Skip to main content

Highly Effective GPU Realization of Discrete Wavelet Transform for Big-Data Problems

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Discrete wavelet transform (DWT) is widely used in the tasks of signal processing, analysis and recognition. Moreover it’s practical applications are not limited to the case of one-dimensional signals but also apply to images and multidimensional data. From the moment of introduction of the dedicated libraries that enable to use graphics processing units (GPUs) for mass-parallel general purpose calculations the development of effective GPU based implementations of one-dimensional DWT is an important field of scientific research. It is also important because with use of one-dimensional procedure we can calculate DWT in multidimensional case if only the transform’s separability is assumed. In this paper the authors propose a novel approach to calculation of one-dimensional DWT based on lattice structure which takes advantage of shared memory and registers in order to implement necessary inter-thread communication. The experimental analysis reveals high time-effectiveness of the proposed approach which can be even 5 times higher for Maxwell architecture, and up to 2 times for Turing family GPU cards, than the one characteristic for the convolution based approach in computational tasks that can be classified as big-data problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We measured times of kernel launch and calculations with NVIDA’s \(\texttt {nvprof}\) profiler. During experiments we used Intel i7-9700, 12 MB cache, 32 GB RAM, Windows 10 platform, and CUDA 10, C++ implementations.

References

  1. Nakonechny, A., Veres, Z.: The wavelet based trained filter for image interpolation. In: Proceedings of IEEE First International Conference on Data Stream Mining and Processing, pp. 218–221 (2016)

    Google Scholar 

  2. Galletti, A., Marcellino, L., Russo, L.: A GPU parallel algorithm for image denoising based on wavelet transform coefficients thresholding. In: 14th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 485–492 (2018)

    Google Scholar 

  3. Nashat, A.A., Hussain Hassan, N.M.: Image compression based upon wavelet transform and a statistical threshold. In: International Conference on Optoelectronics and Image Processing (ICOIP), pp. 20–24 (2016)

    Google Scholar 

  4. Paul, A., Khan, T.Z., Podder, P., Ahmed, R., Rahman, M.M., Khan, M.H.: Iris image compression using wavelets transform coding. In: 2nd International Conference on Signal Processing and Integrated Networks (SPIN), pp. 544–548 (2015)

    Google Scholar 

  5. Stolarek, J., Lipiński, P.: Improving watermark resistance against removal attacks using orthogonal wavelet adaptation. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 588–599. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27660-6_48

    Chapter  Google Scholar 

  6. Liu, J.: An image watermarking algorithm based on energy scheme in the wavelet transform domain. In: IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), pp. 668–672 (2018)

    Google Scholar 

  7. Babichev, S.: Optimization of Information Preprocessing in Clustering Systems of High Dimension Data. Radio Electr. Comp. Sci. Control. (2), 135–142 (2014)

    Google Scholar 

  8. Kim, B., McMurry, T., Zhao, W., Wu, R., Berg, A.: Wavelet-based functional clustering for patterns of high-dimensional dynamic gene expression. J. Comput. Biol. 17(8), 1067–1080 (2010)

    Article  MathSciNet  Google Scholar 

  9. Dong, J.: Data mining of time series based on wave cluster. In: International Forum on Information Technology and Applications, IFITA 2009 (2009)

    Google Scholar 

  10. Nguyen, T., Strang, G.: Wavelets and Filter Banks. Cambr. Press, Welleslay (1996)

    MATH  Google Scholar 

  11. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  Google Scholar 

  12. Yatsymirskyy, M.: Lattice structures for synthesis and implementation of wavelet transforms. J. Appl. Comput. Sci. 17(1), 133–141 (2009)

    Google Scholar 

  13. Jeannot, E., Namyst, R., Roman, J. (eds.): Euro-Par 2011. LNCS, vol. 6853. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23397-5

    Book  MATH  Google Scholar 

  14. Angaji, E.T., Ebrahimi, S.A.R.: Accelerating Haar wavelet transform with CUDA-GPU. In: 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 791–796 (2017)

    Google Scholar 

  15. Aslan, S., Badem, H., Karaboga, D., Basturk, A., Ozcan, T.: Accelerating discrete haar wavelet transform on GPU cluster. In: 9th International Conference on Electrical and Electronics Engineering (ELECO), pp. 1237–1240 (2015)

    Google Scholar 

  16. Quan, T.M., Jeong, W.: A fast discrete wavelet transform using hybrid parallelism on GPUs. IEEE Trans. Parallel Distrib. Syst. 27(11), 3088–3100 (2016)

    Article  Google Scholar 

  17. Barina, D., Kula, M., Matysek, M., Zemcik, P.: Accelerating discrete wavelet transforms on GPUs. In: IEEE International Conference Image Processing (ICIP), pp. 2707–2710 (2017)

    Google Scholar 

  18. Enfedaque, P., Auli-Llinas, F., Moure, J.C.: Implementation of the DWT in a GPU through a register-based strategy. IEEE Trans. Parallel Distrib. Syst. 26(12), 3394–3406 (2015)

    Article  Google Scholar 

  19. Puchala, D., Szczepaniak, B., Yatsymirskyy, M.: Lattice structure for parallel calculation of orthogonal wavelet transform on GPUs with CUDA architecture. Przeglad Elektrotechniczny 91(7), 52–54 (2015)

    Google Scholar 

  20. Puchala, D., Stokfiszewski, K., Szczepaniak, B., Yatsymirskyy, M.: Effectiveness of fast Fourier transform implementations on GPU and CPU. Przeglad Elektrotechniczny 92(7), 69–71 (2016)

    Google Scholar 

  21. Puchala, D., Stokfiszewski, K., Wieloch, K., Yatsymirskyy, M.: Comparative study of massively parallel GPU realizations of wavelet transform computation with lattice structure and matrix-based approach. In: IEEE Second International Conference on Data Stream Mining and Processing (DSMP), pp. 88–93 (2018)

    Google Scholar 

  22. Cooklev, T.: An efficient architecture for orthogonal wavelet transforms. IEEE Signal Process. Lett. 13(2), 77–79 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Puchala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puchala, D., Stokfiszewski, K. (2021). Highly Effective GPU Realization of Discrete Wavelet Transform for Big-Data Problems. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12742. Springer, Cham. https://doi.org/10.1007/978-3-030-77961-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77961-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77960-3

  • Online ISBN: 978-3-030-77961-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics