Skip to main content

Data-Driven Deep Learning Emulators for Geophysical Forecasting

  • Conference paper
  • First Online:
Book cover Computational Science – ICCS 2021 (ICCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12746))

Included in the following conference series:

Abstract

We perform a comparative study of different supervised machine learning time-series methods for short-term and long-term temperature forecasts on a real world dataset for the daily maximum temperature over North America given by DayMET. DayMET showcases a stochastic and high-dimensional spatio-temporal structure and is available at exceptionally fine resolution (a 1 km grid). We apply projection-based reduced order modeling to compress this high dimensional data, while preserving its spatio-temporal structure. We use variants of time-series specific neural network models on this reduced representation to perform multi-step weather predictions. We also use a Gaussian-process based error correction model to improve the forecasts from the neural network models. From our study, we learn that the recurrent neural network based techniques can accurately perform both short-term as well as long-term forecasts, with minimal computational cost as compared to the convolution based techniques. We see that the simple kernel based Gaussian-processes can also predict the neural network model errors, which can then be used to improve the long term forecasts.

This material was based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR) under Contract DE-AC02-06CH11347.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciscar, J.-C., et al.: Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. 108(7), 2678–2683 (2011)

    Google Scholar 

  2. Gosling, S.N., Lowe, J.A., McGregor, G.R., Pelling, M., Malamud, B.D.: Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim. Change 92(3), 299–341 (2009)

    Google Scholar 

  3. Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., Yacalis, G.: Could machine learning break the convection parameterization deadlock? Geophys. Res. Lett. 45(11), 5742–5751 (2018)

    Article  Google Scholar 

  4. Brenowitz, N.D., Bretherton, C.S.: Prognostic validation of a neural network unified physics parameterization. Geophys. Rese. Lett. 45(12), 6289–6298 (2018)

    Google Scholar 

  5. Rasp, S., Pritchard, M.S., Gentine, P.: Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. 115(39), 9684–9689 (2018)

    Google Scholar 

  6. Nooteboom, P.D., Feng, Q.Y., López, C., Hernández-García, E., Dijkstra, H.A.: Using network theory and machine learning to predict el niño. Earth Syst. Dyn. 9(3), 969–983 (2018)

    Google Scholar 

  7. Moosavi, A., Rao, V., Sandu, A.: Machine learning based algorithms for uncertainty quantification in numerical weather prediction models. J. Comput. Sci. 101295 (2021)

    Google Scholar 

  8. Liu, Y., et al.: Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv:1605.01156 (2016)

  9. Scher, S.: Toward data-driven weather and climate forecasting: Approximating a simple general circulation model with deep learning. Geophys. Res. Lett. 45(22), 12–616 (2018)

    Article  Google Scholar 

  10. Weyn, J.A., Durran, D.R., Caruana, R.: Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere. J. Adv. Model. Earth Syst. 12(9), e2020MS002109 (2020)

    Google Scholar 

  11. Rasp, S., Thuerey, N.: Purely data-driven medium-range weather forecasting achieves comparable skill to physical models at similar resolution. arXiv:2008.08626 (2020)

  12. Chattopadhyay, A., Nabizadeh, E., Hassanzadeh, P.: Analog forecasting of extreme-causing weather patterns using deep learning. J. Adv. Model. Earth Syst. 12(2), e2019MS001958 (2020)

    Google Scholar 

  13. Rodrigues, E.R., Oliveira, I., Cunha, R., Netto, M.: Deepdownscale: a deep learning strategy for high-resolution weather forecast. In: 2018 IEEE 14th International Conference on e-Science (e-Science), pp. 415–422. IEEE (2018)

    Google Scholar 

  14. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y. Wong, W.-K., Woo, W.-C.: Convolutional lstm network: a machine learning approach for precipitation nowcasting. arXiv:1506.04214 (2015)

  15. Maulik, R., Egele, R., Lusch, B., Balaprakash, P.: Recurrent Neural Network Architecture Search for Geophysical Emulation. IEEE Press (2020)

    Google Scholar 

  16. Skinner, D.J., Maulik, R.: Meta-modeling strategy for data-driven forecasting. arXiv:2012.00678 (2020)

  17. Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H.A., Kumar, V.: Machine learning for the geosciences: challenges and opportunities. IEEE Trans. Knowl. Data Eng. 31(8), 1544–1554 (2018)

    Google Scholar 

  18. Dueben, P.D., Bauer, P.: Challenges and design choices for global weather and climate models based on machine learning. Geosci. Model Dev. 11(10), 3999–4009 (2018)

