Skip to main content

Analysis of Vortex Induced Vibration of a Thermowell by High Fidelity FSI Numerical Analysis Based on RBF Structural Modes Embedding

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

The present paper addresses the numerical fluid-structure interaction (FSI) analysis of a thermowell immersed in a water flow. The study was carried out implementing a modal superposition approach into a computational fluid dynamics (CFD) solver. The core of the procedure consists in embedding the structural natural modes, computed by a finite element analysis (FEA), by means of a mesh morphing tool based on radial basis functions (RBF). In order to minimize the distortion during the morphing action and to obtain a high quality of the mesh, a set of corrective solutions, that allowed the achievement of a sliding morphing on the duct surface, was introduced. The obtained numerical results were compared with experimental data, providing a satisfying agreement and demonstrating that the modal approach, with an adequate mesh morphing setup, is able to tackle unsteady FSI problems with the accuracy needed for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biancolini, M.E., Cella, U., Groth, C., Genta, M.: Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating. J. Aerosp. Eng. 29(6) (2016). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000627

  2. Biancolini, M.E., Cella, U., Groth, C., Chiappa, A., Giorgetti, F., Nicolosi, F.: Progresses in fluid-structure interaction and structural optimization numerical tools within the EU CS RIBES project. Comput. Meth. Appl. Sci. 49, 529–544 (2019). https://doi.org/10.1007/978-3-319-89890-2_34

    Article  Google Scholar 

  3. Di Domenico, N., Groth, C., Wade, A., Berg, T., Biancolini, M.E.: Fluid structure interaction analysis: vortex shedding induced vibrations. Procedia Struct. Integr. 8, 422–432 (2018). https://doi.org/10.1016/j.prostr.2017.12.042

    Article  Google Scholar 

  4. Groth, C., Cella, U., Costa, E., Biancolini, M.E.: Fast high fidelity CFD/CSM fluid structure interaction using RBF mesh morphing and modal superposition method. Airc. Eng. Aerosp. Technol. 91(6), 893–904 (2019). https://doi.org/10.1108/AEAT-09-2018-0246

    Article  Google Scholar 

  5. RBF Morph: RBF Morph User’s Guide (2020)

    Google Scholar 

  6. Meirovitch, L.: Fundamentals of Vibrations. McGraw-Hill, McGraw-Hill Higher Education (2001)

    Book  Google Scholar 

  7. Beckert, A., Wendland, H.: Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosp. Sci. Technol. 5(2), 125–134 (2001)

    Article  Google Scholar 

  8. van Zuijlen, A.H., de Boer, A., Bijl, H.: Higher-order time integration through smooth mesh deformation for 3D fluid–structure interaction simulations. J. Comput. Phys. 224(1), 414–430 (2007)

    Article  MathSciNet  Google Scholar 

  9. Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multi. Optim. 23(1), 1–13 (2001)

    Article  Google Scholar 

  10. Biancolini, M.E., Costa, E., Cella, U., Groth, C., Veble, G., Andrejašič, M.: Glider fuselage-wing junction optimization using CFD and RBF mesh morphing. Aircr. Eng. Aerosp. Technol. 88(6), 740–752 (2016). https://doi.org/10.1108/AEAT-12-2014-0211

    Article  Google Scholar 

  11. Papoutsis-Kiachagias, E.M. et al.: Combining an RBF-based morpher with continuous adjoint for low-speed aeronautical optimization applications. In: ECCOMAS Congress 2016 - Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, vol. 3 (2016)

    Google Scholar 

  12. Groth, C., Chiappa, A., Biancolini, M.E.: Shape optimization using structural adjoint and RBF mesh morphing. Procedia Struct. Integr. 8, 379–389 (2018). https://doi.org/10.1016/j.prostr.2017.12.038

    Article  Google Scholar 

  13. Papoutsis-Kiachagias, E.M., Porziani, S., Groth, C., Biancolini, M.E., Costa, E., Giannakoglou, K.C.: aerodynamic optimization of car shapes using the continuous adjoint method and an RBF morpher. Comput. Meth. Appl. Sci. 48, 173–187 (2019). https://doi.org/10.1007/978-3-319-89988-6_11

    Article  MathSciNet  Google Scholar 

  14. Porziani, S., Groth, C., Waldman, W., Biancolini, M.E.: Automatic shape optimisation of structural parts driven by BGM and RBF mesh morphing. Int. J. Mech. Sci. 189, (2021)

    Article  Google Scholar 

  15. Biancolini, M.E., Chiappa, A., Giorgetti, F., Groth, C., Cella, U., Salvini, P.: A balanced load mapping method based on radial basis functions and fuzzy sets. Int. J. Numer. Meth. Eng. 115(12), 1411–1429 (2018). https://doi.org/10.1002/nme.5850

    Article  Google Scholar 

  16. Groth, C., Costa, E., Biancolini, M.E.: RBF-based mesh morphing approach to perform icing simulations in the aviation sector. Aircr. Eng. Aerosp. Technol. 91(4), 620–633 (2019). https://doi.org/10.1108/AEAT-07-2018-0178

    Article  Google Scholar 

  17. Giorgetti, F., et al.: Crack propagation analysis of near-surface defects with radial basis functions mesh morphing. Procedia Struct. Integr. 12, 471–478 (2018). https://doi.org/10.1016/j.prostr.2018.11.071

    Article  Google Scholar 

  18. Pompa, E., et al.: Crack propagation analysis of ITER Vacuum Vessel port stub with Radial Basis Functions mesh morphing. Fusion Eng. Des. 157, (2020)

    Article  Google Scholar 

  19. Groth, C., et al.: High fidelity numerical fracture mechanics assisted by RBF mesh morphing. Procedia Struct. Integr. 25, 136–148 (2020)

    Google Scholar 

  20. Chiappa, A., Groth, C., Biancolini, M.E.: Improvement of 2D finite element analysis stress results by radial basis functions and balance equations. Int. J. Mech. 13, 90–99 (2019)

    Google Scholar 

  21. Chiappa, A., Groth, C., Brutti, C., Salvini, P., Biancolini, M.E.: Post-processing of 2D FEM Q1 models for fracture mechanics by radial basis functions and balance equations. Int. J. Mech. 13, 104–113 (2019)

    Google Scholar 

  22. Chiappa, A., Groth, C., Reali, A., Biancolini, M.E.: A stress recovery procedure for laminated composite plates based on strong-form equilibrium enforced via the RBF Kansa method. Compos. Struct. 112292 (2020)

    Google Scholar 

  23. Biancolini, M.E.: Mesh morphing and smoothing by means of Radial Basis Functions (RBF): a practical example using fluent and RBF morph. Handbook of Research on Computational Science and Engineering: Theory and Practice, IGI Global, Hershey, PA (2012)

    Google Scholar 

  24. Emerson (2017). https://www.emerson.com/en-us/asset-detail/rosemount-twisted-square-a-new-twist-on-thermowell-design-1800740

  25. Boyer, H.E., Gall, T.L. (eds.): Metals Handbook. American Society for Metals, Materials Park, OH (1985)

    Google Scholar 

  26. RBF Morph: RBF Morph – Modelling Guidelines and Best Practices Guide (2020)

    Google Scholar 

  27. Costa, E., Biancolini, M. E., Groth, C., Caridi, D., Lavedrine, J., Dupain, G.: Unsteady FSI analysis of a square array of tubes in water crossflow. Flexible Engineering Toward Green Aircraft, Springer, New York (2020) https://doi.org/10.1007/978-3-030-36514-1_8

  28. Biancolini, M.E., Chiappa, A., Cella, U., Costa, E., Groth, C., Porziani, S.: Radial basis functions mesh morphing - a comparison between the Bi-harmonic Spline and the Wendland C2 radial function. In: International Conference on Computational Science, pp. 294–308 (2020). https://doi.org/10.1007/978-3-030-50433-5_23

  29. Adams, V., Askenazi, A.: Building Better Products with Finite Element Analysis. OnWord Press, Santa Fe, N. M. (1999)

    Google Scholar 

  30. Geronzi, L., et al.: Advanced Radial Basis Functions mesh morphing for high fidelity Fluid-Structure Interaction with known movement of the walls: simulation of an aortic valve. In: International Conference on Computational Science, pp. 280–293 (2020). https://doi.org/10.1007/978-3-030-50433-5_22

  31. Geronzi, L., et al.: High fidelity fluid-structure interaction by radial basis functions mesh adaption of moving walls: a workflow applied to an aortic valve. J. Comput. Sci. 51, (2021). https://doi.org/10.1016/j.jocs.2021.101327

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Evangelos Biancolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Felici, A. et al. (2021). Analysis of Vortex Induced Vibration of a Thermowell by High Fidelity FSI Numerical Analysis Based on RBF Structural Modes Embedding. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12746. Springer, Cham. https://doi.org/10.1007/978-3-030-77977-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77977-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77976-4

  • Online ISBN: 978-3-030-77977-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics