Skip to main content

Digital Image Reduction for Analysis of Topological Changes in Pore Space During Chemical Dissolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12742))

Abstract

The paper presents an original algorithm for reducing three-dimensional digital images to improve persistence diagrams computing performance. These diagrams represent topology changes in digital rocks pore space. The algorithm has linear complexity because removing the voxel is based on the structure of its neighborhood. We illustrate that the algorithm’s efficiency depends heavily on the pore space’s complexity and the size of the filtration steps.

The research is supported by the Russian Science Foundation grant no. 21-71-20003. Numerical simulations were performed using “Polytechnic RSC Tornado” (SPBSTU, Russia).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-Khulaifi, Y., Lin, Q., Blunt, M., Bijeljic, B.: Pore-scale dissolution by CO2 saturated brine in a multi-mineral carbonate at reservoir conditions: impact of physical and chemical heterogeneity (2019). https://doi.org/10.5285/52b08e7f-9fba-40a1-b0b5-dda9a3c83be2

  2. Al-Khulaifi, Y., Lin, Q., Blunt, M.J., Bijeljic, B.: Pore-scale dissolution by CO2 saturated brine in a multimineral carbonate at reservoir conditions: impact of physical and chemical heterogeneity. Water Resour. Res. 55(4), 3171–3193 (2019)

    Article  Google Scholar 

  3. Alt-Epping, P., Waber, H.N., Diamond, L.W., Eichinger, L.: Reactive transport modeling of the geothermal system at Bad Blumau, Austria: implications of the combined extraction of heat and CO2. Geothermics 45, 18–30 (2013)

    Article  Google Scholar 

  4. Amikiya, A.E., Banda, M.K.: Modelling and simulation of reactive transport phenomena. J. Comput. Sci. 28, 155–167 (2018)

    Article  MathSciNet  Google Scholar 

  5. Andra, H., et al.: Digital rock Physics benchmarks - part i: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013)

    Article  Google Scholar 

  6. Bazaikin, Y., et al.: Effect of CT image size and resolution on the accuracy of rock property estimates. J. Geophys. Res. Solid Earth 122(5), 3635–3647 (2017)

    Article  Google Scholar 

  7. Dlotko, P., Wagner, H.: Simplification of complexes for persistent homology computations. Homol. Homotopy Appl. 16, 49–63 (2014). https://doi.org/10.4310/HHA.2014.v16.n1.a3

    Article  MathSciNet  MATH  Google Scholar 

  8. Edelsbrunner, H., Harer, J.: Computational Topology. An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  9. Gerke, K.M., Karsanina, M.V., Katsman, R.: Calculation of tensorial flow properties on pore level: exploring the influence of boundary conditions on the permeability of three-dimensional stochastic reconstructions. Phys. Rev. E 100(5), 053312 (2019)

    Article  Google Scholar 

  10. Hyman, J.D., Winter, C.L.: Stochastic generation of explicit pore structures by thresholding Gaussian random fields. J. Comput. Phys. 277, 16–31 (2014)

    Article  MathSciNet  Google Scholar 

  11. Jones, T.A., Detwiler, R.L.: Mineral precipitation in fractures: using the level-set method to quantify the role of mineral heterogeneity on transport properties. Water Resour. Res. 55(5), 4186–4206 (2019)

    Article  Google Scholar 

  12. Kaya, E., Zarrouk, S.J.: Reinjection of greenhouse gases into geothermal reservoirs. Int. J. Greenhouse Gas Control 67, 111–129 (2017)

    Article  Google Scholar 

  13. Krahenbuhl, R.A., Martinez, C., Li, Y., Flanagan, G.: Time-lapse monitoring of CO2 sequestration: a site investigation through integration of reservoir properties, seismic imaging, and borehole and surface gravity data. Geophysics 80(2), WA15–WA24 (2015)

    Google Scholar 

  14. Lamy-Chappuis, B., Angus, D., Fisher, Q.J., Yardley, B.W.D.: The effect of CO2-enriched brine injection on the mechanical properties of calcite-bearing sandstone. Int. J. Greenhouse Gas Control 52(Supplement C), 84–95 (2016)

    Google Scholar 

  15. Lebedev, M., Zhang, Y., Sarmadivaleh, M., Barifcani, A., Al-Khdheeawi, E., Iglauer, S.: Carbon geosequestration in limestone: pore-scale dissolution and geomechanical weakening. Int. J. Greenhouse Gas Control 66, 106–119 (2017)

    Article  Google Scholar 

  16. Lisitsa, V., Bazaikin, Y., Khachkova, T.: Computational topology-based characterization of pore space changes due to chemical dissolution of rocks. Appl. Math. Model. 88, 21–37 (2020). https://doi.org/10.1016/j.apm.2020.06.037

    Article  MathSciNet  Google Scholar 

  17. Lucas, Y., Ngo, V.V., Clément, A., Fritz, B., Schäfer, G.: Modelling acid stimulation in the enhanced geothermal system of soultz-sous-forêts (Alsace, France). Geothermics 85, 101772 (2020)

    Article  Google Scholar 

  18. Mokbel, D., Abels, H., Aland, S.: A phase-field model for fluid-structure interaction. J. Comput. Phys. 372, 823–840 (2018)

    Article  MathSciNet  Google Scholar 

  19. Mrozek, M., Batko, B.: Coreduction homology algorithm. Discrete Comput. Geom. 41(1), 96–118 (2009)

    Article  MathSciNet  Google Scholar 

  20. Mrozek, M., Wanner, T.: Coreduction homology algorithm for inclusions and persistent homology. Comput. Math. Appl. 60(10), 2812–2833 (2010)

    Article  MathSciNet  Google Scholar 

  21. Nestola, M.G.C., et al.: An immersed boundary method for fluid-structure interaction based on variational transfer. J. Comput. Phys. 398, 108884 (2019)

    Article  MathSciNet  Google Scholar 

  22. Nooraiepour, M., Bohloli, B., Park, J., Sauvin, G., Skurtveit, E., Mondol, N.H.: Effect of brine-CO2 fracture flow on velocity and electrical resistivity of naturally fractured tight sandstones. Geophysics 83(1), WA37–WA48 (2018)

    Google Scholar 

  23. Pereira Nunes, J.P., Blunt, M.J., Bijeljic, B.: Pore-scale simulation of carbonate dissolution in micro-CT images. J. Geophys. Res. Solid Earth 121(2), 558–576 (2016)

    Article  Google Scholar 

  24. Saenger, E.H., Gold, N., Shapiro, S.A.: Modeling the propagation of the elastic waves using a modified finite-difference grid. Wave Motion 31, 77–92 (2000)

    Article  MathSciNet  Google Scholar 

  25. Sim, C.Y., Adam, L.: Are changes in time-lapse seismic data due to fluid substitution or rock dissolution? a CO2 sequestration feasibility study at the Pohokura field, New Zealand. Geophys. Prospect. 64(4), 967–986 (2016)

    Article  Google Scholar 

  26. Steefel, C.I., et al.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. 19(3), 445–478 (2015)

    Article  MathSciNet  Google Scholar 

  27. Trebotich, D., Adams, M.F., Molins, S., Steefel, C.I., Shen, C.: High-resolution simulation of pore-scale reactive transport processes associated with carbon sequestration. Comput. Sci. Eng. 16(6), 22–31 (2014)

    Article  Google Scholar 

  28. Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization II. Mathematics and Visualization, pp. 91–106. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-23175-9_7

  29. Wojtacki, K., Daridon, L., Monerie, Y.: Computing the elastic properties of sandstone submitted to progressive dissolution. Int. J. Rock Mech. Min. Sci. 95, 16–25 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prokhorov, D., Lisitsa, V., Bazaikin, Y. (2021). Digital Image Reduction for Analysis of Topological Changes in Pore Space During Chemical Dissolution. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12742. Springer, Cham. https://doi.org/10.1007/978-3-030-77961-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77961-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77960-3

  • Online ISBN: 978-3-030-77961-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics