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NONPARAMETRIC ESTIMATIONS AND THE

DIFFEOLOGICAL FISHER METRIC

HÔNG VÂN LÊ AND ALEXEY A. TUZHILIN

Abstract. In this paper, first, we survey the concept of diffeological
Fisher metric and its naturality, using functorial language of proba-
bilistic morphisms, and slightly extending Lê’s theory in [Le2020] to
include weakly C

k-diffeological statistical models. Then we introduce
the resulting notions of the diffeological Fisher distance, the diffeolog-
ical Hausdorff–Jeffrey measure and explain their role in classical and
Bayesian nonparametric estimation problems in statistics.

1. Introduction

In the present paper we survey the concept of the diffeological Fisher met-
ric, introduced in [Le2020], and explain its role in frequentist and Bayesian
nonparametric density estimations. Diffeological Fisher metric is a natural
extension of the Fisher metric to singular statistical models, which are ubiq-
uitous in machine learning [Watanabe2009], [Amari2016]. Among different
approaches to singular spaces, we find the Souriau theory of diffeological
spaces [Souriau1980] best suitable for our study of statistical models, pa-
rameterized statistical models and dynamics on them. The role of the diffe-
ological Fisher metric in frequentist nonparametric estimation is expressed
via the Cramér–Rao inequality (Theorem 3.4, Remark 3.5). The role of the
diffeological Fisher metric in Bayesian estimations is expressed via the choice
of the objective a prior Hausdorff–Jeffrey measure on 2-integrable diffeolog-
ical statistical models (Definition 4.2, Theorem 4.3). The Hausdorff-Jeffrey
measure is a natural generalization of the Jeffrey measure, using the con-
cept of the diffeological Fisher distance that is introduced in the present
paper, and combining with the concept of the Hausdorff measure in geo-
metric measure theory. Geometric measure theory could be described as
differential geometry, generalized through measure theory to deal with sin-
gular mappings and singular spaces and applied to the calculus of variations
[Federer1969], [AT2004], [Morgan2009]. Hausdorff measures play an impor-
tant role in several areas of mathematics, e.g., in the theory of fractals, in
the theory of stochastic processes. We also refer the reader to [JLT2021] for
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a categorical treatment of the Dirichlet (a prior) measure on the set P(X )
of all probability measures on a measurable space X whose σ-algebra will
be denoted by ΣX .

The remaining part of our paper is organized as follows. In Section 2 we
recall the concept of a Ck-diffeological space, adapted from [IZ2013], and
the resulting concepts of a Ck-diffeological statistical model and a weakly
Ck-diffeological statistical model (Definitions 2.1, 2.6, Example 2.4, Lemma
2.7, Remarks 2.8, 2.10), the notion of the diffeological Fisher metric, slightly
extending the concepts introduced by Lê in [Le2020]. Then we introduce
the notion of the diffeological Fisher distance (Definition 2.14, Theorem
2.15, Remark 2.17). In the last part of Section 2 we recall the concept
of probabilistic morphisms and the monotonicity (resp. the invariance) of
the diffeological Fisher metric under probability morphisms (resp. sufficient
probabilistic morphisms). Then we deduce similar functorial properties for
the diffeological Fisher distance. In Section 3 we recall the concept of a
nonparametric ϕ-estimator introduced in [Le2020] and the related diffeo-
logical Cramér–Rao inequality, proved in [Le2020], see also Remark 3.5,
where we discuss the validity of the diffeological Crámer–Rao for weakly
Ck-diffeological statistical models. In Section 4 we introduce the resulting
notion of the Hausdorff–Jeffrey measure (Definition 4.2). Then we derive
their monotonicity and invariance property from the corresponding prop-
erties of the Fisher distance (Theorem 4.3). In the last section we discuss
some open questions and future directions.

2. Diffeological Fisher metric, diffeological Fisher distance

and probabilistic morphisms

First let us recall the notion of a Ck-diffeological space.

Definition 2.1. [Le2020, Definition 3], cf. [IZ2013, §1.5] For k ∈ N∪∞ and
a nonempty set X, a Ck-diffeology of X is a set D of mappings p : U → X,
where U is an open domain in Rn, and n runs over nonnegative integers,
such that the three following axioms are satisfied.

D1. Covering. The set D contains the constant mappings x : r 7→ x,
defined on Rn, for all x ∈ X and for all n ∈ N.

D2. Locality. Let p : U → X be a mapping. If for every point r ∈ U
there exists an open neighborhood V of r such that p|V belongs to D then
the map p belongs to D.

D3. Smooth compatibility. For every element p : U → X of D, for every
real domain V , for every ψ ∈ Ck(V,U), p ◦ ψ belongs to D.

A Ck-diffeological space X is a nonempty set X equipped with a Ck-
diffeology D. Elements p : U → X of D will be called Ck-maps from U to

X.
A map f : (X,D) → (X ′,D′) between two Ck-diffeological spaces is called

a Ck-map, if for any p ∈ D we have f ◦ p ∈ D′.
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Digression. Recall that a map ϕ : U → V is called weakly (Fréchet)1

differentiable in u0 ∈ U if there exists a bounded linear operator dϕu0
:

Rn → V such that [AJLS2017, p. 384]

w- lim
v→0

ϕ(u0 + v)− ϕ(u0)− dϕu0
(v)

||v|| = 0,

where w- lim denotes the weak limit. In this case dϕu0
is called the weak

differential of ϕ at u0. Denote by Lin(E,V ) the Banach space of bounded
linear maps from a Banach space E to a Banach space V with the induced
norm. A map ϕ : U → V is called a weak Ck-map, if it is weakly differ-
entiable, and if the inductively defined maps d1 := dϕ : U → Lin(Rn, V ),
and

dr+1ϕ : Rn → Lin((Rn)r, V ), u 7→ d(drϕ)u ∈ Lin((Rn)r−1, V )

are weakly differentiable for r = 1, · · · , k−1 and weakly continuous for r = k
[AJLS2017, p. 384]. Clearly the composition of weak Ck-maps is a weak
Ck-map and a weak Ck-map between finite dimensional smooth manifolds
is a Ck-map. We also write shorthand “w-Ck-map” for “weak Ck-map”.

The concept of a weak Ck-map is a natural extension of the concept
of weak convergence. The weak convergence of measures is one of most
important tools in applied and theoretical statistics [Bogachev2018]. It is
known that the class of weakly differentiable maps is strictly larger than the
class of differentiable maps [Kaliaj2016].

Example 2.2. (1) Let V be a Banach space. Then V has the canonical
Ck-diffeology Dk

can that consists of all Ck-mappings p : U → V , where U
is an open domain in Rn. The space V has also another Ck-diffeology Dk

w

that consists of all weak Ck-mappings U → V , where U is an open domain
in Rn.

(2) Assume that (X ′,D′) is a Ck-diffeological space and f : X → X ′ is a
map. Then the pullback diffeology f∗(D′) is the Ck-diffeology on X defined
as follows [IZ2013, p. 14],

f∗(D′) := {p : U → X| f ◦ p ∈ D′},
where U is an open subset of Rn.

(3) Let (X,D) be a Ck-diffeological space and f : X → X ′ a map. Then
the pushforward diffeology f∗(D) is the diffeology on X ′ that consists of all
mappings p : U → X ′ where U ⊂ Rn is an open subset and p satisfies the
following property [IZ2013, p. 24]. For every u ∈ U , there exists an open
neighborhood O(u) ⊂ U of u such that, either p|O(u) is a constant map, or
there exists a map q : O(u) → X such that p|O(u) = f ◦ q.

Let us recall that the space S(X ) of all finite signed measures on a mea-
surable space X is a Banach space, denoted by S(X )TV , with the total

1in this paper we shall consider only (possibly weakly) Fréchet differentiable mappings
and we shall omit “Fréchet” in the remaining part of this paper
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variation norm ‖ · ‖TV . For any statistical model PX , which is, by defini-
tion, any subset in P(X ) ⊂ S(X ) [McCullagh2002], [Le2020], we denote by
i : PX → S(X ) the natural inclusion.

Definition 2.3. cf. [Le2020, Definition 3] (1) A statistical model PX en-
dowed with a Ck-diffeology DX is called a Ck-diffeological statistical model

or a weakly Ck-diffeological statistical model , respectively, if i∗(DX ) ⊂ Dk
can

or i∗(DX ) ⊂ Dk
w, respectively. A Ck-diffeology on a weakly Ck-diffeological

statistical model will be called a weak Ck-diffeology.
(2) Let DX be a Ck-diffeology on a statistical model PX . For l ∈ N ∪∞

we shall call an element p : U → PX in DX of class Ck+l or of class w-Ck+1,
respectively, if i◦p ∈ Dk+l

can or i◦p ∈ Dk+l
w , respectively. In other words, there

is a filtration of diffeologies (i∗(D∞
can) ∩ DX ) ⊂ · · · ⊂ (i∗(Dk

can) ∩ DX ) = DX

or (i∗(D∞
w ) ∩ DX ) ⊂ · · · ⊂ (i∗(Dk

w) ∩ DX ) = DX ), respectively.

Examples of Ck-diffeological statistical models are the image (p(M),p∗(Dk
can))

of parameterized statistical models (M,X ,p), where M is a smooth Ba-
nach manifold and i ◦ p : M → S(X ) is a Ck-map, see [Le2020, Exam-
ple 8.2]. There are many parameterized statistical models (M,X ,p) whose
image p(M) are singular statistical models [Amari2016], [Watanabe2009],
see also Example 2.11 below. We shall provide an example of an weakly
C1-diffeological statistical model, which is not a C1-diffeological statistical
model.

Example 2.4. Let X = [−π, π] with the Lebesgue measure dx. For t ∈
[−1, 1] \ {0} we set

ft(x) = sin(
x

t
)

and we let f0(x) = 0. Then for all t we have ft ∈ L1(X , dx) and ft is weakly
continuous in L1(X , dx) but not strongly continuous. Next we define a
function Ft(x) for t ∈ (−1, 1) and x ∈ [−π, π] as follows.

Ft(x) :=

∫ t

0
fs(x)ds.

Since fs(x) = −fs(−x), for all t ∈ [−1, 1]

(2.1)

∫ π

−π
Ft(x) dx = 0.

Since Ft(x) is continuous in t and in x there exists a number A > 0 such
that

2π|Ft(x)| ≤ A for all (t, x) ∈ [−1, 1]× [−π, π].
Finally we define a map c : (−1, 1) → P(X ) ⊂ S(X )

c(t) :=
( 1

2π
+
Ft(x)

2A

)

dx.
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Clearly c(t) is differentiable, but its derivative c′(t) = 1
2Aft(x)dx is only

weakly continuous, therefore the map c is a weak C1-map but not a C1-
map. Hence the image of c is a weakly C1-diffeological statistical model,
which is not a C1-diffeological statistical model.

Concerning weakly Ck-diffeological statistical models we have the follow-
ing local structure result.

Let us recall that a finite signed measure ν ∈ S(X ) is said to be dominated
by a non-negative measure µ on X , if µ(A) = 0 implies ν(A) = 0 for any
A ∈ ΣX . Alternatively, ν is called absolutely continuous w.r.t. µ, see e.g.
[Neveu1970, Chapter IV].

Lemma 2.5. cf. [AJLS2017, Proposition 3.3, p. 150] Assume that U ⊂ Rn

is an open connected domain and ϕ : U → P(X ) is a map such that i ◦ ϕ :
U → S(X ) is a weak C1-map. Then there exists µ0 ∈ P(X ) that dominates

ϕ(u) for all u ∈ U .

Proof. Let UQ ⊂ U be the subset of all points in U with rational coordinates
in Rn. Then UQ is a countable set. By [AJLS2017, Lemma 3.1, p. 146], cf.
[Neveu1970, Ex.IV.1.3] there is a measure µ0 ∈ P(X ) that dominates ϕ(u)
for all u ∈ UQ. Now let u ∈ U . We shall prove that ϕ(u) ≪ µ0. Assume
that A ∈ ΣX is a null-set of µ0. Then for all k we have ϕ(uk)(A) = 0.
Since ϕ : U → S(X ) is weakly continuous, and uQ is dense in U , it follows
that ϕ(u)(A) = 0. Hence ϕ(u) ≪ µ0. This completes the proof of Lemma
2.7. �

The concept of the tangent space of a Ck-diffeological statistical model
(PX ,DX ) at a point ξ ∈ PX [Le2020, Remark 2]) extends naturally to the
case of weakly Ck-diffeological statistical models, see Definition 2.6 below.
We also refer the reader to [Souriau1980, (5.1)], [IZ2013, p. 166] for a bit
more abstract approach. Note that any Ck-diffeological statistical model is
a weakly Ck-diffeological statistical model.

Definition 2.6. cf. [Le2020, Remark 2] Let (PX ,DX ) be a weakly Ck-
diffeological statistical model. Let c : (−ε, ε) → (PX ,DX ) be a Ck-map.
The tangent vector ∂tc(0) at c(0) is the image of the map dc0(∂t) ∈ S(X ),
where dc0 is the weak differential of c at 0. For ξ ∈ PX , the tangent cone
Cξ(PX ,DX ) consists of all tangent vectors ∂tc(0) at c(0) = ξ, where c :

(0, 1) → (PX ,DX ) be a Ck-map, and the tangent space Tξ(PX ,DX ) is the
linear hull of Cξ(PX ,DX ).

Lemma 2.7. Let v be a tangent vector at ξ in a weakly Ck-diffeological

statistical model (PX ,DX ). Then v is dominated by ξ.

Proof. The proof of Lemma 2.7 uses the same argument in the proof for the
case of tangent vectors of Ck-diffeological statistical models [Le2020, Remark
2], [Bogachev2010, Corollary 3.3.2, p.77], [AJLS2017, Theorem 3.1, p. 142].
Let v = ∂tc(0), where c : (−ε, ε) → (PX ,DX ) is a weak C

k-map. Let A ∈ ΣX
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such that c(0)(A) = 0. Since the map IA : S(X ) → R, : µ 7→ µ(A), is a
linear bounded map, the map IA ◦ c :→ R is a C1-map, see e.g. [AJLS2017,
Proposition C.2, p. 385]. It follows that

d

dt |t=0
IA ◦ c(t) = IA(v) = 0

since IA ◦c(t) ≥ 0. Hence v ≪ c(0) = ξ. This completes the proof of Lemma
2.7. �

Lemma 2.7 implies that for any tangent vector v at a point ξ of a weakly
Ck-diffeological statistical model (PX ,DX ), the logarithmic representation

of v

(2.2) log v := dv/dξ

is an element of L1(X , ξ). The set {log v| : v ∈ Cξ(PX ,DX )} is a subset in
L1(X , ξ). We denote it by log(Cξ(PX ,DX )) and will call it the logarithmic

representation of Cξ(PX ,DX ). In [AJLS2017, Definition 3.6, p. 152], for
a C1-map c : (0, 1) → PX ⊂ S(X ) we call dc(∂t)/dc(t) the logarithmic
derivative of c in the direction ∂t ∈ Tt(0, 1), since in the classical case where
c(t) = f(t) · µ0 is a dominated measure family with differentiable density
function f(t), then dc(∂t)/dc(t) = (d/dt) log f(t).

Remark 2.8. Any bounded function H on X defines a continuous linear
function IH on the Banach space S(X )TV as follows

IH : S(X )TV → R, : µ 7→
∫

X
Hdµ.

Assume that a map ϕ : (0, 1) → P(X ), : t 7→ µt, is weakly differentiable.
Let µ′t := ∂t(ϕ(t)) ∈ S(X ). Then we have

(2.3)
d

dt| t=0

∫

X
Hdµt =

∫

X
Hd(µ′0).

The identity (2.3) is central for many applications, see e.g. [Pflug1996] and
Remark 3.5, and therefore the concept of weakly Ck-diffeological statistical
models is useful. Note that measure valued weak differentiable maps from
an open subset of Rn have been first introduced by Pflug [Pflug1988], see
also [Pflug1996, Definition 3.25, p. 158] in the case X is a metric space
with Borel σ-algebra, using (2.3) as the definition (with H bounded and
continuous).

Definition 2.9. [Le2020, Definition 4] A Ck-diffeological statistical model
(PX ,DX ) will be called almost 2-integrable, if log

(

Cξ(PX ,DX )
)

⊂ L2(X , ξ)
for all ξ ∈ PX . In this case we define the diffeological Fisher metric g on PX

as follows. For each v,w ∈ Cξ(PX ,DX ) we set

(2.4) gξ(v,w) := 〈log v, logw〉L2(X ,ξ) =

∫

X
log v · logw dξ.
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The Fisher metric on Cξ(PX ,DX ) extends naturally to a positive qua-
dratic form on Tξ(PX ,DX ), which is also called the Fisher metric.

An almost 2-integrable Ck-diffeological statistical model (PX ,DX ) will
be called 2-integrable, if for any Ck-map p : U → PX in DX , the function
v 7→

∣

∣dp(v)
∣

∣

g
is continuous on TU .

Remark 2.10. (1) As in Definition 2.9, we shall say that a weakly Ck-
diffeological statistical model is almost 2-integrable, if we can define the
Fisher metric on its tangent cone as in (2.4). We shall say that an almost 2-
integrable weakly Ck-diffeological statistical model (PX ,DX ) is 2-integrable,
if for any weak Ck-map p : U → PX in DX , the function v 7→ |dp(v)|g is
continuous on TU .

(2) On Ck-diffeological spaces, in particular on (weakly) Ck-diffeological
statistical models (PX ,DX ), we can define the notion of Ck-functions. If
the dimension of its tangent spaces Tξ(PX ,DX ) is finite for all ξ ∈ PX , then

we can define the notion of a gradient of a Ck-differentiable function on
(PX ,DX ).

Example 2.11. Let us consider an example of a 2-integrable C∞-diffeological
statistical model which is the image of a parameterized statistical model
(W,R,p = p · µ0) where

W = {(a, b) ∈ R2| a ∈ [0, 1], b ∈ R},
µ0 is the Lebesgue measure on R, and

p(x|a, b) := (1− a)e−x2/2 + ae−(x−b)2/2

√
2π

.

This family is a typical example of Gaussian mixture models [Watanabe2009,
Example 1.2, p. 14], which comprise also the changing time model (the Nile
River model) and the ARMA model in time series [Amari2016, §12.2.6, p.
311]. We decompose W as a disjoint union of its subsets as follows

W =W− ∪W0 ∪W+

where

W− =
{

(a, b) ∈W | a ∈ (0, 1), b < 0
}

,

W0 =
{

(a, b) ∈W | a ∈ (0, 1) & b = 0 or a = 0 & b ∈ R
}

,

W+ =
{

(a, b) ∈W | a ∈ (0, 1), b > 0
}

.

The restriction of p to W− ∪ W+ is injective, and p(W0) = p(0, 0). We
compute

∂ap(x|a, b) =
−e−x2/2 + e−(x−b)2/2

√
2π

,

∂bp(x|a, b) =
a(x− b)e−(x−b)2/2

√
2π

.



8 H. V. LÊ AND A. A. TUZHILIN

In [Watanabe2009, p. 14], using the expression of the Fisher metric via the
Kullback-Leibler divergence, Watanabe showed that the Fisher metric on the
parameterized statistical model (W,R,p = p · µ0) exists and is continuous.
It follows that (p∗(W ),p∗(Dk

can)) is a 2-integrable C
k-diffeological statistical

model for any k ∈ N.

Lemma 2.12. The statistical model p∗(W ) has two different C1-diffeologies

p∗(D1
can) and i

∗(D1
can).

Proof. Since ∂ap(x|0, 0) = ∂bp(x|0, 0) we have Tp(0,0)(p(W ),p∗(D1
can)) =

{0}. Now we shall show that Tp(0,0)(p(W ), i∗(D1
can)) contains a nonzero

vector. Let us consider a C1-curve c : (−1, 1) → p(W )
i→ S(R) defined as

follows

c(t) :=
(1− α(t))e−x2/2 + α(t)e−(x−β(t))2/2

√
2π

,

where α(t), β(t) are the following functions on (−1, 1):

α(t) =

∫ t

0

dτ

log(τ2)
for t 6= 0 and α(0) = 0,

β(t) = t log(t2) for t 6= 0 and β(0) = 0.

Clearly α, β are continuous functions. Moreover α is a C1-function and β is
a C1-function outside the point 0 ∈ (−1, 1) and

ċ(t) =
−α̇(t)e−x2/2 + α̇(t)e−(x−β(t))2/2 + α(t)(x − β(t))β̇(t)e−(x−β(t))2/2

√
2π

Since

α̇(t) =
1

log(t2)
, β̇(t) = log(t2) +

2t2

log(t2)
,

we have

lim
t→0

ċ(t) =
xe−x2/2

√
2π

.

This implies that c(t) is a C1-curve in
(

p(W ), i∗(D1
can)

)

and c(0) = 0, ċ(0) 6=
0. This completes the proof of Lemma 2.12. �

Example 2.13. Let X be a measurable space and λ be a σ-finite mea-
sure. In [Friedrich1991, p. 274] Friedrich considered a family P (λ) := {µ ∈
P(X )|µ ≪ λ} that is endowed with the following diffeology D(λ). A curve
c : R → P (λ) is a C1-curve, iff

log ċ(t) ∈ L2(X , c(t)).
Hence (P (λ),D(λ)) is an almost 2-integrable C1-diffeological statistical model,
see [Le2020, Example 10]. Next we shall prove that P (λ) is not a 2-integrable
C1-diffeological statistical model for X = (−1, 1) and λ being the Lebesgue
measure dx. It suffices to show a C1-curve c : (−1, 1) → P (dx) such that
ċ(t) ∈ L2(X , c(t)) for all t ∈ (−1, 1) but |ċ(t)|g is not continuous at t = 0.



NONPARAMETRIC ESTIMATIONS AND THE DIFFEOLOGICAL FISHER METRIC 9

We shall construct such a curve using [AJLS2017, Example 3.4, p. 155].
First we consider a smooth function f : [0,∞) → R such that

f(u) > 0, f ′(u) < 0 for u ∈ [0, 1), and f(u) = 0 for u ≥ 1.

For t ∈ (−1, 1) we define p : (−1, 1) → S(X ), : p(t) = p(t, x)dx, where

p(t, x) :=











1 if x ≤ 0 and t ∈ R

|t|f(xt )2 dx if x > 0 and t 6= 0

0 otherwise

Then for all t ∈ (−1, 1) we have p(t)(X ) = ‖p(t)‖TV ≥ 1. By op. cit.,

(2.5) |p(t) − p(0)||TV = t2
∫ 1

0
f(u)2 du ≤ A

for some finite constant A, hence ‖p(t)‖TV ≤ 2A for all t ∈ (−1, 1). It has
been shown ibid. that p : (−1, 1) → S(X ) is a C1-map. Now we set

c(t) :=
p(t)

‖p(t)‖TV
.

Then c : (−1, 1) → S(X ) is a C1-curve lying on P(X ). By local. cit. we
have for t 6= 0

ṗ(t) = χ(0,1)(x)sign(t)
(

f(u)2 − 2uff ′(u)
)

|u=x|t|−1dt

and ṗ(0) = 0. It follows that ṗ(t) ∈ L2(X ,p(t)). Furthermore we have

ċ(t) =
ṗ(t)

‖p(t)‖TV
+

p(t)(d/dt)‖p(t)‖TV

‖p(t)‖2TV

,

‖ċt‖2g =
∫

X

∣

∣

∣

∣

ċ(t)

c(t)

∣

∣

∣

∣

2

c(t) dt =
1

‖p(t)‖TV

∫

X

∣

∣

∣

∣

ṗ(t)

p(t)
+

(d/dt)‖p(t)‖TV

‖p(t)‖TV

∣

∣

∣

∣

2

p(t) dt <∞.

Thus ċ(t) ∈ L2(X , c(t)) for all t ∈ (−1, 1) and ċ(0) = 1. Since limt→0 ‖ṗ(t)‖TV =
0, it follows

lim
t→0

d

dt
‖p(t)‖TV = 0.

Since ‖p(0)‖TV = 1, it follows that

lim
t→0

‖ċt‖g = lim
t→0

‖ṗ(t)‖g

which is positive by Ay-Jost-Lê-Schwachhöfer’s result loc. cit. This proves
our claim that P (dx) is not a 2-integrable C1-diffeological statistical model.

We shall use the diffeological Fisher metric to define the Fisher distance
on 2-integrable Ck-diffeological statistical models (PX ,DX ). Recall that PX

is a topological space with the strong topology induced from the strong
topology on the Banach space S(X ).
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Definition 2.14. Let (PX ,DX ) be a 2-integrable Ck-diffeological statistical
model.

(1) A map c : [a, b] → (PX ,DX ) will be called a Ck-curve, if there exists
ε > 0 and a Ck-map: cε : (a− ε, b+ ε) → (PX ,DX ) such that the restriction
of cε to [a, b] is c.

(2) A continuous map c : [0, 1] → (PX ,DX ) will be called a piece-wise Ck-

curve, if there exists a finite number of points 0 = a0 < a1 < a2 · · · < am = 1
such that the restriction of c to [ai−1, ai] is a C

k-curve for i ∈ [1,m].
(3) Let c : [0, 1] → (PX ,DX ) be a Ck-curve connecting q1, q2 ∈ PX such

that c(0) = q1 and c(1) = q2. We define the length of c by

L(c) =

∫ 1

0
|ċ(t)|g dt

where | · |g denotes the length defined by the diffeological Fisher metric g.
The length of a piece-wise Ck-curve will be defined as the sum of the lengths
of its Ck-smooth sub-intervals.

(4) The diffeological Fisher distance ρg(x, y) between two points x, y ∈ PX

will be defined as the infimum of the length over the space of piece-wise Ck-
curves connecting x, y. In particular, if there is no Ck-path connecting x, y
then ρg(x, y) = ∞.

Theorem 2.15. The distance function ρg(x, y) is an extended metric, i.e.,

it can be infinite somewhere.

Proof. Clearly ρg(x, y) is a symmetric nonnegative function and ρg(x, y) sat-
isfies the triangle inequality. It remains to show that ρg(x, y) = 0 iff x = y.
Since constant maps belong to DX , it follows that ρg(x, x) = 0 for all x ∈ PX .
To prove that ρg(x, y) = 0 implies x = y, it suffices to prove the following

Lemma 2.16. For any x, y ∈ PX we have

ρg(x, y) ≥ ‖x− y‖TV .

Proof. Let γ : [a, b] → PX ⊂ S(X ) be a Ck-curve joining x and y. Since

dγ̇(t)

dγ(t)
∈ L2(γ(t))

for all t, we have

‖y − x‖TV =
∥

∥γ(b)− γ(b)
∥

∥

TV
=

∥

∥

∥

∥

∫ b

a
γ̇(t) dt

∥

∥

∥

∥

TV

≤
∫ b

a

∥

∥γ̇(t)
∥

∥

TV
dt ≤

∫ b

a

∣

∣γ̇(t)
∣

∣

g
dt.

This proves Lemma 2.16 for Ck-curves γ.
Next we assume that γ : [0, 1] → PX → S(X ) is a piece-wise Ck-curve.

Combining the previous argument and the triangle inequality for the total
variation norm, we complete the proof of Lemma 2.16 immediately. �



NONPARAMETRIC ESTIMATIONS AND THE DIFFEOLOGICAL FISHER METRIC 11

This completes the proof of Theorem 2.15, �

Remark 2.17. Note that Definition 2.14 also works for weakly Ck-diffeological
statistical models, but the proof of Lemma 2.16 does not work for weak
C1-maps γ : [a, b] → PX ⊂ S(X ). Since any weakly differentiable map
γ : [a, b] → S(X ) is a.e. differentiable [Kaliaj2016, Theorem 3.2], we conjec-
ture that Lemma 2.16 and Theorem 2.15 also hold for weakly Ck-diffeological
statistical models.

Note that our definition of the diffeological Fisher metric and the diffe-
ological Fisher distance is coordinate-free. In the remainder of this section
we shall show the naturality of the diffeological Fisher metric and the diffe-
ological Fisher distance, using the language of probabilistic morphisms.

In 1962 Lawvere proposed a categorical approach to probability theory,
where morphisms are Markov kernels, and most importantly, he supplied the
space P(X ) with a natural σ-algebra Σw, making the notion of Markov ker-
nels and hence many constructions in probability theory and mathematical
statistics functorial [Lawvere1962].

Let us recall the definition of Σw. Given a measurable space X , let Fs(X )
denote the linear space of simple functions on X . There is a natural ho-
momorphism I : Fs(X ) → S∗(X ) := Hom

(

S(X ),R
)

, f 7→ If , defined by
integration: If (µ) :=

∫

X fdµ for f ∈ Fs(X ) and µ ∈ S(X ). Following Law-
vere [Lawvere1962], we define Σw to be the smallest σ-algebra on S(X ) such
that If is measurable for all f ∈ Fs(X ). Let M(X ) denote the space of all
finite nonnegative measures on X . We also denote by Σw the restriction of
Σw to M(X ), M∗(X ) := M(X ) \ {0}, and P(X ).

Definition 2.18. [JLT2021, Definition 1] A probabilistic morphism (or an

arrow) from a measurable space X to a measurable space Y is an measurable
mapping from X to

(

P(Y),Σw

)

.

We shall denote by T : X →
(

P(Y),Σw

)

the measurable mapping defin-
ing/generating a probabilistic morphism T : X ❀ Y. Similarly, for a mea-
surable mapping p : X → P(Y) we shall denote by p : X ❀ Y the generated
probabilistic morphism. Note that a probabilistic morphism is denoted by
a curved arrow and a measurable mapping by a straight arrow.

From now on we shall always assume that P(X ) is a measurable space with
the σ-algebra Σw. Let δx ∈ P(X ) denote the Dirac measure concentrated
at x on X . Giry proved that the inclusion i : X → P(X ), x 7→ δx, is a
measurable mapping [Giry1982]. It follows that any measurable mapping
κ : X → Y assigns a probabilistic morphism i ◦ κ : X ❀ Y, which we shall
write shorthand as κ : X ❀ Y. Hence the set of probabilistic mappings
between X and Y contains a subset of measurable mappings between X and
Y.

Given a probabilistic mapping T : X ❀ Y, we define a linear map S∗(T ) :
S(X ) → S(Y), called Markov morphism, as follows [Chentsov1972, Lemma
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5.9, p. 72]

(2.6) S∗(T )(µ)(B) :=

∫

X
T (x)(B)dµ(x)

for any µ ∈ S(X ) and B ∈ ΣY . We also denote by T∗ the map S∗(T )
if no confusion can arise. It is known that T∗(P(X )) ⊂ P(Y) [Le2020,
Proposition 1]. Abusing notation, given a probabilistic mapping T : X ❀ Y
and a Ck-diffeological statistical model (PX ,DX ) we define a C

k-diffeological
space (T∗(PX ), T∗(DX )) as the image of (PX ,DX ) under the smooth map
T∗ : P(X ) → P(Y).

Diffeological (almost/2-integrable) statistical models are preserved under
probabilistic morphisms.

Proposition 2.19. [Le2020, Theorem 1] Let T : X ❀ Y be a probabilistic

morphism and (PX ,DX ) a C
k-diffeological statistical model.

(1) Then
(

T∗(PX ), T∗(DX )
)

is a Ck-diffeological statistical model.

(2) If (PX ,DX ) is an almost 2-integrable Ck-diffeological statistical model,

then
(

T∗(PX ), T∗(DX )
)

is also an almost 2-integrable Ck-diffeological

statistical model.

(3) If (PX ,DX ) is a 2-integrable Ck-diffeological statistical model, then
(

T∗(PX ), T∗(DX )
)

is also a 2-integrable Ck-diffeological statistical

model.

Remark 2.20. Proposition 2.19 also holds for weakly Ck-diffeological sta-
tistical models, because the transformation T∗ : P(X ) → P(X ), where
T : X ❀ Y is a probabilistic morphism, is the restriction of a linear bounded
map T∗ = S∗(T ) from S(X ) to itself.

Furthermore, the diffeological Fisher metric (and hence the diffeologi-
cal Fisher distance) is decreasing under probabilistic morphisms and invari-
ant under sufficient probabilistic morphisms. Denote by L(X ) the space
of bounded measurable functions on X . Recall that a probabilistic mor-
phism T : X ❀ Y is called sufficient for PX if there exists a probabilistic
morphism p : Y ❀ X such that for all µ ∈ PX and h ∈ L(X ) we have
([JLT2021, Definition 2.22], cf. [MS1966])

(2.7) T∗(hµ) = p∗(h)T∗(µ), i.e., p
∗(h) =

dT∗(hµ)

dT∗(µ)
∈ L1(Y, T∗(µ)).

Examples of probabilistic morphisms T : X ❀ Y that are sufficient for a
statistical model PX ⊂ X are 1-1 measurable mappings [Le2020, Example
20], and measurable mappings κ : X → Y that are “regular” and satisfying
the Fisher-Neymann condition, see [JLT2021, Example 4], [Le2020, Example
19] for more details.

Proposition 2.21. [Le2020, Theorem 2] Let T : X ❀ Y be a probabilistic

morphism and (PX ,DX ) an almost 2-integrable Ck-diffeological statistical
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model. Then for any µ ∈ PX and any v ∈ Tµ(PX ,DX ) we have the following

monotonicity

gµ(v, v) ≥ gT∗µ(T∗v, T∗v)

with the equality if T is sufficient for PX .

Remark 2.22. Proposition 2.21 also holds for almost 2-integrable weakly
Ck-diffeological statistical models, since the monotonicity assertion follows
from the fact that, given a probabilistic morphism T : X ❀ Y, the norm
of the associated linear bounded map T∗ : S(X ) → S(Y) in Remark 2.20
is less than or equal to 1. From the monotonicity assertion we obtain the
second assertion concerning sufficient probabilistic morphisms, since if T :
X ❀ Y is sufficient w.r.t. PX then by [JLT2021, Theorem 2.8.2] there
exists a probabilistic morphism p : Y → X such that p∗(T∗(PX )) = PX and
therefore p∗(T∗(DX )) = DX .

The monotonicity (and the invariance under sufficient probabilistic mor-
phisms) of the diffeological Fisher metric suggests that the diffeological
Fisher metric can be regarded as information metric on almost 2-integrable
(weakly) Ck-diffeological statistical models cf. [AJLS2015, AJLS2017, AJLS2018],
[Le2017].

3. Diffeological Cramér–Rao inequality

For a locally convex topological vector space V we denote byMap(PX , V )
the space of all mappings ϕ : PX → V and by V ′ the topological dual of
V . Sometime we need to estimate only a “coordinate” ϕ(ξ) of a probability
measure ξ ∈ PX , which determines ξ uniquely if ϕ is an embedding.

Definition 3.1. [Le2020, Definition 8] Let PX be a statistical model and
ϕ ∈Map(PX , V ). A nonparametric ϕ-estimator σ̂ϕ is a composition ϕ ◦ σ̂ :

X σ̂→ PX
ϕ→ V .

Example 3.2. (1) In supervised learning with an input space X and a
label space Y we are interested in the stochastic relation between x ∈ X
and its label y ∈ Y, which is expressed via a measure µ ∈ (P(X × Y) that
governs the distribution of labelled pair (x, y) ∈ X × Y. Finding µ is a
density estimation problem, assuming that we are given a sequence of i.i.d.
labelled pairs {(x1, y1), · · · , (xn, yn)}. In practice, we are interested only in
knowing the conditional probability µY|X (·|x), which is regular under very
general assumptions [Faden1985]. Then finding the conditional probability
µY|X (·|x) is equivalent to finding a measurable mapping T : X → P(Y), or
equivalently, a probabilistic morphism T : X ❀ Y. Usually Y is represented
as a subset in Rn and the knowledge of µY|X (·|x) is often not required, it is
sufficient to determine one of its characteristics, for example the regression
function

rµ(x) =

∫

Y
ydµY|X (y|x).
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In this case, the map ϕ : P(X ×Y) →Map(X ,R), µ 7→ rµ, is defined as the
composition of the mappings defined above

P(X × Y) → Probm(X ,Y) →Map(X ,R),
where Probm(X ,Y) denotes the space of probabilistic morphisms from X
to Y.

(2) A classical example of a ϕ-map is the moment of a probability measure
in a 1-dimensional statistical model p(Θ), where Θ is an interval or the real
line. Given a real function g(x), we define

ϕ(p(θ)) :=

∫

g(x)dp(θ).

Under a certain condition this map is 1-1 [Borovkov1998, p. 55].

Now we shall define an admissible class of ϕ-estimators, introduced in
[Le2020]. Let (PX ,DX ) be a Ck-diffeological statistical model and V a
locally convex vector space. For ϕ ∈ Map(PX , V ) and l ∈ V ′ we denote by
ϕl the composition l ◦ ϕ. Then we set

L2
ϕ(X ,PX ) :=

{

σ̂ : X → PX | ϕl ◦ σ̂ ∈ L2
ξ(X ) for all ξ ∈ PX and l ∈ V ′

}

.

For σ̂ ∈ L2
ϕ(X ,PX ) we define the ϕ-mean value of σ̂, denoted by ϕσ̂ : PX →

V ′′, as follows (cf. [AJLS2017, (5.54), p. 279])

ϕσ̂(ξ)(l) := Eξ(ϕ
l ◦ σ̂) for ξ ∈ PX and l ∈ V ′,

where Eξ denoted the mathematical expectation w.r.t. the probability mea-

sure ξ ∈ P(X ). Let us identify V with a subspace in V
′′

via the canonical
pairing.

The difference bϕσ̂ := ϕσ̂ − ϕ ∈ Map(PX , V
′′

) will be called the bias of
the ϕ-estimator ϕ ◦ σ̂.

For all ξ ∈ PX we define a quadratic function MSEϕ
ξ [σ̂] on V

′, which is

called the mean square error quadratic function at ξ, by setting for l, h ∈ V ′

(cf. [AJLS2017, (5.56), p. 279])

(3.1) MSEϕ
ξ [σ̂](l, h) := Eξ

[

(

ϕl ◦ σ̂ − ϕl(ξ)
)

·
(

ϕh ◦ σ̂ − ϕh(ξ)
)

]

.

Similarly we define the variance quadratic function of the ϕ-estimator ϕ ◦ σ̂
at ξ ∈ PX is the quadratic form V ϕ

ξ [σ̂] on V ′ such that for all l, h ∈ V ′ we

have (cf. [AJLS2017, (5.57), p.279])

V ϕ
ξ [σ̂](l, h) = Eξ[(ϕ

l ◦ σ̂ − Eξ(ϕ
l ◦ σ̂)) · (ϕh ◦ σ̂ − Eξ(ϕ

h ◦ σ̂))].

Then it is known that (cf.[AJLS2017, (5.58), p. 279])

(3.2) MSEϕ
ξ [σ̂](l, h) = V ϕ

ξ [σ̂](l, h) + bϕσ̂(ξ)(l) · b
ϕ
σ̂(ξ)(h).

Now we assume that (PX ,DX ) is an almost 2-integrable Ck-diffeological
statistical model. For any ξ ∈ PX let T g

ξ (PX ,DX ) be the completion of
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Tξ(PX ,DX ) w.r.t. the Fisher metric g. Since T g

ξ (PX ,DX ) is a Hilbert space,

the map

Lg : T
g

ξ (PX ,DX ) → (T g

ξ (PX ,DX ))
′, Lg(v)(w) := 〈v,w〉g,

is an isomorphism. Then we define the inverse g
−1
ξ of the Fisher metric gξ

on (T g

ξ (PX ,DX ))
′ as follows

(3.3) g
−1
ξ (Lgv, Lgw) := gξ(v,w)

Definition 3.3. [Le2020, Definition 9], cf. [AJLS2017, Definition 5.18, p.
281] Assume that σ̂ ∈ L2

ϕ(X ,PX ). We shall call σ̂ a ϕ-regular estimator, if

for all l ∈ V ′ the function ξ 7→ ‖ϕl ◦ σ̂‖L2(X ,ξ) is locally bounded, i.e., for all
ξ0 ∈ PX

lim
ξ→ξ0

sup ‖ϕl ◦ σ̂‖L2(X ,ξ) <∞.

For any ξ ∈ PX we denote by (gϕσ̂ )
−1
ξ to be the following quadratic form

on V ′:

(3.4) (gϕσ̂)
−1
ξ (l, k) := g

−1
ξ (dϕl

σ̂ , dϕ
k
σ̂) = gξ(gradg(ϕ

l
σ̂), gradg(ϕ

k
σ̂)).

If ϕ : PX → V is a local coordinate chart around a point ξ ∈ PX and σ̂ is ϕ-
unbiased then (gϕσ̂)

−1
ξ is the inverse of the Fisher metric at ξ, see [AJLS2017,

§5.2.3 (A), p. 286].
In [Le2020] Lê proved the following diffeological Cramér–Rao inequality

Theorem 3.4. [Le2020, Theorem 3] Let (PX ,DX ) be a 2-integrable Ck-

diffeological statistical model, ϕ a V -valued function on PX and σ̂ ∈ L2
ϕ(X ,PX )

a ϕ-regular estimator. Then the difference Vϕ
ξ [σ̂]−(ĝϕσ̂)

−1
ξ is a positive semi-

definite quadratic form on V ′ for any ξ ∈ PX .

Remark 3.5. The proof of Theorem 3.4 does not extend to the case of
2-integrable weakly Ck-diffeological statistical models (PX ,DX ). The main
problem is the validity of the differentiation under integral sign for a Ck-
curve c : (0, 1) → (PX ,DX ), : t 7→ µt,

(3.5)
d

dt

∫

X
l ◦ ϕ ◦ σ̂ dµt =

∫

X
l ◦ ϕ ◦ σ̂ dµ′t

where µ′t = ∂wt c(t). This identity is valid if i ◦ c : (0, 1) → S(X ) is a
C1-map and if the function ξ → ‖ϕl ◦ σ̂‖L2(X ,ξ) is locally bounded, see
[AJLS2017, Lemma 5.2, p. 282], whose proof involves estimations using
the total variation norm. This local boundedness condition has been stated
in Definition 3.3 and Theorem 3.4. The identity (3.5) has been used in
the proof of [Le2020, Proposition 2], which is an important ingredient of
the proof of the diffeological Cramér–Rao inequality [Le2020, Theorem 3].
If instead of the condition that the function ξ → ‖ϕl ◦ σ̂‖L2(X ,ξ) is locally
bounded, we assume a stronger condition that l◦ϕ◦ σ̂ : X → R is a bounded
function for all l ∈ V ′, by Remark 2.8 the identity (3.5) holds. Under this
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stronger assumption, the Crámer-Rao equality holds for 2-integrable weakly
Ck-diffeological statistical models (PX ,DX ), since other arguments used in
the proof of the diffeological Crámer-Rao inequality [Le2020, Theorem 3]
also hold for this general case. We conjecture that Theorem 3.4 is also
valid for weakly Ck-diffeological statistical models, since any weakly C1-
map [0, 1] → S(X )TV is a.e. differentiable by [Kaliaj2016, Theorem 3.2].

4. Diffeological Hausdorff–Jeffrey measure

In the previous sections we demonstrated that the diffeological Fisher met-
ric is a natural extension of the Fisher metric, and the diffeological Fisher
metric plays the same role in frequentist nonparametric estimation as the
Fisher metric in frequentist parametric estimation. In this section we shall
introduce the concept of the Hausdorff–Jeffrey measure, using the diffeolog-
ical Fisher metric and the concept of the Hausdorff measure, which plays a
fundamental role in geometric measure theory [Federer1969].

Let us first recall the concept of the Hausdorff measure on a metric space
(E, d), following [Federer1969], [AT2004], [Morgan2009]. Recall that for any
subset S ⊂ E the diameter of S is

diam (S) = sup{d(x, y)|x, y ∈ S}.

For k ∈ N let αk denote the Lebesgue measure of the closed unit ball Bk(0, 1)
of radius 1 and centered at 0 in Rk. Let A ⊂ E. For small δ cover A efficiently
by countably many sets Aj with diam (Aj) ≤ δ, and the k-dimensional

Hausdorff measure of A is defined as follows
(4.1)

Hk(A) := lim
δ→0

αk inf

{

∑

j∈I

(

diam (Aj)

2

)k

| diam (Aj) ≤ δ&A ⊂
⋃

j∈I

Ai

}

.

It is known thatHk is a regular Borel measure [Federer1969, p. 171], see also
[AT2004, Theorem 2.1.4, p.21]. Furthermore, H0 is the counting measure.

The definition of the k-dimensional Hausdorff measure extends to any
nonnegative real dimension k, by extending the definition of αk with the
following definition

αk :=
πk/2

Γ(1 + k/2)
where Γ(t) :=

∫ ∞

0
xt−1e−x dx.

The Hausdorff dimension H- dim(A) of a nonempty set A ⊂ (E, d) is
defined as

H- dim(A) := inf{m ≥ 0|Hm(A) = 0}.
It is known that if k > H- dim(A) then Hk(B) = 0 and if k < H- dim(A)
then Hk(A) = ∞.

The Hausdorff measure enjoys the following natural properties.
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Proposition 4.1. (1) Let (Mm, g) be a Riemannian manifold, regarded as a

metric space with the Riemannian distance dg. Then the Hausdorff measure

Hm on Mm coincides with the standard volume.

(2) Let ϕ : A ⊂ (Mk, g) → (Nn, g′) be a Lipschitz map from an open do-

main A in a Riemannian manifold (Mk, g) of dimension k to a Riemannian

manifold (Nn, g′) of dimension n and n ≥ k. By Rademacher’s theorem dϕ
and its area factor

J dϕ :=
√

det
(

(dϕ)∗ ◦ (dϕ)
)

are defined Hk-almost everywhere on A. If k = n then we have the following

area formula

Hn(ϕ(A)) =

∫

A
JdϕdHn(x).

For a proof of Proposition 4.1(1) see [AT2004, p. 29,30]. For a proof of
Proposition 4.1(2) see [AT2004, p. 44, 45].

Definition 4.2. Let (PX ,DX ) be a 2-integrable Ck-diffeological statistical
model with the diffeological Fisher distance dg and m ∈ R the Hausdorff
dimension of (PX , dg). Then the Hausdorff measure Hm

g on (PX , dg) will be
called the diffeological Hausdorff–Jeffrey measure of (PX ,DX ).

Now we shall relate the diffeological Hausdorff–Jeffrey measure Hm
g

with
the unnormalized Jeffrey prior measure Jm

g defined on a 2-integrable param-
eterized statistical model (Mm,X ,p), where p :Mm → S(X ) is an injective
C1-map [Jeffrey1946]. Recall that Jg is equal to the Riemannian volume

of the (possibly degenerate) Riemannian manifold (Mk, g), whose density is
zero at the points of M where the Fisher metric g is degenerate.

Theorem 4.3. (1) Let (Mm,X ,p) be a 2-integrable parameterized statistical

model, where Mm is a smooth manifold of dimension m and p : Mm → S(X )
is an injective C1-map. We regard p as a C1-map from Mm to the 2-
integrable C1-diffeological statistical model

(

p(M),p∗(Dcan)
)

. Then

p∗(Jm
g ) = Hm

g .

(2) Let T : X ❀ Y be a probability morphism and (PX ,DX ) a 2-integrable
Ck-diffeological statistical model. Then for any k ∈ R and any Borel set in

(PX , dg) we have

(4.2) Hk
g(A) ≥ Hk

g

(

p∗(A)
)

.

The inequality in (4.2) turns to inequality if T is sufficient w.r.t. PX .

Proof. The first assertion of Theorem 4.3 follows from Proposition 4.1. The
second assertion is a consequence of Proposition 2.21. �

According to Jordan [Jordan2011], to justify the choice of an a prior prob-
ability measure is one of main theoretical problems in Bayesian statistics.
Theorem 4.3 justifies the choice of the Hausdorff–Jeffrey measure as natural
objective a prior measure on 2-integrable Ck-diffeological statistical models.
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5. Conclusion and outlook

In this paper we showed that the concept of the diffeological Fisher metric
is a natural extension of the notion of the Fisher metric, originally defined on
parameterized statistical models. There are two advantages of the nonpara-
metric diffeological Fisher metric: (1) it can be defined on singular statis-
tical models, (2) it turns a 2-integrable Ck-diffeological statistical model to
a length space, on which the Hausdorff measure is a natural generalization
of the Jeffrey measure. We also discussed some open questions concern-
ing extending results from Ck-diffeological statistical models to weakly Ck-
diffeological statistical models. To make more use of the diffeological Fisher
metric we expect that we need to put certain assumptions on the singulari-
ties of underlying 2-integrable Ck-diffeological statistical models. In the case
a Ck-diffeological statistical model does not admit a diffeological Fisher met-
ric, we might consider instead diffeological Finsler metric as in [Amari1984].
In view of recent developments of Barbaresco’s and Gay-Balmaz’ geometric
theory of Gibbs probability densities with promising applications in machine
learning [BG2020], we plan to develop a theory of diffeological exponential
models for a diffeological treatment of infinite dimensional families of Gibbs
probability densities.
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