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Abstract. This article is devoted to one particular case of using univer-
sal accelerated proximal envelopes to obtain computationally efficient ac-
celerated versions of methods used to solve various optimization problem
setups. We propose a proximally accelerated coordinate descent method
that achieves the efficient algorithmic complexity of iteration and allows
taking advantage of the data sparseness. It was considered an example
of applying the proposed approach to optimizing a SoftMax-like func-
tion, for which the described method allowing weaken the dependence
of the computational complexity on the dimension n in O(

√
n) times

and, in practice, demonstrates a faster convergence in comparison with
standard methods. As an example of applying the proposed approach, it
was shown a variant of obtaining on its basis some efficient methods for
optimizing Markov Decision Processes (MDP) in a minimax formulation
with a Nesterov smoothed target functional.

Keywords: Proximal accelerated method · Catalyst · Accelerated coor-
dinate descent method · SoftMax · Markov Decision Processes.

1 Introduction

One of the most important theoretical results in convex optimization was the
development of accelerated optimization methods [26]. At the initial stage of
implementation of this concept, many accelerated algorithms for different prob-
lem setups were proposed. But each such case required special consideration of
the possibility of acceleration. Therefore, the proposed designs were significantly
different and did not allowing assume a way to generalize them. A significant
step towards the development of a universal scheme for accelerating optimization
methods was the work in which an algorithm called Catalyst proposed, based on
the idea of [29,30] and allowing to accelerate other optimization methods, using
? D.A. Pasechnyuk’s research was supported by the A.M. Raigorodsky Scholarship
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them for the sequential solution of several Moreau-Yosida regularized auxiliary
problems [18,19]. Following these ideas, many variants of the applications of this
method and its modifications [14,17,28] were proposed. Among the most recent
results until the time of writing this paper, the generalizations of the discussed
approach to tensor methods [5,23,10,11] were also described. The corresponding
representation of the accelerated proximal envelope to the authors’ knowledge is
the most general of those described in the literature, and therefore, this work is
focused primarily on the methods proposed in the works [10,11].

The main motivation of this work is to describe the possibilities of the prac-
tical application of universal accelerated proximal envelopes for constructing
computationally and oracle efficient optimization methods. Let us consider the
classical coordinate descent method [4], the iteration of which for the convex
function f : Rn → R has the form:

xik+1 = xik − η∇if(xk), i ∼ U{1, ..., n}, η > 0.

One of the many applications of this method is the optimization of functionals,
where the calculation of the one component of the gradient is significantly more
efficient than the calculation of the full gradient vector of these functionals (in
particular, many problems in the case of sparse formulations satisfy this condi-
tion). However, the oracle complexity of this method, provided that the method
stops when the ε-small residual by the function value is reached, is O

(
nLR

2

ε

)
,

where R2 = ‖x0 − x∗‖22, L = 1
n

∑n
i=1 Li is the average of the Lipschitz con-

stants of the gradient components; moreover, this estimate is not optimal for the
class of convex problems. Let us now consider the accelerated coordinate descent
method proposed by Yu.E. Nesterov [27], the oracle complexity of this method

corresponds to the optimal estimate: O
(
n

√
L̃R2

ε

)
, where

√
L̃ = 1

n

∑n
i=1

√
Li is

the mean of square roots of the Lipschitz constants of the gradient components.
At the same time, the situation changes drastically when the algorithmic com-
plexity of the method considered: even if the computation of one component of
the gradient has the complexity O(s), s� n, the complexity of iterating the ac-
celerated coordinate descent method will be O(n), unlike the standard method,
the iteration complexity of which is O(s), this means, essentially, that the degree
of the sparseness of the problem when using the accelerated coordinate descent
method does not significantly affect the complexity of the algorithm, and be-
sides, the complexity in this case quadratically depends on the dimension of
the problem: together, this to some extent devalues the use of the coordinate
descent method in this case. Thus, an interesting problem is the construction
of an accelerated coordinate descent method, the iteration complexity of which,
as in the standard version of the method, is O(s), this is possible due to the
application of the universal accelerated proximal envelope “Accelerated Meta-
algorithm” [11]. Note that the approach to accelerating the cordinate descent
method considered in this work is, in fact, one of the cases of applying the tech-
nique described in [14]. Thus, the content of the paper is devoted to a more
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detailed analysis of this particular approach, including implementation features
and possible applications.

This article consists of an introduction, conclusion and the main Section 2.
It describes the theoretical results on the convergence and algorithmic com-
plexity of the coordinate descent method, accelerated by using the “Accelerated
Meta-algorithm” envelope (Section 2.1). Using the example of the SoftMax-like
function optimization problem, it was experimentally tested method’s effective-
ness with relation to its working time, there were described the possibilities of its
computationally efficient implementation, also it was carried out a comparison
with standard methods (Section 2.2). Further, as an example of applying the
proposed approach, it was provided a method for optimizing Markov Decision
Processes in a minimax formulation, based on applying the method introduced in
this paper to the Nesterov smoothed target functional. The proposed approach
obtains estimates close to that for several efficient and practical methods for op-
timizing the discounted MDP and matches the best estimates for the averaged
MDP problem (Section 2.4).

2 Accelerated Meta-algorithm and coordinate descent

2.1 Theoretical guarantees

Let us consider the following optimization problem of the function f : Rn → R:

min
x∈Rn

f(x),

subject to:

1. f is differentiable on Rn;
2. f is convex on Rn;
3. ∇if is component-wise Lipschitz continuous, i.e. ∀x ∈ Rn and u ∈ R,
∃ Li ∈ R (i = 1, . . . , n), such that

|∇if (x+ uei)−∇if(x)| ≤ Li|u|,

where ei is the i-th unit basis vector, i ∈ {1, ..., n};
4. ∇f is L-Lipschitz contiouous.

Let us turn to the content of the work [11], where a general version of the “Ac-
celerated Meta-algorithm” for solving convex optimization problems for compos-
ite functionals of the form F (x) = f(x)+ g(x) was proposed. For the considered
formulation of the problem, such generality not required; it is sufficient to apply
a special case of the described scheme for p = 1, f ≡ 0 (using the designations
of the corresponding work), in which the described envelope takes the form of
an accelerated proximal method. This method is listed as Algorithm 1.

Before formulating any results on the convergence of the proposed acceler-
ated coordinate descent method described below, it is necessary to start with a
detailed consideration of the process of solving the auxiliary problems, where its



4 D. Pasechnyuk, V. Matyukhin

Algorithm 1: Accelerated Meta-algorithm for First-order MethodM
Input: H > 0, x0 ∈ Rn;

λ← 1/2H;
A0 ← 0; v0 ← x0;

for k = 0, ..., Ñ − 1 do

ak+1 ←
λ+
√
λ2 + 4λAk

2
;

Ak+1 ← Ak + ak+1;

x̃k ←
Akvk + ak+1xk

Ak+1
;

By running the methodM,
find the solution of the following auxiliary problem
with an accuracy ε by the argument:

vk+1 ∈ Argε min
y∈Rn

{
f(y) +

H

2
‖y − x̃k‖22

}
;

xk+1 ← xk − ak+1∇f(vk+1);
end
return vÑ ;

analytical solution is available only in rare cases. Therefore, one should apply
numerical methods to find its approximate solution, and that is inaccurate. The
solving process of the auxiliary problem will be until the following stop condition
is satisfied ([16], Appendix B):∥∥∥∥∇{F (y?) := f(y?) +

H

2
‖y? − x̃k‖22

}∥∥∥∥
2

≤ H

2
‖y? − x̃k‖2, (1)

where y? is an approximate solution of the auxiliary problem, returned by inter-
nal methodM. Due to the ‖∇F (y∗)‖2 = 0 (where y∗ denotes an exact solution
of the considered problem), and due to the (L+H)-Lipschitz continuity of ∇F ,
we have got:

‖∇F (y?)‖2 ≤ (L+H)‖y? − y∗‖2. (2)

Writing out the triangle inequality: ‖x̃k−y∗‖2−‖y?−y∗‖2 ≤ ‖y?−x̃k‖2, and using
together the inequalities (1), (2), we have got the final view of stop condition:

‖y? − y∗‖2 ≤
H

3H + 2L
‖x̃k − y∗‖2. (3)

Essentially this implies that the required argument accuracy of solving the
auxiliary problem does not depend on the accuracy of the main problem. That
makes it possible to simplify the obtaining of further results.

Let us now consider the main method used for solving auxiliary problems:
the content of the coordinate descent method [25] (in the particular case, when
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Algorithm 2: Coordinate descent method
Input: y0 ∈ Rn;

Z ←
∑n

i=1(H + Li);
pi ← (H + Li)/Z, i ∈ {1, ..., n};
Discrete probability distribution π
with probabilities pi;

for k = 0, ..., N − 1 do
i ∼ π{1, ..., n};
yk+1 ← yk;

yik+1 = yik −
1

H + Li
∇iF (yk);

end
return yN ;

γ = 1) is listed as Algorihtm 2. For this method, in the case of the considered
auxiliary problems, the following result holds:

Theorem 1. ([4], theorem 6.8) Let F be H-strongly convex function with respect
to ‖ · ‖2. Then for the sequence {yk}Nk=1 generated by the described coordinate
descent algorithm 2, it holds the following inequality:

E[F (yN )]− F (y∗) ≤
(
1− 1

κ

)N
(F (y0)− F (y∗)), (4)

where κ =
H

Z
, Z =

n∑
i=1

(H + Li), (5)

where E[·] denotes the mathematical expectation of the specified random variable
with respect to the randomness of methods trajectory induced by a random choice
of components i at each iteration.

Using this result, formulate the following statement on the number of iterations
of the coordinate descent sufficient to satisfy the stop condition (3).

Corollary 1. The expectation E[yN ] of the point resulting from the coordinate
descent method (Algorithm 2) satisfies the condition (3) if the following inequal-
ity on iterations number holds:

N ≥ N(ε̃) =

⌈
Z

H
ln

{(
1 +

L

H

)(
3 +

2L

H

)2
}⌉

, (6)

where ε̃ =
H

2

(
H

3H + 2L

)2

‖y0 − y∗‖22. (7)

Proof. is in Appendix A.
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Now that the question of the required accuracy and oracle complexity of
solving the auxiliary problem using the proposed coordinate descent method is
clarified, we can proceed to the results on the convergence of the Accelerated
Meta-algorithm. For the used stop condition (3) of the method that solves the
auxiliary problem, the following result on the convergence of the Accelerated
Meta-algorithm holds.

Theorem 2. ([11], theorem 1) For H > 0 and the sequence {vk}Ñk=1 generated
by the Accelerated Meta-algorithm with some non-stochastic internal method, it
holds the following inequality:

f(vÑ )− f(x∗) ≤
48

5

H‖x0 − x∗‖22
Ñ2

. (8)

Based on the last statement, one can formulate a theorem on the convergence of
the Accelerated Meta-algorithm in the case of using the stochastic method and,
in particular, coordinate gradient descent method.

Theorem 3. For H > 0 and some 0 < δ < 1, the point vÑ resulting from the
Accelerated Meta-algorithm uses coordinate descent method to solve the auxiliary
problem, solving it Nδ iterations, satisfies the condition

Pr(f(vÑ )− f(x∗) < ε) ≥ 1− δ,

where Pr(·) denotes the probability of the specified event, if

Ñ ≥

⌈
4
√
15

5

√
H‖x0 − x∗‖22

ε

⌉
, (9)

Nδ ≥ N
(
ε̃δ

Ñ

)
=

⌈
Z

H
ln

{
Ñ

δ

(
1 +

L

H

)(
3 +

2L

H

)2
}⌉

. (10)

Proof. The corollary 1 presents an estimate of the number of iterations sufficient
to satisfy the following condition for the expected value of the function at the
resulting point of the method:

E[F (yN(ε̃))]− F (y∗) ≤ ε̃.

Use the Markov inequality and obtain the formulation of this condition in terms
of the estimate of the probability of large deviations [1]: deliberately choose the
admissible value of the probability of non-fulfillment of the stated condition, so
that 0 < δ/Ñ < 1, where Ñ expressed from (8); then

Pr
(
F
(
yN(ε̃δ/Ñ)

)
− F (y∗) ≥ ε̃

)
≤ δ

Ñ
·
E
[
F
(
yN(ε̃δ/Ñ)

)]
− F (y∗)

ε̃ · δ/Ñ
=

δ

Ñ
.

Since the probability that the obtained solution of some separately taken aux-
iliary problem will not satisfy the stated condition is equal to δ/Ñ , it means
that the probability that for Ñ iterations of the Accelerated Meta-algorithm
the condition will not be satisfied although if for one of the problems, there is
Ñ · δ/Ñ = δ, whence the proved statement follows.
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Further, combining the estimates given in Theorem 3, we can obtain an
asymptotic estimate for the total number of iterations of the coordinate descent
method, sufficient to obtain a solution of the considered optimization problem
with a certain specified accuracy, as well as an estimate for the optimal H value:

Corollary 2. In order to the point vÑ , which is the result of the Accelerated
Meta-algorithm, to satisfy the condition

Pr(f(vÑ )− f(x∗) < ε) ≥ 1− δ,

it is sufficient to perform a total of

N̂ ≥ Ñ ·Nδ = O
(
Z‖x0 − x∗‖2√

H
· 1

ε1/2
log

{
1

ε1/2δ

})
(11)

iterations of coordinate descent method to solve the auxiliary problem. In this
case, the optimal value of the regularization parameter H of the auxiliary problem
should be chosen as H ' 1

n

∑n
i=1 Li (' denotes equality up to a small factor of

the log order).

Proof. The expression for N̂ can be obtained by the direct substitution of one
of the estimates given in (9) into another, and their subsequent multiplication.
If we exclude from consideration a small factor of order log(L/H), the constant
in the estimate will depend on H as:

√
H · Z/n

H
=
√
H

(
1 +

1
n

∑n
i=1 Li

H

)
.

By minimizing the presented expression by H, we get the specified result.

A similar statement can be formulated for the expectation of the number of
total iterations of the coordinate descent method, without resorting to estimates
of the probabilities of large deviations, following the reasoning scheme proposed
in [9]:

Theorem 4. The expectation E[N̂ ] of the sufficient total number of the itera-
tions of the coordinate descent method, to obtain a point vÑ satisfying the fol-
lowing condition:

f(vÑ )− f(x∗) < ε

can be bounded as follows:

E[N̂ ] ≤ Ñ · (N(ε̃)+1) = O

√L‖x0 − x∗‖22
ε

 , where L = Z/n =
1

n

n∑
i=1

Li.

Proof. is in Appendix B.
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As we can see, the proposed scheme of reasoning allows us to reduce the log-
arithmic factor in estimating the number of iterations of the method. However,
this result is less constructive than the one presented in Corollary 2. Indeed, in
the above reasoning, we operated with the number of iterations N , after which
the stopping condition for the internal method is satisfied, but in the program
implementation, stopping immediately after fulfilment of this condition is not
possible, if only because, which is impossible the verification of this criterion
due to the natural lack of information about y∗. So the last result is more rel-
evant from the point of view of evaluating the theoretical effectiveness of the
method, while when considering specific practical cases, one should apply the
estimate (11).

Let us now consider in more detail the issue of the algorithmic complexity of
the proposed accelerated coordinate gradient descent method.

Theorem 5. Let the complexity of computing one component of the gradient of
f is O(s). Then the algorithmic complexity of the Accelerated Meta-algorithm
with coordinate descent as internal method is

T = O

s · n ·
√
L‖x0 − x∗‖22

ε
log

{
1

ε1/2δ

} .

Proof. is in Appendix C.

Note also that the memory complexity of the method is O(n), as well as the
complexity of the preliminary calculations (for the coordinate descent method,
there is no need to perform them again for every iteration).

Let us compare the estimates obtained for proposed approach (Catalyst
CDM) with estimates of other methods that can be used to solve problems in the
described setting: Fast Gradient Method (FGM), classical Coordinate Descent
Method (CDM) and Accelerated Coordinate Descent Method in the version of
Yu.E. Nesterov (ACDM). The estimates are shown in Table 1, below. As can
be seen from the above asymptotic estimates of the computational complexity,
the proposed method allows to achieve a convergence rate that is not inferior
to other methods with respect to the nature of the dependence on the dimen-
sion of the problem n and the required accuracy ε, at a certain price for this
in the form of a logarithmic factor assessment. Note, in addition, that despite
the significant similarity of estimates, between the two most efficient methods in
the table (FGM and Catalyst CDM) there is also a difference in the constants
characterizing the smoothness of the function, i.e. L in FGM and L in Catalyst
CDM, thus the behavior of the considered method for various problems directly
depends on the character of its componentwise smoothness.

2.2 Numerical experiments

This section describes the character of the practical behavior of the proposed
method by the example of the following optimization problem for the SoftMax-
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Table 1. Comparison of the effectiveness of methods

Algorithm Iteration complexity Comp. complexity Source

FGM O (s · n) O
(
s · n · 1

ε1/2

)
[26]

CDM O (s) O
(
s · n · 1

ε

)
[4]

ACDM O (n) O
(
n2 · 1

ε1/2

)
[27]

Catalyst CDM O (s) Õ
(
s · n · 1

ε1/2

)
this paper

like function:

min
x∈Rn

{f(x) = γ ln

 m∑
j=1

exp

(
[Ax]j
γ

)− 〈b, x〉}, (12)

where b ∈ Rn, A ∈ Rm×n, γ ∈ R+. Problems of this kind are essential for many
applications, in particular, they arise in entropy-linear programming problems
as a dual problem [8,12], in particular in optimal transport problem, is also
a smoothed approximation of the max function (which gave the function the
name SoftMax) and, accordingly, the norm ‖ · ‖∞, which may be needed in some
formulations of the PageRank problem or for solving systems of linear equations.
Moreover, in all the described problems, an important special case is the sparse
setting, in which the matrix A is sparse, that is, the average number of nonzero
entries in the row Aj does not exceed some s� n (it will also be convenient to
assume the possibility one of the strings Aj is completely non-sparse).

Let us formulate the possessed properties by the function f [13]:

1. f is differentiable;
2. ∇f satisfies the Lipschitz condition with the constant L = maxj=1,...,m ‖Aj‖22;
3. ∇if satisfy the component-wise Lipschitz condition with the constants Li =

maxj=1,...,m |Aji|.

Let us write the expression for the i-th component of the gradient of the
function f :

∇if(x) =

∑m
j=1Aji exp

(
[Ax]j

)
∑m
j=1 exp

(
[Ax]j

) .

As we can see, the naive calculation of this expression can take time comparable
to the calculation of the whole gradient and it will significantly affect the compu-
tational complexity, and hence the working time of the method. However, at the
same time, many terms in this expression can be recalculated either infrequently
or in a component-wise manner, and used as members of methods additional
sequences when performing a step of method, so that the complexity of the it-
eration will remain efficient, and the use of the coordinate descent methods will
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be justified. For the convenience of describing the computational used methods,
we write the step of the coordinate descent algorithm in such form:

yk+1 = yk + ηei,

where η is the step size, multiplied by the corresponding gradient component, ei
is the i-th unit basis vector.

In order to the performed experiments:

1. We will store a sequence of values
{
exp

(
[Ayk]j

)}m
j=1

, used to calculate the

sum in the numerator. Updating these values after executing a method step
takes algorithmic complexity O(s), due to the Ayk+1 = Ayk + ηAi, and at
the same time Ai has at most s nonzero components, which means that it
will be necessary to calculate only less than or equal to s correcting factors
and multiply the corresponding values from the sequence by them.

2. From the first point, it can be understood that the multiplication of sparse
vectors should be performed in O(s), considering only nonzero components.
In terms of program implementation, this means the need to use a sparse
representation for cached values and for rows of the matrix A, that is, storing
only index-value pairs for all nonzero elements. Then, obviously, the com-
plexity of arithmetic operations for such vectors will be proportional to the
complexity of a loop with elementary arithmetic operations, the number of
iterations of which is equal to the number of nonzero elements (in the python
programming language, for example, this storage format is implemented in
the method scipy.sparse.csr_matrix [31]).

3. Similarly, we will store the value
∑m
j=1 exp

(
[Ayk]j

)
, which is the denomi-

nator of the presented expression. Its updating is carried out with the same
complexity as updating a sequence (by calculating the sum of nonzero terms
added to each value from the sequence).

4. Since evaluating the specified expression requires evaluating exponent values,
type overflow can occur. To solve this problem, the standard technique is
exp-normalize trick [3]. However, to use it, one should also store the value
maxj=1,...,m [Ayk]j . At the same time, there is no need to maintain exactly
this value, or, otherwise, its approximation to keep the exponents values
small, so this value can be recalculated much rarely: for example, once in m
iterations (in this case, the amortized complexity will also be equal to O(s)).

So, in the further reasoning, one can assume that the iteration of the co-
ordinate descent algorithm for solving the corresponding auxiliary problem has
amortized complexity O(s).

Further, let us consider in more detail the question of the values of the
smoothness constants of this functional. We can write down asymptotic formulas
for L and L = 1

n

∑n
i=1 Li:

L = max
j=1,...,m

‖Aj‖22 = O(n), L =
1

n

n∑
i=1

max
j=1,...,m

|Aji| = O(1).
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Using these estimates, let us refine the computational complexity of the FGM
and Catalyst CDM (CCDM) methods as applied to this problem:

TFGM = O
(
s · n3/2 · 1

ε1/2

)
, TCCDM = Õ

(
s · n · 1

ε1/2

)
.

Thus, in theory, the application of the Catalyst CDM method for solving this
problem allows, in comparison with FGM, to reduce the factor of order O(

√
n)

in the asymptotic estimate of the computational complexity. In practice, this
means that it is reasonable to apply the proposed method to problems of large
dimensions.

Let us now compare the performance of the proposed approach (Catalyst
CDM) with a number of alternative approaches: Gradient Method (GM), Fast
Gradient Method (FGM), Coordinate Descent Method (CDM) and Accelerated
Coordinate Descent Method (ACDM), by the example of the problem (12) with
an artificially generated matrix A in two different ways. Fig. 1 and 2 present
plots of the convergence of the methods under consideration: in x-axis we show
the running time of the methods in seconds, and in the y-axis we show the
residual of the function on a logarithmic scale (f∗ calculated by searching for
the corresponding point x∗ using the FGM method, tuned for an accuracy that is
obviously much higher than that possible to achieve at the selected time interval).
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Fig. 1. Convergence of methods for the
SoftMax problem (12) with a uniformly
sparse random matrix.
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Fig. 2. Convergence of methods for the
SoftMax problem (12) with heteroge-
neously sparse matrix.

In Fig. 1, the case is presented for which all elements of the matrix A are
i.i.d. random variables from the discrete uniform distribution Aji ∈ U{0, 1}, the
number of nonzero elements is s ≈ 0.2m, and the parameter γ = 0.6 (as well
as in the second case). In this setting, the proposed method demonstrates faster
convergence compared to all methods under consideration, except the FGM. At
the same time, in the setting shown in Fig. 2, in which the number of nonzero
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elements, in comparison with the first case, is increased to s ≈ 0.75m, and the
matrix is generated heterogeneously in accordance with the rule: 0.9m rows with
0.1n nonzero elements and 0.1m rows with 0.9n nonzero elements, and also one
row of the matrix is completely nonsparse, the proposed method (Accelerated
Meta-algorithm with coordinate descent as internal method) converges faster
than FGM. This is explained by the fact that in this case L = n, but L is
still quite small and, as a result, the constant in the proposed method has a
noticeably smaller effect on the computational complexity than in the case of
FGM. From the results of the experiment, it can also be noted that the character
of its componentwise smoothness affects the efficiency of the proposed method
much more significantly than the sparseness of the problem.

2.3 Review of the results of related works

In view of the conceptual simplicity of the scheme of the universal accelerated
proximal envelope, especially in some of its special cases, such as those described
in [18], several variants of its program implementation were recently proposed,
and also experiments were presented that represent the efficiency of these en-
velopes in the case of some typical problems. In order to capture the picture of
situation in its entirety and to indicate the influence of subtle factors of imple-
mentation and adjustment of methods on their effectiveness, it makes sense to
analyze some of the remarks and results of papers that consider ideologically
similar problems in a slightly modified software environment.

Let us refer to the recent review [9], and specifically to the Catalyst clause of
Section 5.6, offering remarks that are useful for the implementation of Catalyst-
like methods, to the class of which the considered in this work special case
of the “Accelerated Meta-algorithm” envelope belongs. One of the assumptions
in this section is that efficient implementations of Catalyst-type methods (in
particular, the implementation from [22]) rely in solving auxiliary problems on
the stop conditions, which are of an absolute nature, as opposed to relative
(multiplicative) criteria, classically used to analyze the effectiveness of these
methods.

The proposed in [22] approach is to calculate the duality gap, it is based
on the construction described in Appendix D.2 of [20]. Following it, based on
the information about the function at the current point, it is possible to obtain
an upper bound for the absolute residual by function. The proposed solution is
really elegant and possible, however, it has a number of drawbacks that do not
allow us to call this solution quite convenient:

1. the expression for the duality gap is computationally complex and implies
the calculation of several matrix-vector products for potentially large dimen-
sions;

2. the duality gap in the described version can take on infinite values;
3. the proposed relaxed version of the duality gap is even more computationally

difficult, since requires additional implementation of the quadratic knapsack
solver.
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At the same time, in this work there is a result that allows us to change the
view on the problem of choosing the accuracy of solving the auxiliary problem
(note that this problem, generally speaking, in the case of many other approaches
remains open). Namely, in Corollary 1 it was proved that to obtain a solution to
an auxiliary problem that satisfies a certain condition sufficient for its use within
the outer shell, it is sufficient to perform a fixed number of iterations (depending
only on the characteristics of the problem being solved). Moreover, this number
(even in a certain strict sense) is small (if we discard the proportionality of the
type ∼ n, which is inevitable when using component-wise methods). Thus, fol-
lowing this scheme of proof, one can completely get away from the need to choose
εtol to the possibility of choosing the parameter N is the number of iterations
of the auxiliary method, without worrying about changing this parameter with
an increase in the number of external iterations of the method. The practical
benefit of this remark is that for many applied problems it is sometimes difficult
to compute the constants characterizing the problem (L, L), especially when op-
timizing functions for which the analytical expression is not known in advance.
In this case, the εtol parameter (as well as N) becomes the hyperparameter of
the algorithm, and its selection becomes the task of the engineer applying the
method. However, the search space for N is discrete and essentially small, in
contrast to the continually large set of εtol values variants, and both with man-
ual selection or selection using techniques such as grid search, the problem of
selecting N turns out to be much simpler.

Let us consider the results of experiments presented in the previously men-
tioned work [22]. They are remarkable in that they assess the acceleration effect
using the Catalyst envelope methods for optimization problems for sum-like
functions with different regularizers, that is, statements close to machine learn-
ing problems, using some practical model examples. The general conclusion from
the experiments carried out in this article is as follows: accelerating SVRG us-
ing the Catalyst envelope has no effect in the case when the optimal problem
regularization parameter is ≈ 1/n. It is important to note, however, that in the
same situation, the MISO [21] method can be accelerated. In the work itself,
for a different setting, an explanation is given for this fact: MISO better handle
sparse matrices (no need to code lazy update strategies, which can be painful to
implement). At the same time, as you can see from the figures, the Catalyst loss
to directly accelerated SVRG is small. Hence, we can conclude that in the case
when the implementation of lazy operations for the problem under consideration
is not so onerous (the SoftMax case, considered in detail in this article, is just
acceptable, besides the regularization parameter in this setting is equal to zero),
the use of Catalyst remains quite justified and efficient.

2.4 Application to Optimization of Markov Decision Processes

We denote an MDP instance by a tupleMDP := (S,A,P, r, γ) with components
defined as follows:

1. S is a finite set of states, |S| = n;
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2. A =
⋃
i∈S Ai is a finite set of actions that is a collection of sets of actions

Ai for states i ∈ S, |A| = m;
3. P is the collection of state-to-state transition probabilities where P :=
{pij(ai)|i, j ∈ S, ai ∈ Ai};

4. r is the vector of state-action transitional rewards where r ∈ [0, 1]A, ri,ai is
the instant reward received when taking action ai at state i ∈ S;

5. γ is the discount factor of MDP, by which one down-weights the reward in
the next future step. When γ ∈ (0, 1), we call the instance a discounted
MDP (DMDP) and when γ = 1, we call the instance an average-reward
MDP (AMDP).

Let as denote by P ∈ RA×S the state-transition matrix where its (i, ai)-th
row corresponds to the transition probability from state i ∈ S where ai ∈ Ai to
state j. Correspondingly we use Î as the matrix with ai-th row corresponding
to ei, for all i ∈ S, ai ∈ Ai. Our goal is to compute a random policy which
determines which actions to take at each state. A random policy is a collection
of probability distributions π := {πi}i∈S , where πi ∈ ∆|Ai|, πi(aj) denotes the
probability of taking aj ∈ Ai at state i. One can extend πi to the set of ∆m by
filling in zeros on entries corresponding to other states j 6= i. Given an MDP
instanceMDP = (S,A,P, r, γ) and an initial distribution over states q ∈ ∆n ,
we are interested in finding the optimal π? among all policies π that maximizes
the following cumulative reward vπ of the MDP:

π? := argmax
π

vπ,

vπ :=


Eπ
[ ∞∑
t=1

γt−1rit,at
∣∣i1 ∼ q] in the case of DMDP,

lim
T→∞

1

T
Eπ
[
T∑
t=1

rit,at
∣∣i1 ∼ q] in the case of AMDP.

For AMDP, v? is the optimal average reward if and only if there exists a
vector v? = (v?i )i∈S satisfying its corresponding Bellman equation [2]:

v? + v?i = max
ai∈Ai

∑
j∈S

pij(ai)v
?
j + ri,ai

 ,∀i ∈ S.

For DMDP, one can show that at optimal policy π?, each state i ∈ S can be as-
signed an optimal cost-to-go value v?i satisfying the following Bellman equation:

v?i = max
ai∈Ai

∑
j∈S

γpij(ai)v
?
j + ri,ai

 ,∀i ∈ S.
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One can further write the above Bellman equations equivalently as the following
primal linear programming problems.

min
v,v

v s.t. v1 + (Î − P )v − r ≥ 0 (LP AMDP)

min
v

(1− γ)q>v s.t. (Î − γP )v + r ≥ 0 (LP DMDP)

By standard linear duality, we can recast the problem formulation using the
method of Lagrangian multipliers, as bi-linear saddle-point (minimax) problem.
The equivalent minimax formulations are

min
v∈Rn

{
F (v) = max

µ∈∆m

(
µ>((P − Î)v + r)

)}
(AMDP)

min
v∈Rn

{
Fγ(v) = max

µ∈∆m

(
(1− γ)q>v + µ>((γP − Î)v + r)

)}
(DMDP)

Then, one can apply the Nesterov smoothing technique to the presented max-
type functional, according to [24]. (The calculation is presented for the case of
DMDP, as a more general one. A smoothed version of the AMDP functional is
obtained similarly with the notation A := P − Î and γ = 1):

Fγ(v) = max
µ∈∆m

(1− γ)q>︸ ︷︷ ︸
b

v + µ>((γP − Î)︸ ︷︷ ︸
A

v + r)

 = max
µ∈∆m

 m∑
j=1

µj([Av]j + rj)

+ 〈b, v〉

→ max
µ∈∆m

 m∑
j=1

µj([Av]j + rj)− σ
m∑
j=1

µj ln

(
µj
1/m

)+ 〈b, v〉 =

= σ ln

 m∑
j=1

exp

(
[Av]j + rj

σ

)− σ lnm− 〈b, v〉 =: fγ(v), where σ := ε/(2 lnm).

The resulting problem has the form of a SoftMax function, discussed in detail
in the previous section. Taking into account the form of the matrix A, we can
calculate the average component-wise Lipschitz constant:

Pji ∈ [0, 1], Îji ∈ {0, 1} =⇒ L =
1

σ

1

n

n∑
i=1

max
j=1,...,m

|Aji| ≤
γ

σ
=

2γ lnm

ε

So, one can get the following estimates, which are also given in the Tables 2, 3
(transition from the duality gap accuracy ε in matrix game setting to the ε̃
accuracy to obtain the ε̃-approximate optimal policy satisfying the condition in
expectation Evπ ≥ v?− ε̃ is carried out according to the rules described in more
detail in the work [15]):

ε ∼ 1

2
· ε̃
3

=⇒ TCCDM = Õ
(
nnz(P )

√
logm · ε̃−1

)
,

εγ ∼
1

2
· (1− γ)ε̃

3
=⇒ TCCDM,γ = Õ

(
γ1/2(1− γ)−1 · nnz(P )

√
logm · ε̃−1

)
,
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where nnz(P ) ≤ n · m denotes the number of nonzero elements in matrix
P . In addition to the result corresponding to the considered method, the Ta-
bles 2, 3 contain complexity bounds of other known approaches to solving matrix
games and MDP problems (for the sake of compactness, it is used the notation
nnz′(P ) = nnz(P )+(m+n) log3(mn)). It can be seen that for the case of γ = 1,
the described approach allowing to obtain one of the best among the known
estimates, and in the case of γ < 1 it is close in efficiency to many modern ap-
proaches. Moreover, to describe the method used in this article, it was enough to
apply only a special case of the universal accelerated proximal envelope for the
classical coordinate descent method. This approach is conceptually much sim-
pler than the other methods cited here (which, by the way, are often applicable
only to very particular settings), and allows one to obtain complexity bounds
for AMDP problem that notedly competitive with the best alternatives.

Table 2. Comparison of the effectiveness of approaches (γ = 1 case)

Computational complexity Source
Õ
(
nnz(P )

√
logm · ε̃−1

)
this paper

Õ
(
nnz(P )

√
m/n · ε̃−1

)
[6]

Õ
(
log3(mn)

√
nnz(P ) · nnz′(P ) · ε̃−1

)
[7]

Table 3. Comparison of the effectiveness of approaches (γ ∈ (0, 1) case)

Computational complexity Source
Õ
(
γ1/2(1− γ)−1 nnz(P )

√
logm · ε̃−1

)
this paper

Õ
(
γ(1− γ)−1 nnz(P )

√
m/n · ε̃−1

)
[6]

Õ
(
γ(1− γ)−1 log3(mn)

√
nnz(P ) · nnz′(P ) · ε̃−1

)
[7]

Õ
(
nm

(
n+ (1− γ)−3) · log (ε̃−1)) [32]

3 Conclusion

In this paper, we propose a version of the Coordinate Descent Method, acceler-
ated using the universal proximal envelope “Accelerated Meta-algorithm”. The
performed theoretical analysis of the proposed method allows us to assert that
the dependence of its computational complexity on the dimension of the prob-
lem and the required solution accuracy is not inferior to other methods used to
optimize convex Lipschitz smooth functions, and the computational complexity
is comparable to that of the Fast Gradient Method. At the same time, the pro-
posed scheme retains the properties of the classical Coordinate Descent Method,
including the possibility of using the properties of componentwise smoothness of
the function. The given numerical experiments confirm the practical efficiency
of the method, and also emphasize the particular relevance of the proposed ap-
proach for the problem of optimizing a SoftMax-like function that often arises in
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various applications. As an example of such an application, it was considered the
problem of optimizing the MDP, and using the described approach, a method
was proposed for solving the averaged version of the MDP problem, which gives
a complexity bound that competes with the most efficient known ones.
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Appendices

A Proof of the Corollary 1

Due to the (H+L)-Lipschitz smoothness of the function F it holds the following

inequality: F (y0) − F (y∗) ≤
H + L

2
‖y0 − y∗‖22. Using this inequality together

with the estimation (4), one can write out a condition of achieving the required

accuracy ε̃ with respect to the function value:
H + L

2

(
1− 1

κ

)N
‖y0− y∗‖22 ≤ ε̃.

Also, the relation 1− 1/κ ≤ exp{−1/κ} holds and therefore one can state out:

H + L

2
exp{κ/N}‖y0 − y∗‖22 ≤ ε̃.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
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By taking the logarithm and substituting the expression for κ, we get an expres-
sion for the number of iterations from ε̃:

N(ε̃) =

⌈
Z

H
ln

{
(H + L)‖y0 − y∗‖22

2ε̃

}⌉
. (13)

Due to the H-strongly convexity of the function F it holds the following in-

equality ‖yN − y∗‖22 ≤
2

H
(F (yN )− F (y∗)), where yN = E[yN ]. The function F

is convex, and therefore F (yN ) ≤ E[F (yN )] (Jensen inequality), and from this,
together with (3), one can obtain a sufficient condition of achieving a solution
to the auxiliary problem:

E[F (yN )]− F (y∗) ≤
H

2

(
H

3H + 2L

)2

‖y0 − y∗‖22.

Substituting into the formula (13) instead of ε̃ the expression from the right-hand
side of this inequality, we arrive at the desired result.

B Proof of the Theorem 4

Let us denote by N the number of iterations of the internal method, performed
in a particular random case until the stop condition is satisfied. Following the
context of the proof of Corollary 1 and applying Markov inequality, we obtain the
following estimate for the probability that the number of iterations of interest
to us will exceed some given k:

Pr(N ≥ k) ≤ Pr

(
F (yk)− F (y∗) ≥

H

2

(
H

3H + 2L

)2

‖y0 − y∗‖22

)

≤ min

1,
E[F (yk)]− F (y∗)

H
2

(
H

3H+2L

)2
‖y0 − y∗‖22

 (Markov inequality)

≤ min

{
1,

(
1 +

L

H

)(
3 +

2L

H

)2

exp
{κ
k

}}
Further, we can estimate by the infinite series the expectation of the number of
iterations of the internal method:

E[N̂ ] =

∞∑
k=1

Pr(N ≥ k)

≤
∫ N(ε̃)

0

dk +

(
1 +

L

H

)(
3 +

2L

H

)2

exp {κ} ·
∫ ∞
N(ε̃)

exp {−k}

= N(ε̃) +

(
1 +

L

H

)(
3 +

2L

H

)2

exp

{
κ

N(ε̃)

}
≤ N(ε̃) + 1.



20 D. Pasechnyuk, V. Matyukhin

The number of external iterations of the method is constant, which means that
when calculating the mean of the total number of iterations, this value can be
taken out of the mean by applying for each internal iteration a single estimate
given above, whence the proved statement follows.

C Proof of the Theorem 5

Let us formulate the following obvious auxiliary proposition.

Proposition 1. The algorithmic complexity of the accelerated meta-algorithm
with coordinate descent as an internal method is

T = O
(
Ñ(Tout +NδTinn)

)
,

where Tout is the amortized algorithmic complexity of computations performed at
the iteration of the accelerated meta-algorithm, Tinn is the amortized algorithmic
complexity of the iteration of the coordinate descent algorithm.

Let us now reformulate the estimate from the Proposition 1 as follows:

T = O
(
N̂ · Titer

)
,

where Titer is the amortized algorithmic complexity of an elementary iteration
of the accelerated meta-algorithm, that is, an iteration that can be both an
internal iteration of the coordinate descent algorithm and the main iteration of
the meta-algorithm. The complexity of the main iteration of the meta-algorithm
is determined, first of all, by calculating the full gradient vector of f , and the
complexity of this procedure (from the condition of the theorem) is O(s · n).
At the same time, due to the Z = nL, also holds Nδ = Õ(n), where symbol
Õ(·) means the same as O(·), but with the possible presence of factors of log(·)
order. Since the main iteration of the meta-algorithm is performed every Nδ
elementary iterations, where Nδ is constant, this, using any of the methods of
amortization analysis, trivially yields an amortized algorithmic complexity of
the main iteration of the meta-algorithm, which is O(s). The complexity of
the coordinate descent algorithm’s iteration (if all operations performing “in
place“, instead of copying the values of every point, it is quite acceptable for
this construction) is determined by calculating one component of the gradient,
and is also O(s). From this obtain Titer = O(s). Using the estimate (11) and
substituting the optimal value of H, we obtain the provided complexity of the
method.
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