
Auto-Encoded Reservoir Computing for
Turbulence Learning?

N.A.K. Doan1,2, W. Polifke2, and L. Magri3,4,5,6

1 Department of Aerospace Engineering, Delft University of Technology, Netherlands
2 Department of Mechanical Engineering, Technical University of Munich, Germany

3 Department of Engineering, University of Cambridge, UK
4 (visiting) Institute for Advanced Study, Technical University of Munich, Germany

5 The Alan Turing Institute, London, UK
6 Imperial College London, Aeronautics department, London, UK

Abstract. We present an Auto-Encoded Reservoir-Computing (AE-RC)
approach to learn the dynamics of a 2D turbulent flow. The AE-RC con-
sists of an Autoencoder, which discovers an efficient manifold represen-
tation of the flow state, and an Echo State Network, which learns the
time evolution of the flow in the manifold. The AE-RC is able to both
learn the time-accurate dynamics of the flow and predict its first-order
statistical moments. The AE-RC approach opens up new possibilities for
the spatio-temporal prediction of turbulence with machine learning.
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1 Introduction

The spatio-temporal prediction of turbulence is challenging because of the ex-
treme sensitivity of chaotic flows to perturbations, the nonlinear interactions
between turbulent structures of different scales, and the unpredictable nature of
energy/dissipation bursts. Despite these intricate characteristics of turbulence,
many advances have been achieved in its understanding with, for example, the
energy cascade concept that provides a statistical description of the energy trans-
fer between different scales in turbulent flows [5]. Additionally, the existence of
coherent structures, such as vortices, which evolve in a deterministic way, pro-
vides a basis for understanding turbulence [12]: Within the chaotic dynamics of
turbulence, there exist identifiable patterns that can help us predict the evolu-
tion of turbulent flows. To discover such patterns, recent works have relied on
machine learning [1]. In particular, the dynamics of models of turbulent flows
have been learned by recurrent neural networks (RNNs) such as the Long Short-
Term Memory units [10, 11] or a physics-informed reservoir computing (RC)
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approach, based on Echo State Networks (ESN) [2]. Because RNNs are gener-
ally limited to low-dimensional datasets due to the complexity of training, past
studies have been restricted to fairly low-dimensional systems. To deal with high
dimensional fluid mechanical systems, recent approaches based on convolutional
neural networks (CNNs), and in particular Autoencoders (AE), have shown great
potential in discovering coherent structures in turbulent flows and reducing the
dimensionality of flows [1,7], more efficiently than linear reduced-order modelling
approaches (for a review of reduced-order models in fluids refer to [9]).

In this paper, we propose the Auto-Encoded Reservoir Computing framework
(AE-RC). This combines an ESN and an AE with the objective of learning the
spatio-temporal dynamics of a 2D turbulent flow governed by the Navier-Stokes
equations (the Kolmogorov flow). The flow is discussed in Section 2. The AE-RC
framework is presented in Section 3 and results are discussed in Section 4. The
final section summarizes the results and outlines avenues for future work.

2 Turbulent flow

We investigate 2D turbulence governed by the incompressible Navier-Stokes
equations

∇ · u = 0 (1)

∂tu + u · ∇u = −∇p+
1

Re
∆u + f (2)

where u = (u, v) is the velocity field, p is the pressure, Re is the Reynolds
number, and f is a harmonic volume force defined as f = (sin(kfy), 0) in carte-
sian coordinates. The Navier-Stokes equations are solved on a domain Ω ≡
[0, 2π] × [0, 2π] with periodic boundary conditions. (The solution of this prob-
lem is also known as the 2D Kolmogorov flow.) The flow has a laminar solution
u = Rek−2

f sin(kfy), v = 0, which is unstable for sufficiently large Reynolds
numbers and wave numbers kf [8]. Here, we take kf = 4 and Re = 30 to guar-
antee the development of a turbulent solution [11]. The set of Eqs. (1) and
(2) is solved on a uniform N × N grid, with N = 24, using a pseudo-spectral
code with explicit Euler in time [11] with a timestep, ∆t = 0.01, to ensure nu-
merical stability. Snapshots of the velocity and vorticity, ω, fields are shown in
Fig. 1, in which the complexity and chaotic pattern of the turbulent flow can
be observed. Figures 1d and 1e show the time evolution of the kinetic energy,
k, and dissipation, D, which are calculated as k(u) = (2π)−2

∫
Ω

1
2 |u|

2dΩ and

D(u) = Re−1(2π)−2
∫
Ω
|∇u|2dΩ, respectively. The solution is turbulent.

3 Auto-Encoded Reservoir Computing

The proposed Auto-Encoded Reservoir-Computing (AE-RC) framework is shown
in Fig. 2a. The AE-RC is composed of two parts: (i) an Autoencoder (AE), which
is composed of an encoder and a decoder; and (ii) an echo state network, which
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(a) (b) (c)

(d) (e)

Fig. 1. Isocontours of (a) u, (b) v and (c) vorticity for the 2D turbulent flow at time
t = 0. (d) Time evolution of kinetic energy, k, and (e) dissipation, D.

is a form of reservoir computing [6]. The role of the AE is to discover an efficient
reduced-order representation of the original data, u ∈ RN×N×2=Nu . The encoder
reduces the dimension of the data to a code, c ∈ RNc , where Nc < Nu, while the
decoder reconstructs the data from the code, c, by minimizing the error between
the reconstructed solution, û, and the data. Here, the AE consists of a series of
CNNs, which identify patterns within images through kernel operations [3]. The
details of the AE are shown in Fig. 2b. On the downsampling side, the encoder
is composed of multiple blocks of successive 2D CNNs, max pooling and dropout
layers. Dropout layers prevent overfitting, while max pooling layers decrease the
dimension of the input data. The dropout rate is 0.001 and was chosen during
the training of the AE to have mean-squared errors of the same order of magni-
tude (and as small as possible) on both training and validation datasets. (The
dropout rate is rather small because the AE-RC has a small number of trainable
weights with respect to the size of the dataset, which reduces the risk of overfit-
ting). After the last layer of the encoder, a dense feedforward neural network is
used to combine the information from the previous layer and compress the data
into the final code of dimension 192, compared to the original data of dimension
24×24×2 = 1152. On the upsampling side, the architecture of the decoder mir-
rors that of the encoder, but the dimension of the code is progressively increased
using bilinear upsampling layers to recover the original data [7].

To learn the temporal dynamics of the reduced representation obtained with
the AE, an Echo State Network (ESN) [6] is employed as ESNs are accurate
learners of chaotic dynamics and flows, e.g., [2,6]. The ESN receives the code as
an input at a time n, c(n), and approximates the code at the subsequent time
step, c(n+1), as an output. An ESN is composed of three parts: (i) a randomized
high dimensional dynamical system, called the reservoir, whose states of neurons
(or units) at time n are represented by a vector, x(n) ∈ RNx , Nx being the
number of neurons; (ii) an input matrix, Win ∈ RNx×Nc , and (iii) an output
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Fig. 2. (a) Schematic and (b) details of the AE-RC. Number in boxes indicate the
number of filters (for CNN) or neurons (for Dense layer). [·]: dimension of the signal.
tanh activation is used for all layers except the last layer in which a linear activation
is used to reconstruct the velocity in the full range of real numbers. All MaxPool and
upsampling layers have a window of (2, 2). All CNNs layers have a kernel of (3, 3).

matrix, Wout ∈ RNy×Nx where Ny is the dimension of the output of the ESN.
The output of the ESN, ŷ, is a linear combination of the reservoir states, ŷ(n) =
Woutx(n). The evolution of the neurons’ states is given by the discrete nonlinear
law

x(n) = tanh (Winc(n) + Wx(n− 1)) (3)

Because the aim is to predict the dynamics of the reduced-order representation,
the output of the ESN is the predicted subsequent state of the reduced-order
representation, i.e., ŷ(n) ≈ c(n + 1). In the ESN approach, Win and W , are
randomly initialized once and are not trained. Only Wout is trained. The sparse
matrices Win and W are constructed to satisfy the Echo State Property. Fol-
lowing [2], Win is generated such that each row of the matrix has only one
randomly chosen nonzero element, which is independently taken from a uniform
distribution in the interval [−σin, σin]. Matrix W is constructed with an average
connectivity 〈d〉, and the non-zero elements are taken from a uniform distribu-
tion over the interval [−1, 1]. All the coefficients of W are then multiplied by
a constant coefficient for the largest absolute eigenvalue of W , i.e. the spectral
radius, to be equal to a value Λ, which is typically smaller than (or equal to)
unity. The exact parameters of the ESN used here are provided in Fig. 2b. The
training procedure to train the AE-RC is provided in the grey box below.

AE-RC TRAINING PROCEDURE
1. Pre-train the AE with the 2D velocity field as input/output. The

reconstruction error, E = 1
Nt

∑Nt

n=1 ||u(n) − û(n)||2 where Nt is the
number of samples, is minimized. The AE learns an appropriate reduced-
order representation, c, of u.
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2. Compute the reduced representation, c(n), of the original dataset,
u(n), using the encoder part of the the pre-trained AE.

3. Pre-train the ESN using the dataset c(n) and ridge regression,

Wout = Y XT
(
XXT + γI

)−1
, where Y and X are the horizontal con-

catenation of the target data, c(n), and the associated ESN states x(n),
respectively. γ is the Tikhonov regularization factor [6].

4. Train the combined AE-RC for further fine-tuning. The AE-RC re-
ceives u(n) as an input and predicts û(n + 1). The training minimizes

L = 1
Nt

∑Nt

n=1 ||u(n+ 1)− û(n+ 1)||2, where û(n+ 1) is the prediction
of the AE-RC at the next timestep, given an input u(n).

Steps 1 to 3 are used to obtain an initial AE-RC, which is the initial guess
for the training of the entire AE-RC in Step 4. This accelerates the overall
training of the AE-RC by taking advantage of the fast training of the ESN with
ridge regression compared to a random initialization of the AE-RC. The ADAM
optimizer [4] is used for Steps 1 and 4 with a learning rate of 0.0001.

4 Results

The AE-RC framework presented in Sec. 3 is applied to learning the dynamics
of a 2D turbulent flow. The training dataset corresponds to the first 80% of
the time-evolution shown in Fig. 1 and the last 20% are used for validation.
The AE-RC receives the 2D velocity field at a given timestep, as the input, and
predicts the velocity field at the next timestep, as the output. The predictions of
k and D during training (quantities noted with ·̂) are shown in Fig. 3 with their
errors. The AE-RC accurately reproduces the evolution in the training data. To
assess the extrapolation capability, the output of the AE-RC is looped back as
an input so that the AE-RC evolves autonomously. The learned extrapolated
time-series of k and D are shown in Fig. 4 (the insets of the vorticity fields are
shown for different time instants). The AE-RC reproduces the spatio-temporal
evolution of k and D, which is in agreement with the physical evolution of
the turbulent flow. The phase difference between the AE-RC solution and the
benchmark solution may be due to the spatio-temporally chaotic nature of the
flow, in which small errors in the initial conditions are amplified exponentially in
a short time. This is why, in turbulent flows, the statistics are typically compared
to assess the accuracy of a solution. Figure 5 shows the time-averaged velocity
profiles respectively, computed over the duration shown in Fig. 4. Because the
error is small (the average absolute error of u and v normalized by their respective
maximum values is less than 6% and 4% respectively), it is concluded that the
AE-RC has learned the dynamics of the Kolmogorov flow also in a statistical
sense (for the first moment). The standard deviations of the velocity profile were
also computed and found to be of similar accuracy as those of time-averaged
velocity (not shown here).
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Fig. 3. Time evolution of (a) k and the error, ∆k, and (b) D and the error, ∆D, for
the 2D turbulent flow during the training stage. The AE-RC is “teacher-forced” (the
input is provided by the training data). Blue lines: benchmark evolution. Dashed red
lines: AE-RC.

(iii)(ii)(i)(a) (b)

(i) (ii) (iii)

AE-RC
Actual

Fig. 4. Time evolution of (a) k and (b) D for the 2D turbulent flow. Vertical dotted
lines indicates the time-instants for the snapshots (i) to (iii) of vorticity. For each top
panel: (left) benchmark evolution, (right) AE-RC prediction.
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Fig. 5. Prediction of time-averaged u (top row) and v (bottom row). Right column:
absolute error between AE-RC prediction and benchmark solution.
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5 Conclusions and future directions

We propose the Auto-Encoded Reservoir-Computing framework (AE-RC) to
learn the dynamics of high-dimensional turbulent flows, which are both spa-
tially and temporally chaotic. This framework consists of an Autoencoder, which
learns an efficient reduced-order representation of the spatial dynamics, and an
Echo State Network, which learns the temporal dynamics of the reduced-order
representation. With these two components, the AE-RC is able to learn both the
instantaneous and average dynamics of the two-dimensional turbulent flow gov-
erned by the incompressible Navier-Stokes equations. This framework is being
assessed on flow conditions that also exhibit bursts of kinetic energy. In future
work, the effect of the code dimension on the accuracy of the AE-RC will be
analysed. A comparative study of the AE-RC performance with respect to ex-
isting non-intrusive linear reduced-order models, such as the Proper Orthogonal
Decomposition with Galerkin projection, and with respect to Long-Short-Term
Memory units for the time prediction is scope for further research.
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