    Google Scholar 

  19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  20. Rahman, S.M., Pawar, S., San, O., Rasheed, A., Iliescu, T.: Nonintrusive reduced order modeling framework for quasigeostrophic turbulence. Phys. Rev. E 100(5), 053306 (2019)

    Google Scholar 

  21. Mohan, A.T., Gaitonde, D.V.: A deep learning based approach to reduced order modeling for turbulent flow control using lSTM neural networks. arXiv:1804.09269 (2018)

  22. Maulik, R., Lusch, B., Balaprakash, P.: Non-autoregressive time-series methods for stable parametric reduced-order models. Phys. Fluids 32(8), 087115 (2020)

    Google Scholar 

  23. Taira, K.: Modal analysis of fluid flows: applications and outlook. AIAA J. 1–25 (2019)

    Google Scholar 

  24. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)

    Article  MathSciNet  Google Scholar 

  25. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, vol. 36. Princeton University, New Jersey (1998)

    Google Scholar 

  26. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78, 808–817 (2000)

    Google Scholar 

  27. Maulik, R., Mohan, A., Lusch, B., Madireddy, S., Balaprakash, P., Livescu, D.: Time-series learning of latent-space dynamics for reduced-order model closure. Phys. D: Nonlinear Phenom. 405, 132368 (2020)

    Google Scholar 

  28. Ma, C., Wang, J., et al.: Model reduction with memory and the machine learning of dynamical systems. arXiv:1808.04258 (2018)

  29. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019)

    Article  MathSciNet  Google Scholar 

  30. Petneházi, G.: Recurrent Neural Networks for Time Series Forecasting. arXiv:1901.00069 (2018)

  31. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  32. Karevan, Z., Suykens, J.A.K.: Transductive lstm for time-series prediction: an application to weather forecasting. Neural Netw. 125, 1–9 (2020)

    Google Scholar 

  33. Zhang, Q., Wang, H., Dong, J., Zhong, G., Sun, X.: Prediction of sea surface temperature using long short-term memory. IEEE Geosci. Remote Sens. Lett. 05 (2017)

    Google Scholar 

  34. Broni-Bediako, C., Katsriku, F., Unemi, T., Shinomiya, N., Abdulai, J.-D., Atsumi, M.: El niño-southern oscillation forecasting using complex networks analysis of lstm neural networks. vol. 01 (2018)

    Google Scholar 

  35. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  36. Namini, S.S., Tavakoli, N., Namin, A.S.: The performance of LSTM and biLSTM in forecasting time series. vol. 12, pp. 3285–3292 (2019)

    Google Scholar 

  37. Socher, R., Lin, C., Ng, A., Manning, C.: Parsing natural scenes and natural language with recursive neural networks, vol. 01, pp. 129–136 (2011)

    Google Scholar 

  38. Shen, G., Kurths, J., Yuan, Y.: Sequence-to-sequence prediction of spatiotemporal systems. Chaos: Interdiscip. J. Nonlinear Sci. 30(2), 023102 (2020)

    Google Scholar 

  39. Ciresan, D., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification, vol. 07, pp. 1237–1242 (2011)

    Google Scholar 

  40. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Google Scholar 

  41. Bai, S., Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, vol. 03 (2018)

    Google Scholar 

  42. Yan, J., Mu, L., Wang, L., Ranjan, R., Zomaya, A.Y.: Temporal convolutional networks for the advance prediction of ENSO. Sci. Rep. 10(1), 1–15 (2020)

    Google Scholar 

  43. Remy, P.: Temporal convolutional networks for keras. https://github.com/philipperemy/keras-tcn (2020)

  44. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271 (2018)

  45. Sapsis, T.P., Majda, A.J.: Blending modified gaussian closure and non-gaussian reduced subspace methods for turbulent dynamical systems. J. Nonlinear Sci. 23(6), 1039–1071 (2013)

    Google Scholar 

  46. Rasmussen, C.E.: Gaussian processes in machine learning. In Summer School on Machine Learning, pp. 63–71. Springer, Berlin (2003)

    Google Scholar 

  47. Thornton, M.M., Thornton, P.E., Wei, Y., Mayer, B.W., Cook, R.B., Vose, R.S.: Daymet: Annual climate summaries on a 1-km grid for north America, version 3. Ornl Daac, Oak Ridge, Tennessee, USA (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwas Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sastry, V.K., Maulik, R., Rao, V., Lusch, B., Renganathan, S.A., Kotamarthi, R. (2021). Data-Driven Deep Learning Emulators for Geophysical Forecasting. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12746. Springer, Cham. https://doi.org/10.1007/978-3-030-77977-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77977-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77976-4

  • Online ISBN: 978-3-030-77977-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics