Skip to main content

Multiparty Reusable Non-interactive Secure Computation from LWE

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2021 (EUROCRYPT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12697))

Abstract

Motivated by the goal of designing versatile and flexible secure computation protocols that at the same time require as little interaction as possible, we present new multiparty reusable Non-Interactive Secure Computation (mrNISC) protocols. This notion, recently introduced by Benhamouda and Lin (TCC 2020), is essentially two-round Multi-Party Computation (MPC) protocols where the first round of messages serves as a reusable commitment to the private inputs of participating parties. Using these commitments, any subset of parties can later compute any function of their choice on their respective inputs by just sending a single message to a stateless evaluator, conveying the result of the computation but nothing else. Importantly, the input commitments can be computed without knowing anything about other participating parties (neither their identities nor their number) and they are reusable across any number of desired computations.

We give a construction of mrNISC that achieves standard simulation security, as classical multi-round MPC protocols achieve. Our construction relies on the Learning With Errors (LWE) assumption with polynomial modulus, and on the existence of a pseudorandom function (PRF) in \(\mathsf {NC}^1\). We achieve semi-malicious security in the plain model and malicious security by further relying on trusted setup (which is unavoidable for mrNISC). In comparison, the only previously known constructions of mrNISC were either using bilinear maps or using strong primitives such as program obfuscation.

We use our mrNISC to obtain new Multi-Key FHE (MKFHE) schemes with threshold decryption:

  • In the CRS model, we obtain threshold MKFHE for \(\mathrm {NC}^1 \) based on LWE with only polynomial modulus and PRFs in \(\mathsf {NC}^1\), whereas all previous constructions rely on LWE with super-polynomial modulus-to-noise ratio.

  • In the plain model, we obtain threshold levelled MKFHE for \(\mathrm {P} \) based on LsWE with polynomial modulus, PRF in \(\mathrm {NC}^1 \), and NTRU, and another scheme for constant number of parties from LWE with sub-exponential modulus-to-noise ratio. The only known prior construction of threshold MKFHE (Ananth et al., TCC 2020) in the plain model restricts the set of parties who can compute together at the onset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reconstruction of the output is “public” in the sense that it does not require any secrets. It is w.l.o.g. to consider public output reconstruction, as one can always consider the evaluator as a participant of MPC with a dummy input and uses the all zero string as its random tape.

  2. 2.

    Semi-malicious security is a strengthening of the semi-honest security wherein the adversary is allowed to choose its random tape arbitrarily. [10] showed that any protocol satisfying semi-malicious security can be made maliciously secure by additionally using Non-Interactive Zero-Knowledge proofs (NIZKs).

  3. 3.

    The CRS is needed for NIZK which exists from LWE with polynomial modulus [59].

  4. 4.

    DSPR stands for the decision small polynomial ratio assumption [52] which is used to prove the security of the NTRU encryption scheme.

  5. 5.

    It suffices to simulate only these computations that involve at least one honest party. Computations involving only corrupted parties can be viewed as part of the internal computation of the adversary.

  6. 6.

    The magnitude scales exponentially with the depth of \(g_2\), which is relatively small if we set the modulus to be sufficiently large.

  7. 7.

    It can be verified efficiently by checking whether it has small magnitude and \({\mathbf {D}^{(b)}}\boldsymbol{v} = \boldsymbol{u}\).

  8. 8.

    The common definition of a PRF in \(\mathsf {NC}^1\) is a PRF whose circuit representation is in \(\mathsf {NC}^1\) when viewed as a function of both the input and the seed. We actually need a slightly weaker condition, namely, that the circuit computing \(F_{x}(\cdot )=\mathsf {PRF}.\mathsf {Eval}(\cdot ,x)\) with the hardwired input x, as a function of the \(\mathsf {PRF}\) key is in \(\mathsf {NC}^1\).

  9. 9.

    For simplicity, we suppose that the set of parties participating in the computation is \(I = [n]\).

References

  1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_22

    Chapter  Google Scholar 

  2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: 28th ACM STOC, pp. 99–108. ACM Press (May 1996). https://doi.org/10.1145/237814.237838

  4. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1

    Chapter  Google Scholar 

  5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: Albers, S., Marion, J. (eds.) Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009. LIPIcs, 26–28 February 2009, Freiburg, Germany, vol. 3, pp. 75–86. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009). https://doi.org/10.4230/LIPIcs.STACS.2009.1832

  6. Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE combiners to secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 199–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_9

    Chapter  Google Scholar 

  7. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 395–424. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_14

    Chapter  Google Scholar 

  8. Ananth, P., Jain, A., Jin, Z.: Multiparty homomorphic encryption (or: on removing setup in multi-key FHE). IACR Cryptology ePrint Archive: 2020/169 (2020)

    Google Scholar 

  9. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic encryption in the plain model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 28–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_2

    Chapter  Google Scholar 

  10. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

    Chapter  Google Scholar 

  11. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness indistinguishability and secure computation in the plain model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_10

    Chapter  MATH  Google Scholar 

  12. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Secure MPC: laziness leads to GOD. IACR Cryptology ePrint Archive: Report 2018/580 (2018). https://eprint.iacr.org/2018/580

  13. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Secure MPC: laziness leads to GOD. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 120–150. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_5

    Chapter  Google Scholar 

  14. Badrinarayanan, S., Jain, A., Ostrovsky, R., Visconti, I.: Non-interactive secure computation from one-way functions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 118–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_5

    Chapter  Google Scholar 

  15. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_20

    Chapter  Google Scholar 

  16. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  17. Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round MPC from DDH. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 320–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_12

    Chapter  Google Scholar 

  18. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_22

    Chapter  Google Scholar 

  19. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC, pp. 1–10. ACM Press (May 1988). https://doi.org/10.1145/62212.62213

  20. Benhamouda, F., Jain, A., Komargodski, I., Lin, H.: Multiparty reusable non-interactive secure computation from LWE. IACR Cryptology ePrint Archive (2021)

    Google Scholar 

  21. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_17

    Chapter  Google Scholar 

  22. Benhamouda, F., Lin, H.: Mr NISC: multiparty reusable non-interactive secure computation. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 349–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_13

    Chapter  Google Scholar 

  23. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23

    Chapter  Google Scholar 

  24. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_14

    Chapter  Google Scholar 

  25. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_22

    Chapter  Google Scholar 

  26. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 575–584. ACM Press (June 2013). https://doi.org/10.1145/2488608.2488680

  27. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_8

    Chapter  Google Scholar 

  28. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor, M. (ed.) ITCS 2014, pp. 1–12. ACM (January 2014). https://doi.org/10.1145/2554797.2554799

  29. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party computation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_22

    Chapter  Google Scholar 

  30. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random oracle. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 597–608. ACM Press (November 2014). https://doi.org/10.1145/2660267.2660374

  31. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  32. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 462–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_15

    Chapter  Google Scholar 

  33. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press (May 1988). https://doi.org/10.1145/62212.62214

  34. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_31

    Chapter  Google Scholar 

  35. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable, multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_23

    Chapter  Google Scholar 

  36. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  Google Scholar 

  37. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  38. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended abstract). In: 26th ACM STOC, pp. 554–563. ACM Press (May 1994). https://doi.org/10.1145/195058.195408

  39. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_4

    Chapter  Google Scholar 

  40. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_5

    Chapter  Google Scholar 

  41. Garg, S., Miao, P., Srinivasan, A.: Two-round multiparty secure computation minimizing public key operations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 273–301. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_10

    Chapter  Google Scholar 

  42. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_24

    Chapter  Google Scholar 

  43. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps. In: Umans, C. (ed.) 58th FOCS, pp. 588–599. IEEE Computer Society Press (October 2017). https://doi.org/10.1109/FOCS.2017.60

  44. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_16

    Chapter  Google Scholar 

  45. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374407

  46. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  47. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. In: 30th ACM STOC, pp. 151–160. ACM Press (May 1998). https://doi.org/10.1145/276698.276723

  48. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press (May 1987). https://doi.org/10.1145/28395.28420

  49. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 469–477. ACM Press (June 2015). https://doi.org/10.1145/2746539.2746576

  50. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_4

    Chapter  Google Scholar 

  51. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_23

    Chapter  Google Scholar 

  52. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 1219–1234. ACM Press (May 2012). https://doi.org/10.1145/2213977.2214086

  53. Micciancio, D., Mol, P.: Pseudorandom Knapsacks and the sample complexity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_26

    Chapter  Google Scholar 

  54. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  55. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press (October 2004). https://doi.org/10.1109/FOCS.2004.72

  56. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

    Chapter  Google Scholar 

  57. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 333–342. ACM (2009)

    Google Scholar 

  58. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_9

    Chapter  Google Scholar 

  59. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for np from (plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4

    Chapter  Google Scholar 

  60. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In: Thorup, M. (ed.) 59th FOCS, pp. 859–870. IEEE Computer Society Press (October 2018). https://doi.org/10.1109/FOCS.2018.00086

  61. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)

    Google Scholar 

Download references

Acknowledgments

Aayush Jain was supported by a Google PhD fellowship in the area of security and privacy (2018) and in part from DARPA SAFEWARE and SIEVE awards, NTT Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through Award HR00112020024 and the ARL under Contract W911NF-15-C- 0205.

Ilan Komargodski is supported in part by an Alon Young Faculty Fellowship and by an ISF grant (No. 1774/20).

Huijia Lin was supported by NSF grants CNS-1528178, CNS-1929901, CNS-1936825 (CAREER), CNS-2026774, a Hellman Fellowship, a JP Morgan AI Research Award, a Simons Collaboration grant on the Theory of Algorithmic Fairness, the Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002 through Galois.

The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, DARPA, the National Science Foundation, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benhamouda, F., Jain, A., Komargodski, I., Lin, H. (2021). Multiparty Reusable Non-interactive Secure Computation from LWE. In: Canteaut, A., Standaert, FX. (eds) Advances in Cryptology – EUROCRYPT 2021. EUROCRYPT 2021. Lecture Notes in Computer Science(), vol 12697. Springer, Cham. https://doi.org/10.1007/978-3-030-77886-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77886-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77885-9

  • Online ISBN: 978-3-030-77886-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics