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Abstract. In this paper, the issue of tailoring the soft confusion matrix
(SCM) based classifier to deal with stream learning task is addressed.
The main goal of the work is to develop a wrapping-classifier that allows
incremental learning to classifiers that are unable to learn incrementally.
The goal is achieved by making two improvements in the previously
developed SCM classifier. The first one is aimed at reducing the compu-
tational cost of the SCM classifier. To do so, the definition of the fuzzy
neighbourhood of an object is changed. The second one is aimed at ef-
fective dealing with the concept drift. This is done by employing the
ADWIN-driven concept drift detector that is not only used to detect the
drift but also to control the size of the neighbourhood. The obtained
experimental results show that the proposed approach significantly out-
performs the reference methods.

Keywords: classification, probabilistic model, randomized reference clas-
sifier, soft confusion matrix, stream classification

1 Introduction

Classification of streaming data is one of the most difficult problems in modern
pattern recognition theory and practice. This is due to the fact that a typical data
stream is characterized by several features that significantly impede making the
correct classification decision. These features include: continuous flow, huge data
volume, rapid arrival rate, and susceptibility to change [19]. If a streaming data
classifier aspires to practical applications, it must face these requirements and
have to satisfy numerous constraints (e.g. bounded memory, single-pass, real-
time response, change of data concept) to an acceptable extent. It is not easy,
that is why the methodology of recognizing stream data has been developing
very intensively for over two decades, proposing new, more and more perfect
classification methods [9,24].

Incremental learning is a vital capability for classifiers used in stream data
classification [27]. It allows the classifier to utilize new objects generated by the
stream to improve the model built so far. It also allows, to some extent, dealing
with the concept drift. Some of the well-known classifiers are naturally capa-
ble to be trained iteratively. Examples of such classifiers are neural networks,
nearest neighbours classifiers, or probabilistic methods such as the naive Bayes
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classifier [11]. Some of the classifiers were tailored to be learned incrementally.
An example of such a method is well-known Hoeffding Tree classifier [26]. Those
types of classifiers can be easily used in stream classification systems. On the
other hand, when a classifier is unable to learn in an incremental way, the op-
tions for using for stream classification are very limited [27]. Only one option
is to keep a set of objects and rebuild the classifier from scratch whenever it is
necessary [11].

To bridge this gap, we propose a wrapping-classifier-based on the soft con-
fusion matrix approach (SCM). The wrapping-classifier may be used to add
incremental learning functionality to any batch classifier. The classifier based on
the idea of soft confusion matrix has been proposed in [30]. It proved to be an
efficient tool for solving such practical problems as hand gesture recognition [22].
An additional advantage in solving the above-mentioned classification problem
is the ability to use imprecise feedback information about a class assignment.
The SCM-based algorithm was also successfully used in multilabel learning [31].

Dealing with the concept drift using incremental learning only is insufficient.
This is because the incremental classifiers deal effectively only with the incre-
mental drift [9]. To handle the sudden concept drift, additional mechanism such
as single/multiple window approach [21], forgetting mechanisms [33], drift de-
tectors [2] must be used. In this study, we decided to use ADWIN algorithm [2]
to detect the drift and to manage the set of stored objects. We use the ADWIN-
based detector because this approach was shown to be an effective method [13,1].

The concept drift may also be dealt with using ensemble classifiers [9]. There
are a plethora of ensemble-based approaches [12,4,19] however, in this work we
are focused on single-classifier-based systems.

The rest of the paper is organized as follows. Section 2 presents the corrected
classifier and gives insight into its two-level structure and the original concepts
of RRC and SCM which are the basis of its construction. Section 3 describes the
adopted model of concept drifting data stream and provides details of chunk-
based learning scheme of base classifiers and online dynamic learning of the
correcting procedure and describes the method of combining ensemble members.
In section 4 the description of the experimental procedure is given. The results
are presented and discussed in section 5. Section 6 concludes the paper.

2 Classifier with Correction

2.1 Preliminaries

Let us consider the pattern recognition problem in which x ∈ X denotes a
feature vector of an object and j ∈ M is its class number (X ⊆ <d and M =
{1, 2, . . . ,M} are feature space and set of class numbers, respectively). Let ψ(L)
be a classifier trained on the learning set L, which assigns a class number i to
the recognized object. We assume that ψ(L) is described by the canonical model
[20], i.e. for given x it first produces values of normalized classification functions
(supports) gi(x), i ∈ M (gi(x) ∈ [0, 1],

∑
gi(x) = 1) and then classify object
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according to the maximum support rule:

ψ(L, x) = i⇔ gi(x) = max
k∈M

gk(x). (1)

To recognize the object x we will apply the original procedure, which using
additional information about the local (relative to x) properties of ψ(L) can
change its decision to increase the chance of correct classification of x.

The proposed correcting procedure which has the form of classifier ψ(Corr)(L,V)
built over ψ(L) will be called a wrapping-classifier. The wrapping classifier
ψ(Corr)(L,V) acts according to the following Bayes scheme:

ψ(Corr)(L,V, x) = i⇔ P (i|x) = max
k∈M

P (k|x), (2)

where a posteriori probabilities P (k|x), k ∈ M can be expressed in a form de-
pending on the probabilistic properties of classifier ψ(L):

P (j|x) =
∑
i∈M

P (i, j|x) =
∑
i∈M

P (i|x)P (j|i, x). (3)

P (j|i, x) denotes the probability that x belongs to the j-th class given that
ψ(L, x) = i and P (i|x) = P (ψ(L, x) = i) is the probability of assigning x to
class i by ψ(L) Since for deterministic classifier ψ(L) both above probabilities
are equal to 0 or 1 we will use two concepts for their approximate calculation:
randomized reference classifier (RRC) and soft confusion matrix (SCM).

2.2 Randomized Reference Classifier (RRC)

RRC is a randomized model of classifier ψ(L) and with its help the probabilities
P (ψ(L, x) = i) are calculated.

RRC ψRRC as a probabilistic classifier is defined by a probability distri-
bution over the set of class labels M. Its classifying functions {δj(x)}j∈M are
observed values of random variables {∆j(x)}j∈M that meet – in addition to the
normalizing conditions – the following condition:

E [∆i(x)] = gi(x), i ∈M, (4)

where E is the expected value operator. Formula (4) denotes that ψRRC acts –
on average – as the modeled classifier ψ(L), hence the following approximation
is fully justified:

P (i|x) = P (ψ(L, x) = i) ≈ P (ψRRC(x) = i), (5)

where
P (ψRRC(x) = i) = P [∆i(x) > ∆k(x), k ∈M \ i] (6)

can be easily determined if we assume – as in the original work of Woloszynski
and Kurzynski [32] – that ∆i(x) follows the beta distribution.
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2.3 Soft Confusion Matrix (SCM)

SCM will be used to determine the assessment of probability P (j|i, x) which
denotes class-dependent probabilities of the correct classification (for i = j) and
the misclassification (for i 6= j) of ψ(L, x) at the point x. The method defines the
neighborhood of the point x containing validation objects in terms of fuzzy sets
allowing for flexible selection of membership functions and assigning weights to
individual validation objects dependent on distance from x.

The SCM providing an image of the classifier local (relative to x) probabilities
P (j|i, x), is in the form of two-dimensional table, in which the rows correspond
to the true classes while the columns correspond to the outcomes of the classifier
ψ(L), as it is shown in Table 1.

Table 1. The soft confusion matrix of classifier ψ(L)

Classification by ψ
1 2 . . . M

1 ε1,1(x) ε1,2(x) . . . ε1,M (x)
True 2 ε2,1(x) ε2,2(x) . . . ε2,M (x)

class
...

...
...

. . .
...

M εM,1(x) εM,2(x) . . . εM,M (x)

The value εi,j(x) is determined from validation set V and is defined as the
following ratio:

εi,j(x) =
|Vj ∩ Di ∩N (x)|
|Vj ∩N (x)|

, (7)

where Vj ,Di and N (x) are fuzzy sets specified in the validation set V and | · |
denotes the cardinality of a fuzzy set [7].

The set Vj denotes the set of validation objects from the j-th class. Formu-
lating this set in terms of fuzzy sets theory it can be assumed that the grade of
membership of validation object xV to Vj is the class indicator which leads to
the following definition of Vj :

Vj = {(xV , µVj (xV))}, (8)

µVj (xV) =

{
1 if xV ∈ j-th class,
0 elsewhere.

(9)

The concept of fuzzy set Di is defined as follows:

Di = {(xV , µDi(xV)) : xV ∈ V, µDi(xV) = P (i|xV)}, (10)

where P (i|xV) is calculated according to (5) and (6). Formula (10) demonstrates
that the membership of validation object xV to the set Di is not determined
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by the decision of classifier ψ(L). The grade of membership of object xV to Di
depends on the potential chance of classifying xV to the i-th class by the classifier
ψ(L). We assume, that this potential chance is equal to the probability P (i|xV) =
P (ψ(L, xV) = i) calculated approximately using the randomized model RRC of
classifier ψ(L).

Set N (x) plays the crucial role in the proposed concept of SCM, because it
decides which validation objects xV and with which weights will be involved in
determining the local properties of the classifier ψ(L) and – as a consequence –
in the procedure of correcting its classifying decision. Formally, N (x) is also a
fuzzy set:

N (x) = {(xV , µN (x)(xV))}, (11)

but its membership function is not defined univocally because it depends on
many circumstances. By choosing the shape of the membership function µN (x)

we can freely model the adopted concept of ”locality” (relative to x).
µN (x)(xV) depends on the distance between validation object xV and test

object x: its value is equal to 1 for xV = x and decreases with increasing the
distance between xV and x. This leads to the following form of the proposed
membership function of the set:

µN (xV) =

{
C exp(−β ‖x− xV‖2), if ‖x− xV‖ < Kd

0 otherwise
(12)

‖·‖ denotes Euclidean distance in the feature space X , Kd is the Euclidean
distance between x and the K-th nearest neighbor in V, β ∈ <+ and C is a
normalizing coefficient. The first factor in (12) limits the concept of “locality”
(relatively to x) to the set of K nearest neighbors with Gaussian model of mem-
bership grade.

Since under the stream classification framework, there should be only one
pass over the data [19], K and β parameters cannot be found using the extensive
grid search approach just like it was for the originally proposed approach [30,22].
Consequently, in this work, we decided to set β to 1. Additionally, the initial
number of nearest neighbours is found using a simple rule of thumb [6]:

K̂ =
⌈√
|V|
⌉
. (13)

To avoid ties, the final number of neighbours K is set as follows:

K =

{
K̂ if M mod K̂ 6= 0

K̂ + 1 otherwise
(14)

Additionally, the computational cost of computing the neighbourhood may be
further reduced by using the kd-tree algorithm to find the nearest neighbours [18].

Finally, from (8), (10) and (11) we get the following approximation:

P (j|i, x) ≈ εi,j(x)∑
j∈M εi,j(x)

, (15)

which together with (3), (5) and (6) give (2) i.e. the corrected classifier ψCorr(L,V).
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2.4 Creating the validation set

In this section, the procedure of creating the validation set V from the training
L is described. In the original work describing SCM [30], the set of labelled data
was wplit into the learning set L and the validation set V. The learning set and
the validation set were disjoint L′ ∩ V = ∅. The cardinality of the validation set
was controlled by the γ parameter |V| = γ|L|, γ ∈ [0, 1]. The γ coefficient was
usualy set to 0.6, however to achieve the highest classification quality, it should
be determined using the grid-search procedure. As it was said above, in this work
we want to avoid using the grid-search procedure. Therefore, we construct the
validation set using three-fold cross-validation procedure that allows using of the
entire learning set as a validation set. The procedure is described in Algorithm 1.

Algorithm 1: Procedure of training the SCM classifier. Including the
procedure of validation set creation.

Data: L – Initial learning set;
Result: V – Validation set;
Di – Decision sets (see (10));
ψ(L) – Trained classifier.

1 begin
2 for k ∈ {1, 2, 3} do
3 Extract fold specific training and validation set Lk, Vk;
4 Learn the ψ(Lk) using Lk;
5 V := V ∪ Vk ;
6 Update the class-specific decision sets Di using predictions of ψ(Lk) for instances from Vk

(see (10));

7 end
8 Learn the ψ(L) using L;

9 end

3 Classification of Data Stream

The main goal of the work is to develop a wrapping-classifier that allows in-
cremental learning to classifiers that are unable to learn incrementally. In this
section, we describe the incremental learning procedure used by the SCM-based
wrapping-classifier.

3.1 Model of Data Stream

We assume that instances from a data stream S appear as a sequence of labeled
examples {(xt, jt)}, t = 1, 2, ..., T , where xt ∈ X ⊆ <d represents a d-dimensional
feature vector of an object that arrived at time t and jt ∈ M = {1, 2, . . . ,M}
is its class number. In this study we consider a completely supervised learning
approach which means that the true class number jt is available after the arrival
of the object xt and before the arrival of the next object xt+1 and this information
may be used by classifier for classification of xt+1. Such a framework is one of
the most often considered in the related literature [3,25].

In addition, we assume that a data stream can be generated with a time-
varying distribution, yielding the phenomenon of concept drift [9]. We do not
impose any restrictions on the concept drift. It can be real drift referring to
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changes of class distribution or virtual drift referring to the distribution of fea-
tures. We allow sudden, incremental, gradual, and recurrent changes in the dis-
tribution of instances creating a data stream. Changes in the distribution can
cause an imbalanced class system to appear in a changing configuration.

3.2 Incremental learning for SCM classifier

We assumed that the base classifier ψ(L) wrapped by the SCM classifier is
unable to learn incrementally. Consequently, an initial training set has to be
used to build the classifier. This initial data set is called an initial chunk B. The
desired size of the initial bath is denoted by |Bdes|. The initial data set is built by
storing incoming examples from the data stream. By the time the initial batch
is collected, the prediction is impossible. Until then, the prediction is made on
the basis of a priori probabilities estimated from the incomplete initial batch.

Since ψ(L) is unable to learn incrementally, incremental learning is handled
with changing the validation set. Incoming instances are added to the validation
set until the ADWIN-based drift detector detects that the concept drift has oc-
curred. The ADWIN-based drift detector analyses the outcomes of the corrected
classifier for the instances stored in the validation set [2]. When there is a sig-
nificant difference between the older and the newer part of the validation set,
the detector removes the older part of the validation set. The remaining part of
the validation set is then used to correct the outcome of ψ(L). The ADWIN-
based drift detector also controls the size of the neighbourhood. Even if there is
no concept drift, the detector may detect the deterioration of the classification
quality when the neighbourhood becomes too large.

The detailed procedure of the ensemble building is described in Algorithms 2
and 3.

Algorithm 2: Validation set update controlled by ADWIN detector.
Data: V – validation set;
x – new instance to add;
Result: Updated validation set

1 begin
2 i= ψ(L,V, x) ; // Predict object class using corrected classifier
3 Check the prediction using ADWIN detector;
4 if ADWIN detector detects drift then
5 Ask the detector fot the newer part of the validation set Vnew;
6 V := Vnew;

7 V := V ∪ x;

8 end

4 Experimental Setup

To validate the classification quality obtained by the proposed approaches, the
experimental evaluation, which setup is described below, is performed.

The following base classifiers were employed:
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Algorithm 3: Incremental learning procedure of the SCM wrapping-
classifier.

Data: x – new instance;
Result: Learned SCM wrapping-classifier

1 begin
2 if |B| ≥ |Bdes| then
3 Train the SCM classifier using the procedure described in Algorithm 1 using B as a learning

set;
4 B := ∅;
5 V′ := V ; // Make a copy of the validation set

6 foreach object x′ ∈ V′ do
7 Update the validation set V using x′ and the procedure described in Algorithm 2
8 end

9 else if Is SCM classifier trained then
10 Update the validation set V using x and the procedure described in Algorithm 2
11 else
12 B := B ∪ x;
13 end

14 end

– ψHOE – Hoeffding tree classifier [26]
– ψNB – Naive Bayes classifier with kernel density estimation [16].
– ψKNN – KNN classifier [14].
– ψSGD – SVM classifier built using stochastic gradient descent method [28].

The classifiers implemented in WEKA framework [15] were used. If not stated
otherwise, the classifier parameters were set to their defaults. We have chosen
the classifiers that offer both batch and incremental learning procedures.

The experimental code was implemented using WEKA [15] framework. The
source code of the algorithms is available online 1 2.

During the experimental evaluation, the following classifiers were compared:

1. ψB – The ADWIN-driven classifier created using the unmodified base clas-
sifier (The base classifier is able to update incrementally.) [2].

2. ψnB – The ADWIN-driven created using the unmodified base classifier with
the incremental learning disabled. The base classifier is only retrained when-
ever ADWIN-based detector detects concept drift.

3. ψS – The ADWIN-driven approach using SCM correction scheme with online-
learning. As described in Section 3.

4. ψnS – The ADWIN-driven approach created using SCM correction scheme
but the online-learning is disabled. The SCM-corrected classifier is only re-
trained whenever ADWIN-based detector detects concept drift.

To evaluate the proposed methods, the following classification-loss criteria
are used [29]: Macro-averaged FDR (1- precision), FNR (1-recall), Matthews
correlation coefficient (MCC). The Matthews coefficient is rescaled in such a
way that 0 is perfect classification and 1 is the worst one. Quality measures
from the macro-averaging group are considered because this kind of measures

1https://github.com/ptrajdos/rrcBasedClassifiers/tree/develop
2https://github.com/ptrajdos/StreamLearningPT/tree/develop

https://github.com/ptrajdos/rrcBasedClassifiers/tree/develop
https://github.com/ptrajdos/StreamLearningPT/tree/develop
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is more sensitive to the performance for minority classes. For many real-world
classification problems, the minority class is the class that attracts the most
attention [23].

Following the recommendations of [5] and [10], the statistical significance
of the obtained results was assessed using the two-step procedure. The first
step is to perform the Friedman test [5] for each quality criterion separately.
Since multiple criteria were employed, the familywise errors (FWER) should be
controlled [17]. To do so, the Holm [17] procedure of controlling FWER of the
conducted Friedman tests was employed. When the Friedman test shows that
there is a significant difference within the group of classifiers, the pairwise tests
using the Wilcoxon signed-rank test [5] were employed. To control FWER of the
Wilcoxon-testing procedure, the Holm approach was employed [17]. For all tests,
the significance level was set to α = 0.01.

The experiments were conducted using 48 synthetic datasets generated using
the STREAM-LEARN library 3. The properties of the datasets were as follows:
Datasets size: 30k examples; Number of attributes: 8;Types of drift generated:
incremental, sudden;Noise: 0%, 10%, 20%; Imbalance ratio: 0 – 4.

Datasets used in this experiment are available online 4

To examine the effectiveness of the incremental update algorithms, we applied
an experimental procedure based on the methodology which is characteristic of
data stream classification, namely, the test-then-update procedure [8]. The chunk
size for evaluation purposes was set to 200.

5 Results and Discussion

To compare multiple algorithms on multiple benchmark sets, the average ranks
approach is used. In this approach, the winning algorithm achieves a rank equal
to ’1’, the second achieves a rank equal to ’2’, and so on. In the case of ties, the
ranks of algorithms that achieve the same results are averaged.

The numerical results are given in Table 2 to 5. Each table is structured as
follows. The first row contains the names of the investigated algorithms. Then,
the table is divided into six sections – one section is related to a single evaluation
criterion. The first row of each section is the name of the quality criterion inves-
tigated in the section. The second row shows the p-value of the Friedman test.
The third one shows the average ranks achieved by algorithms. The following
rows show p-values resulting from the pairwise Wilcoxon test. The p-value equal
to .000 informs that the p-values are lower than 10−3. P-values lower than α are
bolded. Due to the page limit, the raw results are published online 5

To provide a visualization of the average ranks and the outcome of the statis-
tical tests, the rank plots are used. The rank plots are compatible with the rank

3https://github.com/w4k2/stream-learn
4https://github.com/ptrajdos/MLResults/blob/master/data/stream_data.

tar.xz?raw=true
5https://github.com/ptrajdos/MLResults/blob/master/

RandomizedClassifiers/Results_cldd_2021.tar.xz?raw=true

https://github.com/w4k2/stream-learn
https://github.com/ptrajdos/MLResults/blob/master/data/stream_data.tar.xz?raw=true
https://github.com/ptrajdos/MLResults/blob/master/data/stream_data.tar.xz?raw=true
https://github.com/ptrajdos/MLResults/blob/master/RandomizedClassifiers/Results_cldd_2021.tar.xz?raw=true
https://github.com/ptrajdos/MLResults/blob/master/RandomizedClassifiers/Results_cldd_2021.tar.xz?raw=true
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plots described in [5]. That is, each classifier is placed along the line representing
the values of the achieved average ranks. The classifiers between which there are
no significant differences (in terms of the pairwise Wilcoxon test) are connected
with a horizontal bar placed below the axis representing the average ranks. The
results are visualised on figures 1 – 4.

Let us begin with an analysis of the correction ability of the SCM approach
when incremental learning is disabled. Although this kind of analysis has been
already done [30,22], in this work it should be done again since the definition
of the neighbourhood is significantly changed (see Section 2.3). To assess the
impact of the SCM-based correction, we compare the algorithms ψnB and ψnS

for different base classifiers. For ψHOE and ψNB base classifiers the employment
of SCM-based correction allows achieving significant improvement in terms of
all quality criteria (see Figures 1 and 2). For the remaining base classifiers, on
the other hand, there are no significant differences between ψnB and ψnS. These
results confirm observations previously made in [30,22]. That is, the correction
ability of the SCM approach is more noticeable for classifiers that are considered
to be weaker ones. The previously observed correction ability holds although the
extensive grid-search technique is not applied.

In this paper, the SCM-based approach is proposed to be used as a wrapping-
classifier that handles the incremental learning for base classifiers that are unable
to be updated incrementally. Consequently, now we are going to analyse the SCM
approach in that scenario. The results show that ψS significantly outperforms
ψnB for all base classifiers and quality criteria. It means that it works great as the
incremental-learning-handling wrapping-classifier. What is more, it outperforms
ψnS also for all base classifiers and criteria. It clearly shows that the source of the
achieved improvement does not lie in the batch-learning-improvement-ability but
the ability to handle incremental learning is also present. Moreover, it handles
incremental learning more effective than the base classifiers designed to do so.
This observation is confirmed by the fact that ψS also outperforms ψB for all
base classifiers and quality criteria.

Table 2. Statistical evaluation for the stream classifiers based on ψHOE classifier.

ψB ψnB ψS ψnS ψB ψnB ψS ψnS ψB ψnB ψS ψnS

Crit. Name MaFDR MaFNR MaMCC
Friedman p-value 1.213e-28 5.963e-28 5.963e-28
Average Rank 2.000 3.812 1.00 3.188 2.000 3.583 1.00 3.417 2.000 3.667 1.00 3.333

ψB .000 .000 .000 .000 .000 .000 .000 .000 .000
ψnB .000 .000 .000 .111 .000 .002
ψS .000 .000 .000

6 Conclusions

In this paper, we propose a modified SCM classifier to be used as a wrapping-
classifier that allows incremental learning of classifiers that are not designed to
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Table 3. Statistical evaluation for the stream classifiers based on ψNB classifier.

ψB ψnB ψS ψnS ψB ψnB ψS ψnS ψB ψnB ψS ψnS

Crit. Name MaFDR MaFNR MaMCC
Friedman p-value 3.329e-28 3.329e-28 1.739e-28
Average Rank 2.021 3.771 1.00 3.208 2.000 3.708 1.00 3.292 2.000 3.792 1.00 3.208

ψB .000 .000 .000 .000 .000 .000 .000 .000 .000
ψnB .000 .000 .000 .001 .000 .000
ψS .000 .000 .000

Table 4. Statistical evaluation for the stream classifiers based on ψKNN classifier.

ψB ψnB ψS ψnS ψB ψnB ψS ψnS ψB ψnB ψS ψnS

Crit. Name MaFDR MaFNR MaMCC
Friedman p-value 1.883e-27 1.883e-27 1.883e-27
Average Rank 2.000 3.521 1.00 3.479 2.000 3.542 1.00 3.458 2.000 3.500 1.00 3.500

ψB .000 .000 .000 .000 .000 .000 .000 .000 .000
ψnB .000 .955 .000 .545 .000 .757
ψS .000 .000 .000

be incrementally updated. We applied two modifications of the SCM wrapping-
classifier originally described in [30,22]. The first one is a modified neighbourhood
definition. The newly proposed neighbourhood does not need an excessive grid-
search procedure to be performed to find the best set of parameters. Due to
the modified neighbourhood definition, the computational cost of performing
the SCM-based correction is significantly smaller. The second modification is to
incorporate ADWIN-based approach to create and manage the validation set
used by SCM-based algorithm. This modification not only allows the proposed
method to effectively deal with the concept drift but also it can shrink the
neighbourhood when it becomes too wide.

The experimental results show that the proposed approach outperforms the
reference methods for all investigated base classifiers in terms of all considered
quality criteria.

The results obtained in this study are very promising. Consequently, we are
going to continue our research related to the employment of randomised classi-
fiers in the task of stream learning. Our next step will probably be a proposition
of a stream learning ensemble that used the SCM-correction method proposed
in this paper.

Acknowledgments. This work was supported by the statutory funds of the
Department of Systems and Computer Networks, Wroclaw University of Science
and Technology.

Table 5. Statistical evaluation for the stream classifiers based on ψSGD classifier.

ψB ψnB ψS ψnS ψB ψnB ψS ψnS ψB ψnB ψS ψnS

Crit. Name MaFDR MaFNR MaMCC
Friedman p-value 3.745e-27 1.563e-27 1.563e-27
Average Rank 2.042 3.500 1.00 3.458 2.021 3.292 1.00 3.688 2.000 3.438 1.00 3.562

ψB .000 .000 .000 .000 .000 .000 .000 .000 .000
ψnB .000 .947 .000 .005 .000 .088
ψS .000 .000 .000
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Fig. 1. Ranking plot for the stream classifiers based on ψHOE classifier.
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Fig. 2. Ranking plot for the stream classifiers based on ψNB classifier.
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Fig. 3. Ranking plot for the stream classifiers based on ψKNN classifier.

1 2 3 4

ψS

ψB

ψnS

ψnB

(a) Macro-averaged FDR

1 2 3 4

ψS

ψB

ψnB

ψnS

(b) Macro-averaged FNR

1 2 3 4

ψS

ψB

ψnB

ψnS

(c) Macro-averaged MCC

Fig. 4. Ranking plot for the stream classifiers based on ψSGD classifier.
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13. Gonçalves, P.M., de Carvalho Santos, S.G., Barros, R.S., Vieira, D.C.: A compar-
ative study on concept drift detectors. Expert Syst. Appl. 41(18), 8144–8156 (Dec
2014). https://doi.org/10.1016/j.eswa.2014.07.019

14. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach
in classification. In: On The Move to Meaningful Internet Systems 2003:
CoopIS, DOA, and ODBASE, pp. 986–996. Springer Berlin Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39964-3 62

15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software. SIGKDD Explor. Newsl. 11(1), 10 (Nov 2009).
https://doi.org/10.1145/1656274.1656278

16. Hand, D.J., Yu, K.: Idiot’s bayes: Not so stupid after all? International Sta-
tistical Review / Revue Internationale de Statistique 69(3), 385 (Dec 2001).
https://doi.org/10.2307/1403452

17. Holm, S.: A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian
Journal of Statistics 6(2), 65–70 (1979). https://doi.org/10.2307/4615733

https://doi.org/10.1016/j.inffus.2019.03.006
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1016/j.ins.2013.12.011
https://doi.org/10.1109/tnnls.2013.2251352
https://doi.org/10.1007/978-1-4612-0711-5
https://doi.org/10.5815/ijisa.2013.06.06
https://doi.org/10.1201/ebk1439826119
https://doi.org/10.1201/ebk1439826119
https://doi.org/10.1201/ebk1439826119
https://doi.org/10.1145/2523813
https://doi.org/10.1145/3054925
https://doi.org/10.1016/j.eswa.2014.07.019
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.2307/1403452
https://doi.org/10.2307/4615733


14

18. Hou, W., Li, D., Xu, C., Zhang, H., Li, T.: An advanced k nearest neigh-
bor classification algorithm based on KD-tree. In: 2018 IEEE International
Conference of Safety Produce Informatization (IICSPI). IEEE (Dec 2018).
https://doi.org/10.1109/iicspi.2018.8690508

19. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble
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33. Žliobaitė, I.: Combining similarity in time and space for training set formation
under concept drift. IDA 15(4), 589–611 (Jun 2011). https://doi.org/10.3233/ida-
2011-0484

https://doi.org/10.1109/iicspi.2018.8690508
https://doi.org/10.1016/j.inffus.2017.02.004
https://doi.org/10.1002/9781118914564
https://doi.org/10.3233/ida-2009-0397
https://doi.org/10.3233/ida-2009-0397
https://doi.org/10.1016/j.compbiomed.2015.04.023
https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1016/j.procs.2017.11.440
https://doi.org/10.1007/s10115-014-0808-1
https://doi.org/10.1007/978-3-642-34156-4_29
https://doi.org/10.1109/icassp.2017.7952334
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1515/amcs-2016-0012
https://doi.org/10.1142/s0129065717500629
https://doi.org/10.1016/j.patcog.2011.03.020
https://doi.org/10.3233/ida-2011-0484
https://doi.org/10.3233/ida-2011-0484

	Soft Confusion Matrix Classifier for Stream Classification

