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Abstract. Super-Droplet Method (SDM) is a probabilistic Monte-Carlo-
type model of particle coagulation process, an alternative to the mean-
field formulation of Smoluchowski. SDM as an algorithm has linear com-
putational complexity with respect to the state vector length, the state
vector length is constant throughout simulation, and most of the algo-
rithm steps are readily parallelizable. This paper discusses the design
and implementation of two number-crunching backends for SDM im-
plemented in PySDM, a new free and open-source Python package for
simulating the dynamics of atmospheric aerosol, cloud and rain parti-
cles. The two backends share their application programming interface
(API) but leverage distinct parallelism paradigms, target different hard-
ware, and are built on top of different lower-level routine sets. First
offers multi-threaded CPU computations and is based on Numba (using
Numpy arrays). Second offers GPU computations and is built on top of
ThrustRTC and CURandRTC (and does not use Numpy arrays). In the
paper, the API is discussed focusing on: data dependencies across steps,
parallelisation opportunities, CPU and GPU implementation nuances,
and algorithm workflow. Example simulations suitable for validating im-
plementations of the API are presented.

Keywords: Monte-Carlo · coagulation · Super-Droplet Method · GPU.

1 Introduction

The Super-Droplet Method (SDM) introduced in [20] is a computationally effi-
cient Monte-Carlo type algorithm for modelling the process of collisional growth
(coagulation) of particles. SDM was introduced in the context of atmospheric
modelling, in particular for simulating the formation of cloud and rain through
particle-based simulations. Such simulations couple a grid-based computational
fluid-dynamics (CFD) core with a probabilistic, so-called super-particle (hence
the algorithm name), representation of the particulate phase, and constitute
a tool for comprehensive modelling of aerosol-cloud-precipitation interactions
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(e.g., [1,3,10,15]; see [13] for a review). The probabilistic character of SDM is em-
bodied, among other aspects, in the assumption of each super-particle represent-
ing a multiple number of modelled droplets with the same attributes (including
particle physicochemical properties and position in space). The super-droplets
are thus a coarse-grained view of droplets both in physical and attribute space.

The probabilistic description of collisional growth has a wide range of ap-
plications across different domains of computational sciences (e.g., astrophysics,
aerosol/hydrosol technology including combustion). While focused on SDM and
depicted with atmospheric phenomena examples, the material presented herein is
generally applicable in development of software implementing other Monte-Carlo
type schemes for coagulation (e.g., Weighted Flow Algorithms [8] and other, see
Sect. 1 in [21]), particularly when sharing the concept of super-particles.

The original algorithm description [20], the relevant patent applications (e.g.,
[22]) and several subsequent works scrutinising SDM (e.g., [2,9,18,25] expounded
upon the algorithm characteristics from users’ (physicists’) point of view. There
are several CFD packages implementing SDM including: SCALE-SDM [19] and
UWLCM [10]; however the implementation aspects were not within the scope of
the works describing these development. The aim of this work is to discuss the
algorithm from software developer’s perspective. To this end, the scope of the
discussion covers: data dependencies, parallelisation opportunities, state vector
structure and helper variable requirements, minimal set of computational kernels
needed to be implemented and the overall algorithm workflow. These concepts
are depicted herein with pseudo-code-mimicking Python snippets (syntactically
correct and runnable), but the solutions introduced are not bound to a particular
language. In contrast, the gist of the paper is the language-agnostic API (i.e.,
application programming interface) proposal put forward with the very aim of
capturing the implementation-relevant nuances of the algorithm which are, ar-
guably, tricky to discern from existing literature on SDM, yet which have an
impact on the simulation performance. The API provides an indirection layer
separating higher-level physically-relevant concepts from lower-level computa-
tional kernels.

Validity of the proposed API design has been demonstrated with two dis-
tinct backend implementations included in a newly developed simulation pack-
age PySDM [5]. The two backends share the programming interface, while dif-
fering substantially in the underlying software components and the targeted
hardware (CPU vs. GPU). PySDM is free/libre and open source software, pre-
sented results are readily reproducible with examples shipped with PySDM
(https://github.com/atmos-cloud-sim-uj/PySDM).

The remainder of this paper is structured as follows. Section 2 briefly intro-
duces the SDM algorithm through a juxtaposition against the alternative classic
Smoluchowski’s coagulation equation (SCE). Section 3 covers the backend API.
Section 4 presents simulations performed with PySDM based on benchmark
setups from literature documenting CPU and GPU performance of the imple-
mentation. Section 5 concludes the work enumerating the key points brought
out in the paper.

https://github.com/atmos-cloud-sim-uj/PySDM
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2 SDM as compared to SCE

2.1 Mean-field approach: Smoluchowski’s coagulation equation

Population balance equation which describes collisional growth is historically
known as the Smoluchowski’s coagulation equation (SCE) and was introduced
in [23,24] (for a classic and recent overviews, see e.g. [7] and [14], respectively).
It is formulated under the mean-field assumptions of sufficiently large well-mixed
system and of neglected correlations between numbers of droplets of different
sizes (for discussion in the context of SDM, see also [9]).

Let function c(x, t) : R+ × R+ → R+ correspond to particle size spectrum
and describe the average concentration of particles with size defined by x at time
t in a volume V . Smoluchowski’s coagulation equation describes evolution of the
spectrum in time due to collisions. For convenience, t is skipped in notation:
c(x) = c(x, t), while ċ denotes partial derivative with respect to time.

ċ(x) =
1

2

∫ x

0

a(y, x− y)c(y)c(x− y)dy −
∫ ∞
0

a(y, x)c(y)c(x)dy (1)

where a(x1, x2) is the so-called kernel which defines the rate of collisions (and co-
agulation) between particles of sizes x1 and x2 and a(x1, x2) = a(x2, x1). The
first term on the right-hand side is the production of particles of size x by coales-
cence of two smaller particles and the factor 1/2 is for avoiding double counting.
The second term represents the reduction in number of colliding particles due
to coagulation.

The Smoluchowski’s equation has an alternative form that is discrete in size
space. Let x0 be the smallest considered difference of size between particles,
xi = ix0, i ∈ N and ci = c(xi) then:

ċi =
1

2

i−1∑
k=1

a(xk, xi−k)ckci−k −
∞∑
k=1

a(xk, xi)ckci (2)

Analytic solutions to the equation are known only for simple kernels [14],
such as: constant a(x1, x2) = 1, additive a(x1, x2) = x1 + x2 (Golovin’s ker-
nel [12]) or multiplicative a(x1, x2) = x1x2. Taking atmospheric physics as an
example, collisions of droplets within cloud occur by differentiated movements
of particles caused by combination of gravitational, electrical, or aerodynamic
forces, where gravitational effects dominate. As such, sophisticated kernels are
needed to describe these phenomena, and hence numerical methods are required
for solving the coagulation problem. However, when multiple properties of par-
ticles (volume, chemical composition, etc.) need to be taken into account, the
numerical methods for SCE suffer from the curse of dimensionality due to the
need to distinguish particles of same size x but different properties.

Additionally, it is worth to highlight that, in practice, the assumptions of the
Smoluchowski equation may be difficult to meet. First, the particle size changes
at the same time due to processes other than coalescence (e.g., condensation/e-
vaporation). Second, it is assumed that the system is large enough and the
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Fig. 1. (a): Schematic of how a CFD grid is populated with immersed super-particles;
(b) schematic of super-particle collision (based on Fig.1 in [20]), the parameters γ and
γ̃ are pertinent to representation of multiple collisions within a single coalescence event.

droplets inside are uniformly distributed, which in turn is only true for a small
volume in the atmosphere. Moreover, using the Smoluchowski’s equation that
describes evolution of the mean state of the system, leads to deterministic sim-
ulations. The alternative to Smoluchowski equation are Monte-Carlo methods
based on stochastic model of the collision-coalescence process. Stochastic ap-
proach enables simulating ensembles of realisations of the process aiding studies
of rare (far-from-the-mean) phenomena like rapid precipitation onset (see [13]).

2.2 Monte-Carlo approach: Super-Droplet Method (SDM)

The stochastic coalescence model for cloud droplet growth was already analysed
by Gillespie in [11]. There remained however still challenges (elaborated on be-
low) related to computational and memory complexity which are addressed by
SDM. The original formulation of SDM given in [20] was presented in the con-
text of liquid-phase atmospheric clouds, and extended to cover clouds featuring
ice phase of water in [21]).

Tracking all particles in large simulations has immeasurable cost, which is
why the notion of super-particles is introduced. For convenience, let Ω be an
indexed set of super-droplets for which collisions are considered (e.g., particles
within one CFD grid cell, see Fig. 1a with the blue droplets in a shaded cell
depicting set Ω). Each element of this set has unique index i ∈ [0, 1, ..., n(Ω)−1],
where n(Ω) is the number of considered super-droplets. Attributes related to a
specific super-droplet i are denoted by attr[i]. Note that only extensive attributes
(volume, mass, number of moles) are considered within the coalescence scheme.

In SDM, each super-droplet represents a set of droplets with the same at-
tributes (including position) and is assigned with a multiplicity denoted by ξ ∈ N
and which can be different in each super-droplet. The multiplicity ξ[i] of super-
droplet of size x[i] is conceptually related to ci = c(xi) from equation (2). The
number of super-droplets must be sufficient to cover the phase space of particle
properties. The higher the number, the smaller the multiplicities and the higher
fidelity of discretisation (see [20,21] for discussion).

Table 1 summarises the main differences between the SCE and SDM. The
SDM algorithm steps can be summarised as follows.
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Step 1: cell-wise shuffling
In SCE, all considered droplets (e.g., those within a grid cell in a given time
step) are compared with each other and a fraction of droplets of size x[i] collides
with a fraction droplets of size x[j] in each time step. In contrast, in SDM a
random set of bn(Ω)/2c non-overlapping pairs is considered in each time step.

To ensure linear computational complexity, the mechanism for choosing ran-
dom non-overlapping pairs must also have at most linear computational com-
plexity. It can be obtained by permuting an indexed array of super-droplets
where each pair consist of super-droplets with indices (2j) and (2j + 1) where
j ∈ [0, 1, 2, . . . , bn(Ω)/2c), see appendix A in [20].

Step 2: collision probability evaluation
If a fraction of droplets is allowed to collide, a collision of two super-droplets can
produce third super-droplet which has different size. To represent such collision
event, a new super-droplet would need to be added to the system what leads
to: increasing the number of super-droplets in the system, smaller and smaller
multiplicities and increasing memory demands during simulation. Moreover, it
is hard to predict at the beginning of a simulation how much memory is needed
(see discussion in [16]). Adding new super-droplets can be avoided by mapping
colliding super-droplets to a multi-dimensional grid (e.g., 2D for particle volume
and its dry size), simulating coalescence on this grid using SCE-based approach
and discretising the results back into Lagrangian particles as proposed in [1].
Such approach however, not only entails additional computational cost, but most
importantly is characterised by the very curse of dimensionality and numerical
diffusion that were meant to be avoided by using particle-based technique.

SDM avoids the issue of unpredictable memory complexity stemming from
the need of allocating space for freshly collided super-particle of size that differs
from the size of the colliding ones. To this end, in SDM only collisions of all of
min{ξ[i], ξ[j]} droplets are considered, and thus collision of two super-droplets
always produces one or two super-droplets (see Fig. 1b). This means there is no
need for adding extra super-droplets to the system during simulation.

For each pair, probability of collision p is up-scaled by the number of real
droplets represented by the super-droplet with higher multiplicity (max{ξ[i], ξ[j]}).
As a result, computational complexity is O(n(Ω)) instead of O(n(Ω)2).

The evaluated probability of collision of super-droplets requires further up-
scaling due to the reduced amount of sampled candidate pairs as outlined in
Step 1 above. To this end, the probability is multiplied by the ratio of the num-
ber of all non-overlapping pairs (n(Ω)2 − n(Ω))/2 to the number of considered
candidate pairs bn(Ω)/2c.

For each selected pair of j-th and k-th super-droplets, the probability p of
collision of the super-droplets within time interval ∆t is thus evaluated as:

p = a(v[j], v[k]) max{ξ[j], ξ[k]}
(n(Ω)2 − n(Ω))/2

bn(Ω)/2c
∆t

∆V
(3)
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Table 1. Comparison of SCE and SDM approaches to modelling collisional growth.

SCE (mean-field) SDM (probabilistic)

considered pairs all (i,j) pairs
random set of n(Ω)/2 non-overlapping pairs,

probability up-scaled by (n(Ω)2 − n(Ω))/2 to n(Ω)/2 ratio
comp. complexity O(n(Ω)2) O(n(Ω))

collisions colliding a fraction of ξ[i], ξ[j] collide all of min{ξ[i], ξ[j]} (all or nothing)
collisions triggered every time step by comparing probability with a random number

where a is a coalescence kernel and ∆V is the considered volume assumed to
be mixed well enough to neglect the positions of particles when evaluating the
probability of collision.

Step 3: collision triggering and attribute updates
In the spirit of Monte-Carlo methods, the collision events are triggered with a
random number φγ ∼ Uniform[0, 1), and the rate of collisions (per timestep)
γ = dp− φγe with γ ∈ N. Noting that the rate γ can be greater than 1, further
adjustment is introduced to represent multiple collision of super-particles:

γ̃ = min{γ, bξ[j]/ξ[k]c} (4)

where ξ[j] ≥ ξ[k] was assumed (without losing generality). The conceptual view
of collision of two super-droplets is intuitively depicted in Fig. 1b, presented
example corresponds to the case of γ = 5 and γ̃ = min{5, b9/2c} = 4.

As pointed out in Step 2 above, SDM is formulated in a way assuring that
each collision event produces one or two super-droplets. A collision event results
in an update of super-droplet attributes denoted with A ∈ Rnattr where nattr
is the number of considered extensive particle properties. During coalescence,
particle positions remain unchanged, values of extensive attributes of collided
droplets add up, while the multiplicities are either reduced or remain unchanged.
This corresponds to the two considered scenarios defined in points (5) (a) and
(b) in Sec. 5.1.3 in [20] and when expressed using the symbols used herein, with
attribute values after collision denoted by hat, gives:

1. ξ[j] − γ̃ξ[k] > 0

ξ̂[j] = ξ[j] − γ̃ξ[k]
Â[j] = A[j]

ξ̂[k] = ξ[k]

Â[k] = A[k] + γ̃A[j]

(5)

2. ξ[j] − γ̃ξ[k] = 0

ξ̂[j] = bξ[k]/2c
Â[j] = Â[k]

ξ̂[k] = ξ[k] − bξ[k]/2c
Â[k] = A[k] + γ̃A[j]

(6)

Case 1 corresponds to the scenario depicted in Fig. 1b. In case 2, all droplets fol-
lowing a coalescence event have the same values of extensive attributes (e.g., vol-
ume), thus in principle could be represented with a single super droplet. However,
in order not to reduce the number of super-droplets in the system, the resultant
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super droplet is split in two. Since integer values are used to represent multi-
plicities, in the case of ξ[k] = 1 in eq. (6), splitting is not possible and the j-th
super-droplet is removed from the system.

3 Backend API

The proposed API is composed of four data structures (classes) and a set of
library routines (computational kernels). Description below outlines both the
general, implementation-independent, structure of the API, as well as selected
aspects pertaining to the experience from implementing CPU and GPU backends
in the PySDM package. These were built on top of the Numba [17] and Thrus-
tRTC Python packages, respectively. Numba is an just-in-time (JIT) compiler
for Python code, it features extensive support for Numpy and features multi-
threading constructs akin to the OpenMP infrastructure. ThrustRTC uses the
NVIDIA CUDA real-time compilation infrastructure offering high-level Python
interface for execution of both built-in and custom computational kernels on
GPU.

In multi-dimensional simulations coupled with a grid-based CFD fluid flow
solver, the positions of droplets within the physical space are used to split the
super-particle population among grid cells (CFD solver mesh). Since positions of
droplets change based on the fluid flow and droplet mass/shape characteristics,
the particle-cell mapping changes throughout the simulation. In PySDM, as it
is common in cloud physics applications, collisions are considered only among
particles belonging to the same grid cell, and the varying number of particles
within a cell is needed to be tracked at each timestep to evaluate the super-
particle collision rates. Figure 1a outlines the setting.

3.1 Data structures and simulation state

The Storage class is a base container which is intended to adapt the interfaces of
the underlying implementation-dependent array containers (in PySDM: Numpy
or ThrustRTC containers for CPU and GPU backends, respectively). This make
the API independent of the underlying storage layer.

The Storage class has 3 attributes: data (in PySDM: an instance of Numpy
ndarray or an instance of ThrustRTC DVVector), shape (which specifies size
and dimension) and dtype (data type: float, int or bool). The proposed API
employs one- and two-dimensional arrays, implementations of the Storage class
feature an indirection layer handling the multi-dimensionality in case the under-
lying library supports one-dimensional indexing only (as in ThrustRTC). The
two-dimensional arrays are used for representing multiple extensive attributes
(with row-major memory layout). In general, structure-of-arrays layout is used
within PySDM.

Storage handles memory allocation and optionally the host-device (CPU-
accessible and GPU-accessible memory) data transfers. Equipping Storage with
an override of the [ ] operator as done in PySDM can be helpful for debugging
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1 idx = Index(N_SD , int)
2 multiplicities = IndexedStorage(idx , N_SD , int)
3 attributes = IndexedStorage(idx , (N_ATTR , N_SD), float)
4 volume_view = attributes [0:1, :]
5

6 cell_id = IndexedStorage(idx , N_SD , int)
7 cell_idx = Index(N_CELL , int)
8 cell_start = Storage(N_CELL + 1, int)
9

10 pair_prob = Storage(N_SD//2, float)
11 pair_flag = PairIndicator(N_SD , bool)
12

13 u01 = Storage(N_SD , float)

Fig. 2. Simulation state example with N SD super-particles, N CELL grid cells and
N ATTR attributes.

and unit testing (in Python, Storage instances may then be directly used with
max(), min(), etc.), care needs to be taken to ensure memory-view semantics for
non-debug usage, though. Explicit allocation is used only (once per simulation),

The IndexedStorage subclass of Storage is intended as container for super-
particle attributes. In SDM, at each step of simulation a different order of par-
ticles needs to be considered. To avoid repeated permutations of the attribute
values, the Index subclass of Storage is introduced. One instance of Index is
shared between IndexedStorage instances and is referenced by the idx field.

The Index class features permutation and array-shrinking logic (allowing
for removal of super-droplets from the system). To permute particle order, it is
enough to shuffle Index. To support simulations in multiple physical dimensions,
Index features sort-by-key logic where a cell id attribute is used as the key.

The PairIndicator class provides an abstraction layer facilitating pairwise
operations inherent to several steps of the SDM workflow. In principle, it rep-
resents a Boolean flag per each super-particle indicating weather in the current
state (affected by random shuffling and physical displacement of particles), a
given particle is considered as first-in-a-pair. Updating PairIndicator, it must
be ensured that the next particle according to a given Index is the second one
in a pair – i.e., resides in the same grid cell. The PairIndicator is also used
to handle odd and even counts of super-particles within a cell (see also Fig. 4).
The rationale to store the pair-indicator flags, besides potential speedup, is to
separate the cell segmentation logic pertinent to the internals of SDM imple-
mentation from potentially user-supplied kernel code.

Figure 2 lists a minimal set of instances of the data structures constituting
an SDM-based simulation state.

3.2 Algorithm workflow and API routines

The algorithm workflow, coded in Python using the proposed data structures,
and divided into the same algorithm steps as outlined in Sec. 2 is given in Fig. 3.
An additional Step 0 is introduced to account for handling the removal of zero-
multiplicity super-particles at the beginning of each timestep.

The cell_id attribute represents particle-cell mapping. Furthermore, the
cell_idx helper Index instance can be used to specify the order in which grid
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1 # step 0: removal of super -droplets with zero multiplicity
2 remove_if_equal_0(idx , # in/out
3 multiplicities) # in
4

5 # step 1: cell -wise shuffling , pair flagging
6 urand(u01)
7 shuffle_per_cell(cell_start , # out
8 idx , # in/out
9 cell_idx , cell_id , u01) # in

10

11 flag_pairs(pair_flag , # out
12 cell_id , cell_idx , cell_start) # in
13

14 # step 2: collision probability evaluation
15 coalescence_kernel(pair_prob , # out
16 pair_flag , volume_view) # in
17

18 times_max(pair_prob , # in/out
19 multiplicities , pair_flag) # in
20

21 normalize(pair_prob , # in/out
22 dt, dv , cell_id , cell_idx , cell_start) # in
23

24 # step 3: collision triggering and attribute updates
25 urand(u01[:N_SD //2])
26 compute_gamma(pair_prob , # in/out
27 u01[:N_SD //2]) # in
28

29 update_attributes(multiplicities , attributes , # in/out
30 pair_prob) # in

Fig. 3. Algorithm workflow within a timestep, in/out comments mark argument intent.

cells are traversed – for parallel execution scheduling purposes. Both cell_id

and cell_idx are updated before entering into the presented block of code.

Step 1 logic begins with generation of random numbers used for random
permutation of the particles (in PySDM, the CURandRTC package is used).
It serves as a mechanism for random selection of super-particle pairs in each
grid cell. First, a shuffle-per-cell step is done in which the cell_start array
is updated to indicate the location within cell-sorted idx where sets of super-
particles belonging to a given grid cell start. Second, the pair_flag indicator is
updated using the particle-cell mapping embodied in cell_start.

In PySDM, the shuffle-per-cell operation is implemented with two alternative
strategies depending on the choice of the backend. A parallel sort with a random
key is used on GPU, while the CPU backend uses a serial O(n) permutation
algorithm (as in Appendix A in [20]). This choice was found to offer shortest
respective execution times for the considered setup. In general, the number of
available threads and the number of droplets and cells considered will determine
optimal choice. Furthermore, solutions such as MergeShuffle [4] can be considered
for enabling parallelism within the permutation step.

Instructions in Step 2 and Step 3 blocks correspond to the evaluation of sub-
sequent terms of equation (3) and the collision event handling. To exemplify the
way the GPU and CPU backends are engineered in PySDM, the implementation
of the pair flag routine with ThrustRTC, and the update-attributes routine with
Numba are given in Fig. 4 and Fig. 5, respectively.
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1 _kernel = ThrustRTC.For(
2 [’perm_cell_start ’, ’perm_cell_id ’, ’pair_flag ’, ’length ’], "i", ’’’
3 pair_flag[i] = (
4 i < length - 1 &&
5 perm_cell_id[i] == perm_cell_id[i+1] &&
6 (i - perm_cell_start[perm_cell_id[i]]) % 2 == 0
7 );
8 ’’’)
9

10 def flag_pairs(pair_flag , cell_start , cell_id , cell_idx):
11 perm_cell_id = ThrustRTC.DVPermutation(cell_id.data , cell_id.idx.data)
12 perm_cell_start = ThrustRTC.DVPermutation(cell_start.data , cell_idx.data)
13 d_length = ThrustRTC.DVInt64(len(cell_id))
14 _kernel.launch_n(len(cell_id),
15 [perm_cell_start , perm_cell_id , cell_idx.data ,
16 pair_flag.indicator.data , d_length ])

Fig. 4. GPU backend implementation of the pair-flagging routine.
1 @numba.njit(parallel=True , error_model=’numpy’)
2 def _update_attributes(length , n, attributes , idx , gamma):
3 for i in prange(length //2):
4 j = idx [2*i]
5 k = idx [2*i + 1]
6 if n[j] < n[k]:
7 j, k = k, j
8 g = min(int(gamma[i]), int(n[j] / n[k]))
9 if g == 0:

10 continue
11 new_n = n[j] - g * n[k]
12 if new_n > 0:
13 n[j] = new_n
14 for attr in range(0, len(attributes)):
15 attributes[attr , k] += g * attributes[attr , j]
16 else: # new_n == 0
17 n[j] = n[k] // 2
18 n[k] = n[k] - n[j]
19 for attr in range(0, len(attributes)):
20 attributes[attr , j] = attributes[attr , j] * g \
21 + attributes[attr , k]
22 attributes[attr , k] = attributes[attr , j]
23

24 def update_attributes(n, intensive , attributes , gamma):
25 _update_attributes(len(n.idx),
26 n.data , intensive.data , attributes.data , # in/out
27 n.idx.data , gamma.data) # in

Fig. 5. CPU backend implementation of the attribute-update routine.a

4 Example simulations

This section outlines a set of test cases useful in validating implementation of
the proposed API (and included in the set of examples shipped with PySDM).
First, a simulation constructed analogously as that reported in Fig. 2 in the
original SDM paper [20] is proposed. The considered volume of V = 106 m3

is populated with N0 · V = 223 · 106 particles. Sizes of the particles follow an
exponential particle volume distribution p(v[i]) = v−1 exp(−v[i]/v) where v =
(30.531µm)34π/3. The simulation uses 217 super-droplets initialised with equal
multiplicities so that at t = 0 s each one represents a quantile of the total number
of modeled particles (within an arbitrarily chosen percentile range from 0.001%
to 99.999%). The timestep is 1 s. The Golovin [12] additive a(v1, v2) = b(v1 +v2)
coalescence kernel with b = 1500s−1 is used for which an analytical solution to
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the Smoluchowski’s equation is known (cf. equation 36 in [12]):

φ(v, t) =
1− τ(t)

v
√
τ(t)

I1ve

(
2v
√
τ(t)

v

)
exp

(
−v(1 + τ(t)− 2

√
τ(t) )

v

)
(7)

where τ = 1 − exp(−N0bvt) and I1ve stands for exponentially scaled modified
Bessel function of the first kind (scipy.special.ive).

Plot 6 shows the relationship between the mass of droplets per unit of lnr
and the droplet radius r (assuming particle density of 1000 kg/m3 as for liquid
water). Results obtained with PySDM are plotted by aggregating super-particle
multiplicities onto a grid of ca. 100 bins, and smoothing the result twice with a
running average with a centered window spanning five bins.

Figure 7 documents simulation wall times for the above test case measured as
a function of number of super-particles employed. Wall times for CPU (Numba)
and GPU (ThrustRTC) backends are compared depicting a five-fold GPU-to-
CPU speedup for large state vectors (tested on commodity hardware: Intel Core
i7-10750H CPU and NVIDIA GeForce RTX 2070 Super Max-Q GPU).

Figure 8 presents results visualised in analogous plots but from simulations
with more physically-relevant coalescence kernels. Simulation setup follows the
work of [6] and features so-called gravitational kernel involving a parametric
form of particle terminal velocity dependence on its size, and a parametric kernel
modeling the the electric field effects on collision probability. Since the analytic
solution is not known in such cases, the results are juxtaposed with figures
reproduced from [6].

5 Summary and discussion

This paper has discussed a set of data structures and computational kernels
constituting a number-crunching backend API for the Super-Droplet Method
Monte-Carlo algorithm for representing collisional growth of particles. Employ-
ment of the API assures separation of concerns, in particular separation of par-
allelisation logic embedded in the backend-level routines from domain logic per-
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Fig. 8. Left panels show Figs. 5 and 8 from [6] (copyright: American Meteorological
Society, used with permission). Right panels depict solutions obtained with PySDM.
Top: gravitational kernel; bottom: kernel modelling electric field effect.

tinent to the algorithm workflow. This improves code readability, paves the way
for modular design and testability, which all contribute to code maintainability.

The presented SDM algorithm and API descriptions discern data dependen-
cies across the steps of the algorithm (including in/out parameter “intent”) and
highlight parallelisation opportunities in different steps. Most of the discerned
steps of the SDM algorithm are characterised by some degree of freedom in terms
of their implementation. Embracing the API shall help in introducing a depen-
dency injection mechanism allowing unit testing of selected steps and profiling
performance with different variants of implementation.

The design of the API has been proved, in the sense of reused abstraction
principle, within the PySDM project [5] where two backends sharing the API
offer contrasting implementations for CPU and GPU computations. Both back-
ends are implemented in Python, however: (i) they are targeting different hard-
ware (CPU vs. GPU), (ii) they are based on different underlying technology
(Numba: LLVM-based JIT compiler, and ThrustRTC: NVRTC-based runtime
compilation mechanism for CUDA), and (iii) they even do not share the de-
facto-standard Python Numpy arrays as the storage layer. This highlights that
the introduced API is not bound to particular implementation choices, and in
principle its design is applicable to other languages than Python.

It is worth pointing out that, in the super-particle CFD-coupled simulations
context SDM was introduced and gained attention in, the scheme is particu-
larly well suited for leveraging modern hybrid CPU-GPU hardware. First, the
algorithm is (almost) embarrassingly parallel. Second, the CPU-GPU transfer
overhead is not a bottleneck when GPU-resident dispersed phase representation
(super-particles) is coupled with CPU-computed CFD for the continuous phase
(fluid flow) as only statistical moments of the size spectrum of the particles
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are needed for the CFD coupling. Third, the CPU and GPU resources on hy-
brid hardware can be leveraged effectively if fluid advection (CPU) and particle
collisions (GPU) are computed simultaneously (see [10]).

Overall, the discussed API prioritises simplicity and was intentionally pre-
sented in a paradigm-agnostic pseudo-code-mimicking way, leaving such aspects
as object orientation up to the implementation. Moreover, while the presented
API includes data structures and algorithm steps pertinent to multi-dimensional
CFD grid coupling, presented examples featured zero-dimensional setups, for
brevity. In PySDM [5], the backend API is extended to handle general form
of coalescence kernels, representation of particle displacement, condensational
growth of particles, aqueous chemical reactions, and the examples shipped with
the package include simulations in multiple physical dimensions.
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23. Smoluchowski, M.: Drei Vorträge über Diffusion, Brownsche Molekularbewegung
und Koagulation von Kolloidteilchen I. Phys. Z. 22 (1916), https://jbc.bj.uj.edu.
pl/dlibra/publication/411755/edition/387533/content
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