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Abstract. Upscaling of the mechanical properties of polycrystalline aggregates 

might require complex and time-consuming procedures, if adopted to help in the 

design and reliability analysis of micro-devices.  In inertial micro electro-me-

chanical systems (MEMS), the movable parts are often made of polycrystalline 

silicon films and, due to the current trend towards further miniaturization, their 

mechanical properties must be characterized not only in terms of average values 

but also in terms of their scattering. In this work, we propose two convolutional 

network models based on the ResNet and DenseNet architectures, to learn the 

features of the microstructural morphology and allow automatic upscaling of the 

statistical properties of the said film properties.  Results are shown for film sam-

ples featuring different values of a length scale ratio, so as to assess accuracy and 

computational efficiency of the proposed approach. 

Keywords: Multi-scale analyses, homogenization, scattered mechanical proper-

ties, deep learning, convolutional neural networks, ResNet, DenseNet. 

1 Introduction 

Design and reliability of micro-devices like MEMS rely more and more on digital 

twins, that are numerical models of their mechanical parts (but also of their electronics, 

though this is not of concern here) allowing for all the possible epistemic uncertainties 

[1-4]. Even if uncertainties in MEMS readout are not targeted as a great issue, since 

different methods exist to compensate for them [5], it must be stated that they can over-

all lead to a detrimental effect on the relevant device performance indices [6,7]. 

The ever-increasing need for downsizing the devices, on top of all for economic 

reasons, tends to enhance issues linked to the scattering in the measured response of the 

devices to the external actions, in most of the cases induced by a high sensitivity to 

micromechanical features and defects. For polysilicon microstructures, in recent works 

we showed how the morphology of the films and defects caused by the microfabrication 

process, like e.g. overetch, can be properly accounted for in stochastic analyses to cover 

the aforementioned scattered experimental data [8-12]. The price to attain such an ac-

curacy of models handled in Monte Carlo simulations, is that the statistics of the sought 

mechanical properties have to be computed every time being scale dependent, namely 
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being affected by the interaction between the length scale describing the movable struc-

ture of the device and the length scale describing the film morphology (for instance, 

proportional to a characteristic radius of the grains). 

The mentioned length scale separation is very important for computing the homog-

enized properties of the polysilicon films in multi-scale and, often, multi-physics anal-

yses [13,14]. To avoid any surrogate or smoothing procedure of the available results, 

upscaling through a new Monte Carlo analysis thus looks necessary whenever the con-

sidered value does not match those already investigated. Starting in [15,16], we pro-

posed a deep learning approach to this problem, aiming to learn the micromechanical 

features of the polycrystal and their role in setting the overall property of interest, see 

also [17-22], as anticipated not only in terms of reference values but also in terms of 

scattering or, in a general sense, of its probability distribution. We started by dealing 

with the elastic moduli of the considered textured films, and showed the importance of 

the quality of the dataset of morphology pictures used to train a convolutional network 

within an image recognition-like approach. 

In this work, we move on by assessing the performances of different network archi-

tectures to foresee an optimization of the entire procedure, in terms of accuracy of the 

results, generalization capability (to catch all the length scale separation effects) and 

computational efficiency. The formerly used ResNet architecture [23] is here compared 

to the newly proposed DenseNet one [24]. Results show that both have distinctive fea-

tures and can attain a remarkable accuracy, higher in the case of the DenseNet-based 

model. 

The remainder of this paper is organized as follows. In Section 2, the considered 

scattering in the micromechanically-driven response of the polycrystalline films is dis-

cussed, and the samples used to generate the datasets are accordingly defined. Section 

3 deals with the proposed methodology to specify data generation and pre-processing, 

the features of the adopted convolutional network-based modes and their expected ef-

fects on the outcomes for the ResNet and DenseNet architectures. Results are reported 

in Section 4 for polysilicon films characterized by different values of the length scale 

separation parameter in the training and test sets, to assess the already mentioned gen-

eralization capability of the approach. Some concluding remarks and proposals for fu-

ture developments are finally gathered in Section 5. 

2 Statistical Scatter in the Homogenized Polysilicon Properties 

at the Mesoscale 

In compliance with a standard geometry of MEMS movable structures, the polysilicon 

microstructures to be characterized feature a rather small ratio between the size 𝐿 of the 

polycrystalline aggregate (termed mesoscale and representing the scale over which ho-

mogenization is being carried out) and the characteristic size 𝑑 of the microscopic het-

erogeneities (termed microscale and representing the average size of silicon grains). 

Whenever a homogenization procedure is adopted within such a frame to define the 

overall mechanical, electromagnetic, thermal, or any other type of properties in a het-
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erogeneous medium, the mesoscale properties themselves are termed apparent. Effec-

tive properties instead refer to samples of the heterogeneous material large enough to 

comply with a kind of asymptotic rule of mixture to hold. In this latter case, the material 

domain can be regarded as mesoscopically homogeneous and 𝐿 defines the size of the 

corresponding Representative Volume Element (RVE), see e.g. [25-27] for polycrys-

talline situations related to the specific case considered in this study. Through homog-

enization, the overall properties of interest are supposed to be realization independent, 

namely independent of the micromechanical features of the polycrystal. As said, this 

condition is achieved only asymptotically, when 𝛿 = 𝐿/𝑑 → ∞ or, at least, when it be-

comes so large that grain effects lead to marginal variations in the measured response. 

Such a critical threshold is attained for 𝛿 on the order of 10 − 100, depending on the 

property to be determined. 

As reported in [27], for polysilicon a microstructure featuring 𝛿 ≅ 60 could be re-

garded as an RVE, while domains featuring smaller values do not to comply with the 

asymptotic values provided by standard homogenization procedures and therefore re-

quire the scattering in the results to be assessed too. Under such conditions, Statistical 

Volume Elements (SVEs) are instead adopted to represent the polycrystalline material 

samples; since each single realization can be representative of the material only in a 

statistical sense, Monte Carlo simulations are necessary to quantify a mean property 

value and also the scattering of the results around it.  

3 Methodology 

3.1 Input Data Generation and Pre-Processing 

The polycrystalline morphology here considered is an epitaxially grown one. Moving 

from the free surface of the substrate, each grain has a major crystal orientation almost 

aligned with the direction perpendicular to the surface itself. By disregarding the scat-

tering in such a texture, in our former works we focused on a thin slice of the polycrystal 

and therefore simplify the geometry allowing for two-dimensional SVEs. Such a sim-

plification can be classified as a kind of dimensionality-reduction for the problem at 

hand. 

A set of SVEs has been digitally generated via Voronoi tessellations. Each SVE 

features its own grain boundary network geometry, and orientations of the crystal lattice 

of all the grains gathered. The Monte Carlo procedure, exploited to quantify the sto-

chastic effects due to the grain arrangements on the probability distribution of the ap-

parent Young’s Modulus 𝐸, has been then fed by the results of a numerical homogeni-

zation carried out for all the SVEs. The obtained results represent the ground-truth data 

(or the labels) to be used during the training of the neural networks (NNs). Figure 1 

provides an illustration of a (not-to-scale) couple of characteristic morphologies of the 

handled SVEs, respectively featuring a 2μm×2μm (left) or 5μm×5μm (right) size. In 

these single-channel images, the color encodes the in-plane lattice orientation 𝜃 of each 

single-crystalline domain or grain, measured relative to a global reference axis (e.g. the 

horizontal one in the figure).  
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Fig. 1. Digitally generated two-dimensional polysilicon microstructures, wherein the pixel coor-

dinates are represented along the SVE axes. 

The artificially generated images have been then pre-processed in order to maxim-

ize the available distinctive features and reduce artifacts, represented by pixels with 

incorrect values assigned along the grain boundaries where grains with different orien-

tation merge. A median filter with kernel size [3,3] has been adopted, to smooth the 

input images and therefore reduce the mentioned artifacts. To also reduce the compu-

tational cost of training, the images have been resized to have a final resolution of 

128×128 pixels, moving from the original 512×512 pixels one. Additional details re-

garding the generation of the input data, as well as the pre-processing steps, can be 

found in [16]. Figure 2 provides a sketch of the final resolution for the two microstruc-

tures gathered in Figure 1. 

 

 

Fig. 2. Final resolution for the SVEs of Figure 1, wherein pixel coordinates are again repre-

sented along the SVE axes. 

3.2 Proposed Models and Implementation 

Results discussed in [15,16] are taken as the baseline in the current research activity. 

Aiming to exploit the advantages of the convolutional architecture proposed in [24], a 

densely connected network has been newly adopted as the specific architecture to carry 

on feature extraction, that is the key stage upon which the overall performance of the 
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regression model is based. DenseNet121 is proposed to be employed for feature learn-

ing, and its performance is going to be directly compared to that of the former model 

based instead in the use of the residual ResNet18. Additionally, a new test set featuring 

SVEs with size 3μm×3μm has been generated and allowed for in the analysis, in order 

to further assess the generalization capabilities of both models regarding intermediate 

length scales. 

