Skip to main content

Indistinguishability Obfuscation from Simple-to-State Hard Problems: New Assumptions, New Techniques, and Simplification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12698))

Abstract

In this work, we study the question of what set of simple-to-state assumptions suffice for constructing functional encryption and indistinguishability obfuscation (\(i\mathcal {O}\)), supporting all functions describable by polynomial-size circuits. Our work improves over the state-of-the-art work of Jain, Lin, Matt, and Sahai (Eurocrypt 2019) in multiple dimensions.

New Assumption: Previous to our work, all constructions of \(i\mathcal {O}\) from simple assumptions required novel pseudorandomness generators involving LWE samples and constant-degree polynomials over the integers, evaluated on the error of the LWE samples. In contrast, Boolean pseudorandom generators (PRGs) computable by constant-degree polynomials have been extensively studied since the work of Goldreich (2000). (Goldreich and follow-up works study Boolean pseudorandom generators with constant-locality, which can be computed by constant-degree polynomials.) We show how to replace the novel pseudorandom objects over the integers used in previous works, with appropriate Boolean pseudorandom generators with sufficient stretch, when combined with LWE with binary error over suitable parameters. Both binary error LWE and constant degree Goldreich PRGs have been a subject of extensive cryptanalysis since much before our work and thus we back the plausibility of our assumption with security against algorithms studied in context of cryptanalysis of these objects.

New Techniques: we introduce a number of new techniques:

– We show how to build partially-hiding public-key functional encryption, supporting degree-2 functions in the secret part of the message, and arithmetic \(\mathsf {NC^1}\) functions over the public part of the message, assuming only standard assumptions over asymmetric pairing groups.

– We construct single-ciphertext secret-key functional encryption for all circuits with linear key generation, assuming only the LWE assumption.

Simplification: Unlike prior works, our new techniques furthermore let us construct public-key functional encryption for polynomial-sized circuits directly (without invoking any bootstrapping theorem, nor transformation from secret-key to public key FE), and based only on the polynomial hardness of underlying assumptions. The functional encryption scheme satisfies a strong notion of efficiency where the size of the ciphertext grows only sublinearly in the output size of the circuit and not its size. Finally, assuming that the underlying assumptions are subexponentially hard, we can bootstrap this construction to achieve \(i\mathcal {O}\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Throughout this work, unless specified, by degree of boolean PRGs, we mean the degree of the polynomial computing the PRG over the reals.

  2. 2.

    As mentioned in the introduction, partially hiding functional encryption allows to further strengthen the function class supported, by essentially adding computation on a public input, however computation on the private input is still limited to degree 2.

References

  1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  2. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption with fine-grained access control. Cryptology ePrint Archive, Report 2020/577 (2020). https://eprint.iacr.org/2020/577

  3. Agrawal, S.: Indistinguishability obfuscation without multilinear maps: new methods for bootstrapping and instantiation. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_7

    Chapter  Google Scholar 

  4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  5. Agrawal, S., Pellet-Mary, A.: Indistinguishability obfuscation without maps: attacks and fixes for noisy linear FE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_5

    Chapter  Google Scholar 

  6. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 173–205. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_7

    Chapter  Google Scholar 

  7. Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Algebraic algorithms for LWE problems. ACM Commun. Comput. Algebra 49(2), 62 (2015)

    Article  Google Scholar 

  8. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_32

    Chapter  MATH  Google Scholar 

  9. Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Barrington’s theorem. In: ACM CCS, pp. 646–658 (2014)

    Google Scholar 

  10. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation without multilinear maps: new paradigms via low degree weak pseudorandomness and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_10

    Chapter  Google Scholar 

  11. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear maps: IO from LWE, bilinear maps, and weak pseudorandomness. IACR Cryptology ePrint Archive 2018:615 (2018)

    Google Scholar 

  12. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_15

    Chapter  Google Scholar 

  13. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_6

    Chapter  Google Scholar 

  14. Applebaum, B.: Pseudorandom generators with long stretch and low locality from random local one-way functions. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 805–816. ACM Press, May 2012

    Google Scholar 

  15. Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-bias generators. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 600–617. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_34

    Chapter  Google Scholar 

  16. Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and their countermeasures. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 1087–1100. ACM Press, June 2016

    Google Scholar 

  17. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_34

    Chapter  Google Scholar 

  18. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_27

    Chapter  Google Scholar 

  19. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption for quadratic functions with applications to predicate encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 67–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_3

    Chapter  Google Scholar 

  20. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_13

    Chapter  Google Scholar 

  21. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  22. Bartusek, J., Ishai, Y., Jain, A., Ma, F., Sahai, A., Zhandry, M.: Affine determinant programs: a framework for obfuscation and witness encryption. In: Vidick, T. (ed.) 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, Seattle, Washington, USA, 12–14 January 2020. LIPIcs, vol. 151, pp. 82:1–82:39. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  23. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_15

    Chapter  Google Scholar 

  24. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a Nash equilibrium. In: Guruswami, V. (ed.) 56th FOCS, pp. 1480–1498. IEEE Computer Society Press, October 2015

    Google Scholar 

  25. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer Society Press, October 2015

    Google Scholar 

  26. Bogdanov, A., Qiao, Y.: On the security of Goldreich’s one-way function. Comput. Complex. 21(1), 83–127 (2012)

    Article  MathSciNet  Google Scholar 

  27. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  28. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  29. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from homomorphic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_4

    Chapter  Google Scholar 

  30. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012, pp. 309–325 (2012)

    Google Scholar 

  31. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_1

    Chapter  Google Scholar 

  32. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  33. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_11

    Chapter  Google Scholar 

  34. Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE with binary error: revisiting the hybrid lattice-reduction and meet-in-the-middle attack. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 24–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-1_2

    Chapter  MATH  Google Scholar 

  35. Caho, S., Tibouchi, M., Abe, M.: Sample-time trade-off for the Arora-Ge attack on binary LWE. In: Symposium on Cryptography and Information Theory (2019)

    Google Scholar 

  36. Sun, C., Tibouchi, M., Abe, M.: Revisiting the hardness of binary error LWE. Cryptology ePrint Archive, Report 2020/666 (2020). https://eprint.iacr.org/2020/666

  37. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_20

    Chapter  Google Scholar 

  38. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: STOC (2016)

    Google Scholar 

  39. Couteau, G., Dupin, A., Méaux, P., Rossi, M., Rotella, Y.: On the concrete security of Goldreich’s pseudorandom generator. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 96–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_4

    Chapter  Google Scholar 

  40. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

    Google Scholar 

  41. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_10

    Chapter  Google Scholar 

  42. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of finding a Nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_20

    Chapter  Google Scholar 

  43. Gay, R.: A new paradigm for public-key functional encryption for degree-2 polynomials. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 95–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_4

    Chapter  Google Scholar 

  44. Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from simple-to-state hard problems: new assumptions, new techniques, and simplification. IACR Cryptology ePrint Archive 2020:764 (2020)

    Google Scholar 

  45. Gentry, C., Jutla, C.S., Kane, D.: Obfuscation using tensor products. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 25, p. 149 (2018)

    Google Scholar 

  46. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. IACR Cryptology ePrint Archive 2014:309 (2014)

    Google Scholar 

  47. Goldreich, O.: Candidate one-way functions based on expander graphs. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 7, no. 90 (2000)

    Google Scholar 

  48. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_32

    Chapter  Google Scholar 

  49. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM Press, June 2013

    Google Scholar 

  50. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_3

    Chapter  Google Scholar 

  51. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_11

    Chapter  Google Scholar 

  52. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_25

    Chapter  Google Scholar 

  53. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_24

    Chapter  Google Scholar 

  54. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_27

    Chapter  Google Scholar 

  55. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree expanding polynomials over \(\mathbb{R}\) to build \(i\cal{O}\). In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_9

    Chapter  Google Scholar 

  56. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. Cryptology ePrint Archive, Report 2020/1003 (2020). https://eprint.iacr.org/2020/1003

  57. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://doi.org/10.1007/10722028_23

    Chapter  Google Scholar 

  58. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. In: STOC (2015)

    Google Scholar 

  59. Kothari, P.K., Mori, R., O’Donnell, R., Witmer, D.: Sum of squares lower bounds for refuting any CSP. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM STOC, pp. 132–145. ACM Press, June 2017

    Google Scholar 

  60. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_2

    Chapter  Google Scholar 

  61. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_20

    Chapter  Google Scholar 

  62. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to indistinguishability obfuscation. IACR Cryptology ePrint Archive 2018:646 (2018)

    Google Scholar 

  63. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_21

    Chapter  Google Scholar 

  64. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS, pp. 11–20. IEEE Computer Society Press, October 2016

    Google Scholar 

  65. Lombardi, A., Vaikuntanathan, V.: Minimizing the complexity of Goldreich’s pseudorandom generator. IACR Cryptology ePrint Archive 2017:277 (2017)

    Google Scholar 

  66. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_2

    Chapter  Google Scholar 

  67. Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In: 44th FOCS, pp. 136–145. IEEE Computer Society Press, October 2003

    Google Scholar 

  68. O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal polynomial stretch. In: IEEE 29th Conference on Computational Complexity, CCC 2014, Vancouver, BC, Canada, 11–13 June 2014, pp. 1–12. IEEE Computer Society (2014)

    Google Scholar 

  69. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive 2010:556 (2010)

    Google Scholar 

  70. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_28

    Chapter  Google Scholar 

  71. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)

    Google Scholar 

  72. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) Proceedings of the 17th ACM Conference on Computer and Communications Security, ACM CCS 2010, pp. 463–472. ACM (2010)

    Google Scholar 

  73. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) STOC, pp. 475–484. ACM (2014)

    Google Scholar 

  74. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

Download references

Acknowledgements

Aayush Jain was partially supported by grants listed under Amit Sahai, a Google PhD fellowship. Huijia Lin was supported by NSF grants CNS-1528178, CNS-1929901, CNS-1936825 (CAREER), the Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002 through Galois.

Amit Sahai was supported in part from DARPA SAFEWARE and SIEVE awards, NTT Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through Award HR00112020024 and the ARL under Contract W911NF-15-C- 0205.

The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, DARPA, ARO, Simons, Intel, Okawa Foundation, ODNI, IARPA, DIMACS, BSF, Xerox, the National Science Foundation, NTT Research, Google, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gay, R., Jain, A., Lin, H., Sahai, A. (2021). Indistinguishability Obfuscation from Simple-to-State Hard Problems: New Assumptions, New Techniques, and Simplification. In: Canteaut, A., Standaert, FX. (eds) Advances in Cryptology – EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Computer Science(), vol 12698. Springer, Cham. https://doi.org/10.1007/978-3-030-77883-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77883-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77882-8

  • Online ISBN: 978-3-030-77883-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics