Skip to main content

DenLAC: Density Levels Aggregation Clustering – A Flexible Clustering Method –

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

This paper introduces DenLAC (Density Levels Aggregation Clustering), an adaptable clustering algorithm which achieves high accuracy independent of the input’s shape and distribution. While most clustering algorithms are specialized on particular input types, DenLAC obtains correct results for spherical, elongated and different density clusters. We also incorporate a simple procedure for outlier identification and displacement. Our method relies on defining clusters as density intervals comprised of connected components which we call density bins, through assembling several popular notions in data mining and statistics such as Kernel Density Estimation, the density attraction and density levels theoretical concepts. To build the final clusters, we extract the connected components from each density bin and we merge adjacent connected components using a slightly modified agglomerative clustering algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/IuliaRadulescu/DENLAC.

References

  1. BWorld Robot Control Software (2020). Accessed 17-Feb-2020

    Google Scholar 

  2. Basford, K.E., McLachlan, G.J.: Likelihood estimation with normal mixture models. Appl. Stat. 34(3), 282 (1985). https://doi.org/10.2307/2347474

    Article  MathSciNet  Google Scholar 

  3. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering with application to image segmentation. In: International Conference on Computer Vision. IEEE (2005). https://doi.org/10.1109/ICCV.2005.210

  4. Chaudhuri, K., Dasgupta, S.: Rates of convergence for the cluster tree. In: Advances in Neural Information Processing Systems, pp. 343–351 (2010)

    Google Scholar 

  5. Chen, Y.C.: A tutorial on kernel density estimation and recent advances. Biostatistics Epidemiol. 1(1), 161–187 (2017). https://doi.org/10.1080/24709360.2017.1396742

    Article  Google Scholar 

  6. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  8. Franck, P., Cameron, E., Good, G., Rasplus, J.Y., Oldroyd, B.: Nest architecture and genetic differentiation in a species complex of Australian stingless bees. Mol. Ecol. 13(8), 2317–2331 (2004)

    Article  Google Scholar 

  9. Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 8(1), 3 (2007). https://doi.org/10.1186/1471-2105-8-3

    Article  Google Scholar 

  10. Gaonkar, M.N., Sawant, K.: AutoEpsDBSCAN: DBSCAN with Eps automatic for large dataset. Int. J. Adv. Comput. Theor. Eng. 2(2), 11–16 (2013)

    Google Scholar 

  11. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. Data 1(1), 4-es (2007). https://doi.org/10.1145/1217299.1217303

  12. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. ACM SIGMOD Rec. 27(2), 73–84 (1998). https://doi.org/10.1145/276305.276312

    Article  MATH  Google Scholar 

  13. Hartigan, J.A.: Consistency of single linkage for high-density clusters. J. Am. Stat. Assoc. 76(374), 388–394 (1981)

    Article  MathSciNet  Google Scholar 

  14. Hinneburg, A., Keim, D.A., et al.: An efficient approach to clustering in large multimedia databases with noise. KDD 98, 58–65 (1998)

    Google Scholar 

  15. Jain, A.K., Law, M.H.C.: Data clustering: a user’s dilemma. In: Pattern Recognition and Machine Intelligence, pp. 1–10. Springer, Berlin Heidelberg (2005). https://doi.org/10.1007/11590316_1

  16. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8), 68–75 (1999). https://doi.org/10.1109/2.781637

    Article  Google Scholar 

  17. Liu, P., Zhou, D., Wu, N.: VDBSCAN: varied density based spatial clustering of applications with noise. In: 2007 International Conference on Service Systems and Service Management, pp. 1–4. IEEE (2007)

    Google Scholar 

  18. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley, California (1967)

    Google Scholar 

  19. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. Comput. J. 26(4), 354–359 (1983). https://doi.org/10.1093/comjnl/26.4.354

    Article  MATH  Google Scholar 

  20. Nadler, B., Galun, M.: Fundamental limitations of spectral clustering. In: Proceedings of the 19th International Conference on Neural Information Processing Systems, pp. 1017–1024. NIPS 2006. MIT Press, Cambridge, MA, USA (2006)

    Google Scholar 

  21. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems 14, pp. 849–856. MIT Press, Cambridge (2002)

    Google Scholar 

  22. Ng, R.T., Han, J.: CLARANS: a method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng. 14(5), 1003–1016 (2002). https://doi.org/10.1109/TKDE.2002.1033770

    Article  Google Scholar 

  23. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971). https://doi.org/10.2307/2284239

  24. Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS) 42(3), 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  25. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley and Sons, Hoboken (2015)

    Google Scholar 

  26. Seo, S.: A review and comparison of methods for detecting outliers in univariate data sets. Ph.D. thesis, University of Pittsburgh (2006)

    Google Scholar 

  27. Truică, C.O., Rădulescu, F., Boicea, A.: Comparing different term weighting schemas for topic modeling. In: 2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, September 2016. https://doi.org/10.1109/SYNASC.2016.055

  28. Veenman, C., Reinders, M., Backer, E.: A maximum variance cluster algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1273–1280 (sep 2002). https://doi.org/10.1109/TPAMI.2002.1033218

  29. Wagner, S., Wagner, D.: Comparing clusterings: an overview. Tech. rep, ETH Zurich (2007)

    Google Scholar 

  30. Zahn, C.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. C-20(1), 68–86 (1971). https://doi.org/10.1109/t-c.1971.223083

  31. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. ACM SIGMOD Rec. 25(2), 103–114 (1996). https://doi.org/10.1145/235968.233324

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iulia-Maria Rădulescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rădulescu, IM., Boicea, A., Truică, CO., Apostol, ES., Mocanu, M., Rădulescu, F. (2021). DenLAC: Density Levels Aggregation Clustering – A Flexible Clustering Method –. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12742. Springer, Cham. https://doi.org/10.1007/978-3-030-77961-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77961-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77960-3

  • Online ISBN: 978-3-030-77961-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics