eN2] under the secret isogeny given
the image of E0[N2], we need to guess the action on E0[e] which takes O(e3)
trials.

For each combination of guesses of E0[eN2] and whether the secret is in the
subset of I corresponding to SP , SP,1, SP,2, we can test whether the hidden shift
property for the corresponding functions FK and FJ as defined in Algorithm 2
is satisfied. This can be done with the algorithm due to Friedl et al. [13] men-
tioned in Section 2.5. Once the premise is satisfied, we recover the solution to
an abelian hidden shift problem using a subexponential abelian hidden shift
algorithm such as Kuperberg’s [21] and thus we recover the secret isogeny as
described in Section 4. Therefore, we can summarize our result as follows.

Theorem 4.31. Let N2 > |q|p2N4
1 . Then the SIDH problem can be solved in

quantum subexponential time via a reduction to the injective abelian hidden shift
problem.

During this section, we have made some restrictions to simplify the presen-
tation of our attack. We described the attack with the starting curve E0 being
a supersingular curve with j-invariant 1728. However, the attack also applies to
other curves with known endomorphism rings that are close to E0. In Section 4.2,
we described the required group action on I under the assumption that N1 is
a power of 2, which can be generalized to powers of small primes. A sketch for
powers of 3 can be found in Appendix B. Finally, we assumed that N2

1 < p+1
4

in Lemma 4.8. However, to run our attack we can slightly ease this restriction.
Namely, if N2

1 >
p+1
4 , then we choose a divisor N ′1 of N1 such that N ′21 < p+1

4
and run the attack with N ′1 instead. This will reveal the N ′1 part of the isogeny
and then we can guess the remaining part. For sufficiently small N1

N ′
1
, this is only

a minor inefficiency.

4.5 Hybrid attacks on overstretched SIDH

In this section, we examine to what extent partial knowledge of the secret, i.e.,
knowledge of the most or least significant bits, renders the attack more efficient.
Moreover, we describe how the attack can be adapted to some further parameters
that are not quite sufficiently unbalanced.

We start with the case where the most significant bits of the secret are leaked.
These bits correspond to the last steps of the secret isogeny in the isogeny graph.
Assume N1 is a power of a prime `. If the most significant k digits of the secret
with respect to their representation in base ` are leaked or guessed correctly,
the remaining isogeny we need to recover is of degree N1/`

k and we can run our
attack as soon as N1/`

k fulfills the unbalancedness criterion N2 > p2(N1/`
k)4.

The case where the least significant digits are known or guessed requires a
little more work. For simplicity of our exposition we assume again that N1 is a
power of 2 as in Section 4.2, but the results generalize to powers of small primes.



Hidden shift attacks on isogeny-based protocols 25

Lemma 4.32. Let G be the group of Proposition 4.12, and let G′ ⊂ G be the
subset of the form {a + bι | a odd, b divisible by 2k} where we identify two en-
domorphisms with each other if they differ by multiplication by an odd scalar
modulo N1. Then G′ is an abelian subgroup of G.

Proof. Since G is abelian, it suffices to show that G′ is a subgroup. Consider
(a+ bι)(a′+ b′ι) = (aa′− bb′) + (ab′+ a′b)ι. It is easy to see that aa′− bb′ is odd
and ab′ + a′b is divisible by 2k if a+ bι and a′ + b′ι are in G′.

Assume the least significant k bits of the secret, or equivalently the first k
steps of the secret isogeny, are known. Kernels of isogenies of degree N1 > 2k

that share the same first k steps lie in the same 2k-torsion subgroup and are
therefore congruent modulo 2k.

Let SP , SP,1, SP,2 be the three sets introduced in Section 4.2.

Proposition 4.33. Let S′ be any of the subsets of SP , as defined in (2), con-
taining curves associated to isogeny-kernels with α’s congruent modulo 2k. The
group G′ of Lemma 4.32 acts freely and transitively on any S′.

Proof. First, we need to show that G′ × S′ → S′ is well-defined. Let (1 + bι) be
a representative of some element in G′ and let P + kι(P ), for some k ∈ Z, be
the kernel of an isogeny leading to a curve in S′. We have

(1 + bι)(P + kι(P )) = P + kι(P ) + b(ι(P )− kP ) ≡ P + kι(P ) (mod b)

and as b is divisible by 2k, P +kι(P ) ∈ S′i implies (1+ bι)(P +kι(P )) ∈ S′. That
the action is free and transitive follows from Proposition 4.12 and a counting
argument as |G|/|G′| = 2k−1 = |SP |/|S′|.

Similarly, we can take subsets of SP,1 and SP,2 and restrict the group acting
on these sets of curves.

This gives rise to an attack strategy when N2 is not large enough. Guessing
k bits of the secret before applying the attack on the remaining part allows an
attacker to reduce the requirements on the parameters to N2 > p2(N1/2

k)4. This
is the same as when guessing the last bits of the secret.

Given such a partial isogeny, one computes the correct set S′ from the kernel
of the known part of the isogeny. Moreover, one needs to compute the lift of
elements of G′ to endomorphisms of norm N2 or eN2. Computing the action of
G′ on the set S′ allows to test for the hidden shift property. Once it is satisfied,
the secret can be recovered by solving an injective abelian hidden shift problem.
Otherwise, one can make another guess on the k bits of the secret.

Apart from reducing the requirements on the unbalancedness, guessing part
of the isogeny reduces the number of elements one needs to lift and the size of
the hidden shift instance.
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5 Childs-Jao-Soukharev’s attack on HHS

We begin by providing more detail on how the algorithm proposed by Childs,
Jao and Soukharev [7] succeeds to construct an isogeny between two given ordi-
nary elliptic curves in quantum subexponential time. The provided strategy can
further be applied to attack CSIDH [5].

Recall the free and transitive group action from Section 2.3 of the class group
on the set of isogenous ordinary curves with the same endomorphism ring. The
hard problem is to find an isogeny between two isogenous ordinary elliptic curves
with the same endomorphism ring, i.e. reversing this group action. Childs-Jao-
Soukharev provide an algorithm that constructs such an isogeny in quantum
subexponential time [7] using a reduction to the hidden shift problem.

We summarize the core idea as another instance of our framework using
malleability oracles. Let I := Cl(O) and O := Ellq,n(O). We can look at the
group action defined above as a one-way function

f : I → O , [x] 7→ [x] · j(E0).

Note the class group Cl(O) acts on itself and therefore f has a malleability oracle
with respect to the class group readily available everywhere on the image, i.e.,
f is malleable with respect to this group action.

Finding an isogeny ϕ is now equivalent to finding the ideal [b] in O corre-
sponding to the kernel of ϕ, i.e., we would like to compute the preimage of f at
j(E1) = [b] · j(E0).

Childs-Jao-Soukharev observed that the functions F0, F1 : Cl(O)→ Ellq,n(O)
defined by Fi([x]) := [x] · j(Ei) for i = 0, 1, i.e., F0([x]) = f([x]) and F1([x]) =
f([x][b]), are shifts of each other. Moreover, they are injective functions since
the action of the class group on Ellq,n(O) is free and transitive. The injective
abelian hidden shift problem can be solved in quantum subexponential time,
which allows one to recover [b] and therefore an isogeny ϕ : E0 → E1.

Analogously to the case for ordinary curves, the group action in CSIDH
utilizing supersingular curves can be attacked this way. Recall that CSIDH uses
the Fp-rational endomorphism ring of the fixed starting curve E0, O. In the
Diffie-Hellman-type key exchange, recovering a party’s secret key constitutes of
computing their secret ideal class [b] ∈ Cl(O) which satisfies [b] ·E0 = EB for the
party’s public curve EB . Through defining functions F0, F1 : Cl(O) → Ellp(O)
by F0([x]) = [x] ·E0 and F1([x]) = [x] ·EB , it is again possible to reduce finding
Bob’s secret key [b] to an instance of the injective hidden shift problem: We have
F1([x]) = F0([x] · [b]) for any ideal class [x] ∈ Cl(O), where the functions are
both injective due to the group action being free and transitive.

6 Conclusion and further work

In this paper, we constructed an abelian group action on the key space of the
inherently non-commutative SIDH. Having this group action in place allows us
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to construct a malleability oracle using the torsion point information provided in
SIDH when overstretched and sufficiently unbalanced parameters are being used.
This contradicts the widespread folklore that no such group action exists in the
branch of isogeny-based cryptography where one considers the full isogeny graph
of a supersingular elliptic curves. We embedded our attack in a more general
framework that also captures other quantum attacks on schemes in isogeny-
based cryptography.

The attack does not apply to balanced parameters as specified in the original
SIDH proposal [18] or the NIST post-quantum candidate SIKE [17]. The unbal-
ancedness condition between N1 and N2 is stronger than required by the attack
from [22]. However, the obstruction to attack SIDH with balanced parameters in
our case is not directly related to the hindrances in other attacks on unbalanced
SIDH exploiting torsion point information [4, 22, 26] but to limitations of the
KLPT algorithm [19] and the ones described in Remark 4.26 instead. Improve-
ments to the lifting subroutine included in the KLPT algorithm would not only
partially decrease the required unbalancedness of SIDH parameters in this work,
but also improve various isogeny-based schemes such as Galbraith-Petit-Silva’s
signatures [15] and SQISign [11].

Further improvements to decrease the unbalancedness required by our lifting
algorithm are possible by lifting elements of the ring jZ[i] instead of Z[i]. This
was done in the original KLPT algorithm [19]. Combining this approach with the
improvements presented by Petit-Smith at Mathcrypt 2018 lowers the required
unbalancedness to N2 > pN3

1 which is reaching the heuristic bound of this
approach outlined in Remark 4.26. The idea is to lift the endomorphism jθ
instead of θ. Recovering the isogeny between the curves E0 and E′A = E0/j(A)
instead of EA := E0/A and applying the Frobenius endomorphism afterwards,
gives the required isogeny from E0 to EA. The details of this approach will be
added to the full version of this paper.

Future work will moreover extend the given quantum algorithm to more
general group actions of quadratic orders that embed optimally into the (known)
endomorphism ring of the starting curve. Hereby, the starting curve does not
necessarily need to be of j-invariant 1728.

To improve the framework further and to give conditions on the malleability
oracle that have to be fulfilled in order to invert one-way functions in quan-
tum polynomial time, as well as providing applications beyond isogeny-based
cryptography remain open questions.
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A The orbits of the group action

Recall that in Section 4.2, we have defined a group action on the set of SP
which differs from the group action defined on the sets SP,1 and SP,2. The

http://sike.org/
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reason for having multiple group actions is that we require them to be free and
transitive. Let G be the group which consists of the endomorphisms a+bι where
a, b ∈ Z/N1Z, b is even and two elements are considered equal if they differ by
an odd scalar. Now G acts on all the kernels generated by points of the form
P + αι(P ). We will now study the orbits of this group action in more detail.
As we have already seen in Proposition 4.12, the kernels where α is even form a
single orbit. Now we show that there are two more orbits, occurring when α is
odd. For simplicity we will refer to a kernel generated by P + αι(P ) by (1, α).

Lemma A.1. Let α be odd. Then (1, α) is either in the orbit of (1, 1) or (1, 3).

Proof. First we suppose that α ≡ 1 (mod 4). In this case, (1, α) is in the orbit
of (1, 1), and to show this we must prove the existence of an odd λ and an even
b such that the following system is satisfied: λ(1 + b) = 1 and λ(1− b) = α.

Solving the system, we find that λ = 1+α
2 and b = (1− λ)λ−1. These satisfy

the required criteria since 1 + α ≡ 2 (mod 4), hence λ is odd and 1− λ is even.

Now suppose that α ≡ 3 (mod 4). In this case we show that (1, α) is in the
orbit of (1, 3). Again there must exist an odd λ and an even b such that both
λ(1 + 3b) = 1 and λ(3− b) = α.

Solving gives that λ = 1+3α
10 , which is an odd integer because α is congruent

to 3 modulo 4 and so 1+3α is congruent to 2 modulo 4. Now one has to calculate
b which is equal to 1−λ

3λ which is even since λ is odd, proving the second case.

By Lemma A.1 the group action defined above has three orbits on I. However,
the action of G is no longer free on the orbits corresponding to an odd α.

B Generalizing to N1 = 3k

In this section we sketch a generalization of Section 4.2 to the case where N1 is
a power of 3.

Lemma 4.8 carries over to this case as 9k can only be written as a sum of two
squares in a trivial fashion. Let P be a point such that {P, ι(P )} is a basis of the
N1-torsion. We show that every curve at distance N1 from E0 can be reached
by an isogeny with a kernel of the form 〈P + αι(P )〉. Let Q = β1P + β2ι(P )
be a point of order N1. If β1 is coprime to 3, then we may multiply Q by an
appropriate scalar such that the coordinate of P becomes 1. Suppose that β1 is
divisible by 3. Since Q has order N1, β2 is not divisible by 3. Observe that the
points Q and ι(Q) generate isomorphic curves which implies that β1P + β2ι(P )
and ι(Q) = −β2P + β1ι(P ) generate isomorphic curves. Multiplying ι(Q) with
an appropriate scalar, we obtain a kernel generator of the form P + αι(P ).

However, some curves of the form E0/〈P + αι(P )〉 may be pairwise isomor-
phic. Namely let α be coprime to 3. Then the kernels generated by P + αι(P )
and P −α−1ι(P ) correspond to isomorphic curves. On the other hand, it is easy
to see that α and −α−1 are not congruent modulo 3. In particular, all curves
at distance N1 from E0 can be reached by isogenies with kernels of the form
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P + αι(P ) where α is congruent to 0 or 1 modulo 3. These curves are pair-
wise non-isomorphic which can be shown by a calculation similar to the one in
Section 4.2.

The acting group can be defined in a similar fashion, namely as the endomor-
phisms of the form a+ bι where b is divisible by three and two endomorphisms
are identified whenever they are the same modulo N1 up to multiplication by a
scalar coprime to N1. For simplicity we refer to the point P + αι(P ) as (1, a).
Similarly to Appendix A one can check that the action has two orbits:

1. The orbit of (1, 0) consisting of points of the form (1, x), where 3 divides x.
2. The orbit of (1, 1) consisting of points of the form (1, x), where x ≡ 1 mod 3.

The orbit of (1, 2) contains points of the form (1, x) where x is congruent to
2 modulo 3, but in terms of j-invariants it consists of exactly the same curves
as the second orbit.

Since all these orbits have the same cardinality as the acting group, the group
action is free and transitive, as required.
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