 

 

Fig. 3. Pictorial description of the adopted models: the difference between them is represented 

by the convolutional architecture employed as the Feature Learning Block (either the ResNet18 

or the DenseNet121). 

From a methodological standpoint, once each microstructural representation has 

been generated and preprocessed, the relevant image has been individually fed to the 

specific NN under consideration. With this input information, each NN model consists 

of an initial stage aimed at feature extraction taking place in the feature learning block; 

this activity is done thanks to the use of a convolutional network architecture, either the 

ResNet18 baseline or the newly proposed DenseNet121. After feature extraction, the 

output feature maps on the last convolutional layer undergo a flatten operation, after 

which the high-level features extracted are employed as input of the regression block, 

made of a standard fully connected multilayer perceptron. The aim of this block is to 

provide the estimation of the effective property of interest, associated to the microstruc-

ture. For comparison convenience, it is important to mention that all the design ele-

ments associated to the regression block have been kept exactly the same for both mod-

els, in order to highlight the effect of the convolutional architecture on the overall pre-

diction and generalization capabilities of the model. Besides the regression blocks cou-

pled on top of feature learning, also all the associated hyperparameters but the mini-

batch size, which has been set to be the maximum number of computationally manage-

able samples, have been kept the same for both models. The regression block is char-

acterized by an arrangement of a dense fully connected layer (100 nodes) + ReLU ac-

tivation, followed by a fully connected output layer (1 node) + Linear activation. The 
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total number of parameters in the ResNet18-based regression model has turned out to 

be 14,457,612 while the total number of parameters in the DenseNet121-based regres-

sion model has been 8,669,833. An illustration of the architecture of the two models is 

presented in Figure 3: note that the output corresponds to the apparent Young’s modu-

lus prediction for each image, that is to 𝐸̂. 

Hence, the aim of the first stage of training has been to learn the individual mapping 

of the input data onto the effective SVE property, that is dealt with as a kind of label. 

After training, the statistical analysis of the estimated 𝐸̂ values and the evaluation of 

the mean value and dispersion around it are readily accomplished from the set of map-

pings, by simply extracting the relevant statistical indicators of interest. Therefore, dur-

ing the training stage a certain number of microstructures have been employed to learn 

the underlying mapping between the topology of the grain boundary network and the 

lattice orientation of each grain on one side, and the overall elastic properties of a pol-

ycrystalline aggregate on the other side. After this stage, a testing stage has followed, 

in which each regression model has been used to predict the value of the Young’s mod-

ulus over new, unseen SVEs featuring also length scales 𝛿 different from those used 

during the training. 

For this stage of the procedure, early stopping has been implemented as the regu-

larization technique by monitoring the validation loss, with the patience parameter set 

to 50 epochs. The weights obtained at the end of the learning stage and corresponding 

to the minimum value of the validation loss, have been later adopted in order to assess 

the performance of the models on the test set. Table 1 summarizes the main hyperpa-

rameters selected.  

Results to follow have been obtained with the two models developed making use of 

the Keras API, based on TensorFlow. To speed up training and testing, a GeForce RTX 

2080 GPU has been exploited.  

Table 1. Hyperparameters used during the training of both models. 

Hyperparameter Value 

Total number of epochs 500 

Patience (early stopping) 50 

Mini-Batch Size (B.S) 3001, 852 

Learning rate α   5 ∙ 10−4 

Optimizer Adam 

Loss function MSE3 

 
1  Maximum number of computationally manageable samples for the ResNet-based model. 
2  Maximum number of computationally manageable samples for the DenseNet-based model. 
3  Mean squared error. 
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3.3 ResNet vs DenseNet: Addition vs Concatenation of Features  

Considering the aspects of the implementation mentioned in Section 3.2, it is expected 

to note performance differences between the models due to the specific connectivity 

pattern displayed by the two different architectures of ResNets and DenseNets.  

According to the theoretical and practical evidence presented in [24], the connec-

tivity pattern in DenseNets is characterized by all layers with matching feature-map 

sizes directly connected with each other. As explained in the original work, feature 

propagation and reuse is therefore by definition strengthened in this convolutional net-

work architecture, to improve the flow of information and gradients throughout the net-

work and substantially reduce the number of parameters to tune during training. This 

last aspect is linked to the relative narrow nature of DenseNets: each non-linear trans-

formation at every layer adds just a few feature-maps to the network collective 

knowledge. The number of filters per layer, referred to by the authors of this architecture 

as growth rate 𝑘, is low if compared to the number of filters typically used in ResNet 

architectures: in concrete terms, it is 32 for the DenseNet121 model, while it amounts 

to 64, 128, 256 and 512 for the ResNet18 model. 

Denoting the output of the 𝑙-th NN layer as 𝑥𝑙  and the nonlinear transformation as 

𝐻𝑙(∙), with traditional convolutional networks, ResNet and DenseNet we respectively 

have: 

𝑥𝑙 = 𝐻𝑙(𝑥𝑙−1) (1) 

𝑥𝑙 = 𝐻𝑙(𝑥𝑙−1) + 𝑥𝑙−1 (2) 

𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, … , 𝑥𝑙−1]) (3) 

where [𝑥0, 𝑥1, … , 𝑥𝑙−1] refers to the concatenation of the feature-maps produced in lay-

ers 0, 1, …, 𝑙 − 1. In these equations, 𝐻𝑙(∙) is a composite function of consecutive op-

erations. For example, in both ResNets and DenseNets the nonlinear transformation 

includes the consecutive application of three operations: a batch normalization, a recti-

fied linear unit and a convolution. 

At variance with ResNets, features in DenseNets are not combined through summa-

tion before they are passed into a layer (symbolized in Eq. 2); instead, they are com-

bined by concatenation (symbolized in Eq. 3). This difference largely determines the 

characteristics of the information extraction and propagation in each model, ultimately 

constituting the key difference when comparing the performances of the two models 

here considered. 

4 Results 

4.1 Generalization Capability of Trained Models 

The data to be handled by the two models have been split exactly in the same man-

ner. A total of 3878 2μm×2μm images (𝛿=2μm/0.5μm=4) has been split into the train-
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ing set and validation sets, using ~75% and 25% respectively. In this way, the param-

eters of the model are initially fit on the training set, while simultaneously, after each 

epoch, the fitted model is used to predict the response over the validation set. The val-

idation set therefore has a double purpose: it is used to tune the hyperparameters of the 

model and it allows for the implementation of early stopping as a regularization tech-

nique. Finally, two additional sets referred to as test sets have been generated using 

3μm×3μm images and 5μm×5μm images. Clearly, although these two sets feature dif-

ferent 𝛿 values, specifically 𝛿=3μm/0.5μm=6 and 𝛿=5μm/0.5μm=10, both preserve the 

input size i.e. image resolution. These sets are employed for the exclusive purpose of 

assessing the performance (i.e. generalization) of the final model. Summarizing, the 

datasets are arranged as follows: 2889 2μm×2μm images as training set (Mean = 150.08 

GPa and SD = 5.40 GPa); 989 2μm×2μm images as validation set (Mean = 150.16 GPa 

and SD = 5.34 GPa), and, as alternate test sets featuring a larger aggregate size, 30 

3μm×3μm images (Mean = 149.87 GPa and SD= 3.75 GPa) and 145 5μm×5μm images 

(Mean = 149.34 GPa and a SD = 2.44 GPa) were generated. Within the brackets, for 

each set values have been reported for the relevant mean and standard deviation (SD) 

of 𝐸. 

 

 

Fig. 4. Results of the ResNet-based regression model. 
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Fig. 5. Results of the DenseNet-based regression model. 

Figures 4 and 5 show the obtained results with the ResNet-based and the DenseNet-

based regression models, respectively. For each case, results are reported first in terms 

of the evolution of the training and validation loss against the epochs. To assess the 

performance of the models, results are reported next in terms of parity plots. In these 

charts, the dotted lines are used to denote the maximum and minimum label values 

featured by each dataset. In this way, predictions should ideally be mapped within the 

limits defined by these lines (i.e. inside the dotted squares). Moreover, for an optimal 

trained model, the data should map the identity function for every dataset, with all the 

dots aligned along the 45° diagonal. The performance of the regression models is 

assessed through the coefficient of determination, R2 and the MSE. In the best case, e.g. 

predicted values exactly match the ground-truth values, then R2 = 1 and MSE = 0. For 

each dataset, the mentioned evaluation metrics are reported in the legends. The legends 

also include the estimation of the statistical indicator of interest (SD); these values are 

computed from the set of individual predictions produced by the trained model. The 

corresponding SD characterizing the ground-truth data appears within the brackets and 
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the associated absolute percentage error (APE) is finally reported.  Results are 

summarized in Table 2. 

Table 2. Summary of the results 

Metric Dataset ResNet18-based DenseNet121-based 

MSE 

[GPa2] 

Training set  0.1 0.37 

Validation set  0.86 1.11 

Test set 1 (𝛿=6) 0.36 0.52 

Test set 2 (𝛿=10)  0.29 0.78 

R2 

Training set  0.996 0.987 

Validation set  0.970 0.961 

Test set 1 (𝛿=6) 0.974 0.963 

Test set 2 (𝛿=10)  0.951 0.868 

Standard 

Deviation 

APE  

Training set  0.47% 3.79% 

Validation set  0.97% 1.53% 

Test set 1 (𝛿=6) 4.05% 6.19% 

Test set 2 (𝛿=10)  5.16% 4.67% 

 

 

For the case of the ResNet18-based model in Figure 4, the learning process reached 

a plateau after 71 epochs, with the subsequent 50 epochs leading to small validation 

loss changes. This model thus shows promising generalization capabilities in setting 

the intended link between the microstructure and the investigated property, as 

confirmed by the results provided for both test sets. For the for the test dataset 𝛿=6, the 

model has effectively predicted a larger value for the statistical indicator describing the 

dispersion of the homogenized property, as expected for the lower value of 𝛿 associated 

to this test set, when compared to the one featuring 𝛿=10. 

In the case of the DenseNet121-based model in Figure 5, the learning process 

reached a plateau after 126 epochs, again with the subsequent 50 epochs not leading to 

clear changes in the validation loss. This new model, which is linked to a lower total 

number of parameters to be tuned in the training process, has not displayed significant 

performance improvements, when compared to the ResNet18-based. 

In addition, by analyzing the presented results, it can be observed that although the 

DenseNet121-based model requires fewer parameters it does not necessarily display a 

faster convergence rate, e.g. in terms of the number of epochs required to reach the 

reported minimum validation loss values. Moreover, the computational burden of this 

model, in terms of memory usage and GPU power, has been higher. Individual epoch 

of the DenseNet121-based model lasted about 3 times the time taken by epochs in the 

ResNet18-based. Furthermore, due to memory issues, the DenseNet121-based model 

has only allowed the use of a fraction of the mini batch size when compared to the 

ResNet18-based model (as stated in Table 1), leading to a noisier convergence behavior 

as can be observed in the training evolution plots. This is interesting, since the lower 

number of trainable parameters associated to the DenseNet121-based model does not 
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proportionally translate into larger number of computationally manageable samples in 

the batch size, or faster training time. 

As far as the generalization capabilities are concerned, in general terms a better 

performance has been observed adopting the ResNet18-based architecture. 

 

 

                   
 

Fig. 6. Random output feature maps. ResNet18 (left) and the DenseNet121 (right).  

Due to intrinsic differences between both convolutional network architectures, 

DenseNet121-based model is able to extract higher level features: while for the Res-

Net18, the output size of the layer just before the flatten operation is [8×8×512], for the 

DenseNet121 this becomes [4×4×1024], featuring a larger down sampling and number 

of output features maps (OFMs). As an additional remark, Figure 6 shows a comparison 

between the information extracted in a group of randomly selected, intermediate, same 

size OFMs, once both models have been already trained. A qualitative comparison re-

veals that the DenseNet-based feature extraction better reproduces the morphology and 

internal homogeneity within the grains: the distribution of pixels with incorrect values 

along grain boundaries, observed in the previous figure in the form of pixelated fringes, 

appears to be thinner for the OFMs provided by the DenseNet121. 

5 Conclusions 

In this work, we have compared the performances of two different NN-based models 

to learn the micromechanical features ruling the value of the apparent stiffness of a 

polycrystalline aggregate. Specifically, for SVEs characterized by a mesoscale size 

slightly larger than the micromechanical length scale, linked e.g. to the characteristic 

size of the grains, the overall Young’s modulus of textured polycrystalline films has 

been estimated in statistical terms through its mean value (though not discussed here as 

not significant in this work) and scattering around it. 

For the feature learning stage of the models, the two different architectures adopted 

have been the ResNet18 and the DenseNet121. For the problem at hand, the first one 

has turned out to be characterized by a larger set of parameters to be tuned during the 
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training of the NN; the second one, though featuring less parameters to tune, has re-

sulted to be more computational expensive. Moreover, the additional computational 

burden associated to the second architecture did not result into higher accuracy in map-

ping the micromechanical features ruling the results, and so, in catching the scattering 

in the results attained with numerical homogenization procedures, when compared to 

the first one. 

The proposed approach is still in its infancy and surely requires some additional 

work in order to optimize the proposed physics-informed NN architecture, the setting 

of the NN hyperparameters, and the training strategy. The goal of the project is to make 

this procedure available for all the devices whose response may be sensitive to micro-

structural features and, accordingly, to possible defects existing in their building blocks 

at the nano- and microscale. 
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