Skip to main content

A Model for Urban Social Networks

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Defining accurate and flexible models for real-world networks of human beings is instrumental to understand the observed properties of phenomena taking place across those networks and to support computer simulations of dynamic processes of interest for several areas of research – including computational epidemiology, which is recently high on the agenda. In this paper we present a flexible model to generate age-stratified and geo-referenced synthetic social networks on the basis of widely available aggregated demographic data and, possibly, of estimated age-based social mixing patterns. Using the Italian city of Florence as a case study, we characterize our network model under selected configurations and we show its potential as a building block for the simulation of infections’ propagation. A fully operational and parametric implementation of our model is released as open-source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code is released under the GPL v3 at gitlab.com/cranic-group/usn.

  2. 2.

    https://lwillem.shinyapps.io/socrates_rshiny/.

  3. 3.

    Throughout this paper, we use the parameterization \(\mathcal {LN}\left( \lambda ,\sigma ^2\right) \) where \(\lambda \) and \(\sigma ^2\) are the mean and variance of the associated Normal distribution.

  4. 4.

    ISTAT data used in this paper are available at https://www.demo.istat.it/pop2020.

  5. 5.

    https://unstats.un.org/unsd/demographic-social/census/censusdates/.

  6. 6.

    https://www.openstreetmap.org/.

  7. 7.

    https://www.worldpop.org/.

  8. 8.

    The pair (various, various) covers all cases other than the previous ones.

References

  1. Amblard, F., Bouadjio-Boulic, A., Gutiérrez, C.S., Gaudou, B.: Which models are used in social simulation to generate social networks? A review of 17 years of publications in jasss. In: 2015 Winter Simulation Conference (WSC), pp. 4021–4032. IEEE (2015)

    Google Scholar 

  2. de Arruda, G.F., Rodrigues, F.A., Moreno, Y.: Fundamentals of spreading processes in single and multilayer complex networks. Phys. Rep. 756, 1–59 (2018)

    Article  MathSciNet  Google Scholar 

  3. Barrett, C.L., et al.: Generation and analysis of large synthetic social contact networks. In: Proceedings of the 2009 Winter Simulation Conference (WSC), pp. 1003–1014. IEEE (2009)

    Google Scholar 

  4. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1–3), 1–101 (2011)

    Article  MathSciNet  Google Scholar 

  5. Beckman, R.J., Baggerly, K.A., McKay, M.D.: Creating synthetic baseline populations. Transp. Res. Part A: Policy Practice 30(6), 415–429 (1996)

    Google Scholar 

  6. Bernaschi, M., Celestini, A., Guarino, S., Lombardi, F., Mastrostefano, E.: Spiders like onions: on the network of tor hidden services. In: The World Wide Web Conference, pp. 105–115 (2019)

    Google Scholar 

  7. Büchel, K., Ehrlich, M.V.: Cities and the structure of social interactions: evidence from mobile phone data. J. Urban Econ. 119, 103276 (2020)

    Google Scholar 

  8. Caldarelli, G., Capocci, A., De Los Rios, P., Munoz, M.A.: Scale-free networks from varying vertex intrinsic fitness. Phys. Revi. Lett. 89(25), 258702 (2002)

    Google Scholar 

  9. Cauchemez, S., et al.: Role of social networks in shaping disease transmission during a community outbreak of 2009 h1n1 pandemic influenza. In: Proceedings of the National Academy of Sciences, vol. 108(7), pp. 2825–2830 (2011)

    Google Scholar 

  10. Del Valle, S.Y., Hyman, J.M., Hethcote, H.W., Eubank, S.G.: Mixing patterns between age groups in social networks. Soc. Netw. 29(4), 539–554 (2007)

    Article  Google Scholar 

  11. Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by using mobile phone data. Proc. Natl. Acad. Sci. 106(36), 15274–15278 (2009)

    Article  Google Scholar 

  12. Goldenberg, J., Levy, M.: Distance is not dead: social interaction and geographical distance in the internet era. arXiv:0906.3202 (2009)

  13. Guarino, S., et al.: Inferring urban social networks from publicly available data. Future Internet 13(5), (2021). https://doi.org/10.3390/fi13050108

  14. Guarino, S., Trino, N., Celestini, A., Chessa, A., Riotta, G.: Characterizing networks of propaganda on Twitter: a case study. Appl. Netw. Sci. 5(1), 1–22 (2020)

    Article  Google Scholar 

  15. Herrera-Yagüe, C., et al.: The anatomy of urban social networks and its implications in the searchability problem. Sci. Rep. 5, 10265 (2015)

    Article  Google Scholar 

  16. Illenberger, J., Nagel, K., Flötteröd, G.: The role of spatial interaction in social networks. Netw. Spat. Econ. 13(3), 255–282 (2013)

    Article  MathSciNet  Google Scholar 

  17. Klepac, P., et al.: Contacts in context: large-scale setting-specific social mixing matrices from the BBC pandemic project. medRxiv (2020)

    Google Scholar 

  18. Krackhardt, D.: The strength of strong ties: The importance of philos in organizations. Networks and Organizations: Structure, Form, and Action, 216–239 (1992)

    Google Scholar 

  19. Lambiotte, R., et al.: Geographical dispersal of mobile communication networks. Phys. A 387(21), 5317–5325 (2008)

    Article  MathSciNet  Google Scholar 

  20. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic routing in social networks. Proc. Natl. Acad. Sci. 102(33), 11623–11628 (2005)

    Article  Google Scholar 

  21. Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLOS ONE 10(9), 1–26 (2015)

    Google Scholar 

  22. Mistry, D., et al.: Inferring high-resolution human mixing patterns for disease modeling. arXiv:2003.01214 (2020)

  23. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Math. 1(2), 226–251 (2004)

    Article  MathSciNet  Google Scholar 

  24. Mossong, J., et al.: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLOS Med. 5(3), 1 (2008)

    Google Scholar 

  25. Newman, M.: Networks: An Introduction. OUP Oxford, Oxford (2010)

    Google Scholar 

  26. Onnela, J.P., Arbesman, S., González, M.C., Barabási, A.L., Christakis, N.A.: Geographic constraints on social network groups. PLoS one 6(4), e16939 (2011)

    Google Scholar 

  27. Onnela, J.P., et al.: Analysis of a large-scale weighted network of one-to-one human communication. New J. Phys. 9(6), 179 (2007)

    Article  Google Scholar 

  28. Read, J.M., et al.: Social mixing patterns in rural and urban areas of southern china. Proc. Royal Soc. B: Biol. Sci. 281(1785), 20140268 (2014)

    Article  Google Scholar 

  29. Robins, G., Snijders, T., Wang, P., Handcock, M., Pattison, P.: Recent developments in exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 192–215 (2007)

    Article  Google Scholar 

  30. Ryan, J., Maoh, H., Kanaroglou, P.: Population synthesis: comparing the major techniques using a small, complete population of firms. Geogr. Anal. 41(2), 181–203 (2009)

    Article  Google Scholar 

  31. Scellato, S., Noulas, A., Lambiotte, R., Mascolo, C.: Socio-spatial properties of online location-based social networks. ICWSM 11, 329–336 (2011)

    Google Scholar 

  32. Squazzoni, F., et al.: Computational models that matter during a global pandemic outbreak: A call to action. J. Artif. Soc. Soc. Simul. 23(2), 10 (2020)

    Article  Google Scholar 

  33. Voas, D., Williamson, P.: An evaluation of the combinatorial optimisation approach to the creation of synthetic microdata. Int. J. Popul. Geogr. 6, 349–366 (2000)

    Google Scholar 

  34. Walsh, F., Pozdnoukhov, A.: Spatial structure and dynamics of urban communities (2011)

    Google Scholar 

  35. Willem, L., Van Hoang, T., Funk, S., Coletti, P., Beutels, P., Hens, N.: SOCRATES: an online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19. medRxiv (2020)

    Google Scholar 

  36. Wong, L.H., Pattison, P., Robins, G.: A spatial model for social networks. Phys. A 360(1), 99–120 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The authors thank the municipality of Florence for the kind support provided and Francesca Colaiori for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Guarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guarino, S. et al. (2021). A Model for Urban Social Networks. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12744. Springer, Cham. https://doi.org/10.1007/978-3-030-77967-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77967-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77966-5

  • Online ISBN: 978-3-030-77967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics