
ar
X

iv
:2

10
5.

06
18

4v
1

 [
qu

an
t-

ph
]

 1
3

M
ay

 2
02

1

Implementing Quantum Finite Automata

Algorithms on Noisy Devices

Utku Birkan1,2, Özlem Salehi3,7, Viktor Olejar4, Cem Nurlu5, and Abuzer
Yakaryılmaz6,7

1 Department of Computer Engineering, Middle East Technical University, Turkey
2 Department of Physics, Middle East Technical University, Turkey

utku.birkan@gmail.com
3 Department of Computer Science, Özyeğin University, Turkey

ozlemsalehi@gmail.com
4 Institute of Mathematics, P.J. Šafárik University in Košice, Slovakia

viki.olejar@gmail.com
5 Department of Physics, Boğaziçi University, Turkey cem.nurlu@gmail.com

6 Center for Quantum Computer Science, University of Latvia, Latvia abuzer@lu.lv
7 QWorld Association, https://qworld.net

Abstract. Quantum finite automata (QFAs) literature offers an alter-
native mathematical model for studying quantum systems with finite
memory. As a superiority of quantum computing, QFAs have been shown
exponentially more succinct on certain problems such as recognizing the
language MODp = {aj | j ≡ 0 mod p} with bounded error, where p is a
prime number. In this paper we present improved circuit based imple-
mentations for QFA algorithms recognizing the MODp problem using the
Qiskit framework. We focus on the case p = 11 and provide a 3 qubit
implementation for the MOD11 problem reducing the total number of re-
quired gates using alternative approaches. We run the circuits on real
IBM quantum devices but due to the limitation of the real quantum de-
vices in the NISQ era, the results are heavily affected by the noise. This
limitation reveals once again the need for algorithms using less amount
of resources. Consequently, we consider an alternative 3 qubit implemen-
tation which works better in practice and obtain promising results even
for the problem MOD31.

Keywords: quantum finite automata · quantum circuit · rotation
gate · quantum algorithms.

1 Introduction

Quantum finite automata literature offers an alternative mathematical model
for studying quantum systems with finite memory. Many different models have
been proposed with varying computational powers [5]. Moore-Crutchfield quan-
tum finite automaton (MCQFA) [9] is one of the earliest proposed models which
is obtained by replacing the transition matrices of the classical finite automata
by unitary operators. Despite the fact that they are weaker than their classical

http://arxiv.org/abs/2105.06184v1
https://qworld.net

2 U. Birkan et al.

counterparts in terms of their language recognition power, for certain languages
MCQFAs have been shown to be more succinct. One such example is the lan-
guage MODp = {aj | j ≡ 0 mod p}, where p is a prime number: MCQFAs were
shown to be exponentially more space-efficient than their classical counterparts
[3].

Experimental demonstration of quantum finite automata has recently gained
popularity. In [12], the authors implement an optical quantum finite automaton
for solving promise problems. A photonic implementation for MODp problem is
presented in [8]. MCQFA for the MODp problem has been also implemented using
a circuit based approach within Qiskit and Rigetti frameworks by Kālis in his
Master’s Thesis [7].

As a continuation of [7], in this paper we present improved circuit based
implementations for MCQFA recognizing the MODp problem using the Qiskit
framework. We start with the naive implementation proposed in [7] and provide a
new implementation which reduces both the number of qubits and the number of
required basis gates, due to an improved implementation of the multi-controlled
rotation gate around y-axis and the order in which the gates are applied. We
demonstrate the results of the experiments carried out by IBMQ backends for
both the improved naive implementation and the optimized implementation of
[7]. Regarding the optimized implementation, we experimentally look for the
parameters which would minimize the maximum error rate.

We also propose a 3-qubit parallel implementation which works better in
practice for the MOD11 and MOD31 problems. The choice of parameters for this
implementation heavily influences the outcomes unlike the optimized implemen-
tation where this choice does not have a huge impact on the acceptance proba-
bilities.

We conclude by suggesting a new implementation for the rotation gate around
y-axis, taking into account the new basis gates, the gates that are implemented
at the hardware level–that have been recently started to be used by IBM. This
new proposal lays the foundations for future work on the subject. The source
code of our quantum circuits can be accessed from the link below:

https://gitlab.com/qworld/qresearch/research-projects/qfa-implementation/-/tree/iccs-2021

2 Background

We assume that the reader is familiar with the basic concepts and terminology
in automata theory and quantum computation. We refer the reader to [10,11,5]
for details.

Throughout the paper, Σ denotes the finite input alphabet, not containing
the left and right-end markers (¢ and $, respectively), and Σ̃ denotes Σ ∪ {¢, $}.
For a string w ∈ Σ∗, its length is denoted by |w| and, if |w| > 0, wi denotes the
ith symbol of w. For any given input string w, an automaton processes string
w̃ = ¢w$ by reading it symbol by symbol and from left to right.

There are several models of quantum finite automata (QFAs) in the literature
with different computational powers [5]. In this paper, we focus on the known

https://gitlab.com/qworld/qresearch/research-projects/qfa-implementation/-/tree/iccs-2021

Implementing Quantum Finite Automata Algorithms on Noisy Devices 3

most restricted model called as Moore-Crutchfield quantum finite automaton

(MCQFA) model [9].
Formally, a d-state MCQFA is a 5-tuple

M = (Σ, Q, {Uσ | σ ∈ Σ̃}, qs, QA),

where Q = {q1, . . . , qd} is the finite set of states, Uσ is the unitary operator for
symbol σ ∈ Σ̃, qs ∈ Q is the start state, and QA ⊆ Q is the set of accepting

states.
The computation of M is traced by a d-dimensional vector, called the state

vector, where jth entry corresponds to state qj . At the beginning of computation,
M is in quantum state |qs〉, a zero vector except its sth entry, which is 1. For each
scanned symbol, say σ, M applies the unitary operator Uσ to the state vector.
After reading symbol $, the state vector is measured in the computational basis.
If an accepting state is observed, the input is accepted. Otherwise, the input is
rejected.

For a given input w ∈ Σ∗, the final state vector |vf 〉 is calculated as

|vf 〉 = U$Uw|w|
· · · Uw1

U¢ |qs〉 .

Let |vf 〉 = (α1 α2 · · · αd)
T

. Then, the probability of observing the state qj is

|αj |2, and so, the accepting probability of M on w is
∑

qj∈QA
|αj |2.

3 MODp Problem and QFA Algorithms

For any prime number p, we define language

MODp = {aj | j ≡ 0 mod p}.

Ambainis and Freivalds [3] showed that MCQFAs are exponentially more suc-
cinct than their classical counterparts, i.e., MODp can be recognized by an MCQFA
with O(log p) states with bounded error, while any probabilistic finite automa-
ton requires at least p states to recognize the same language with bounded error.
The MCQFA constructions given in [3] were improved later by Ambainis and
Nahimovs [4].

3.1 2-State QFA

We start with giving the description of a 2-state MCQFA that accepts each
member of MODp with with probability 1 and rejects each nonmember with a
nonzero probability.

Let Mp be an MCQFA with the set of states Q = {q1, q2}, where q1 is the
starting state and the only accepting state. The identity operator is applied when
reading ¢ or $. Let Σ = {a}, which is often denoted as a unary alphabet. For
each symbol a, the counter-clockwise rotation with angle 2π/p on the unit circle
is applied:

Ua =

(

cos (2π/p) − sin (2π/p)
sin (2π/p) cos (2π/p)

)

.

4 U. Birkan et al.

The minimal rejecting probability of a non-member string w by the automa-
ton Mp is sin2 (|w| · 2π/p), which gets closer to 0 when |w| approaches an integer
multiple of p. One may notice that instead of 2π/p, it’s also possible to use
the rotation angle k · 2π/p for some k ∈ {1, . . . , p − 1}. It is easy to see that
the rejecting probability of each non-member differs for different values of k,
but the minimal rejecting probability will not be changed when considering all
non-members.

On the other hand, to obtain a fixed error bound, we can execute more than
one 2-state MCQFA in parallel, each of which uses a different rotation angle.

3.2 O(log p)-State QFAs

Here we explain how to combine 2-state MCQFAs with different rotation angles
to obtain a fixed error bound.

First, we define the 2-state MCQFA Mk
p as same as Mp except for the rotation

angle for the symbol a, which is now k · 2π/p where k ∈ {1, . . . , p − 1}.
Then we define the 2d-state MCQFA MK

p , where K is a set formed by d
many k values: K = {k1, . . . , kd} and each kj ∈ K is an integer between 1 and
p−1. The MCQFA MK

p executes d 2-state MCQFAs {Mk1

p , . . . , Mkd
p } in parallel.

The state set of MK
p is formed by d pairs of {q1, q2}:

{q1
1, q1

2 , q2
1 , q2

2 , . . . , qd
1 , qd

2} .

The state q1
1 is the starting state and the only accepting state. At the beginning

of the computation, MK
p applies a unitary operator U¢ when reading the symbol

¢ and enters the following superposition:

|q1
1〉 U¢−−−−→ 1√

d
|q1

1〉 +
1√
d

|q2
1〉 + · · · +

1√
d

|qd
1〉 .

In other words, we can say that MK
p enters an equal superposition of 2-state

MCQFAs Mk1

p , Mk2

p , . . . , Mkd
p .

Until reading the right end-marker, MK
p executes each 2-state sub-automaton,

M
kj
p , in parallel, where M

kj
p rotates with angle 2πkj/p. Thus, the overall unitary

matrix of MK
p for symbol a is

Ua =

d
⊕

j=1

Rj =











R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rd











,

where

Rj =

(

cos (2πkj/p) − sin (2πkj/p)
sin (2πkj/p) cos (2πkj/p)

)

.

After reading the symbol $, we apply the unitary operator U$ = U−1
¢ . This

overall algorithm gives us an exponential advantage of quantum computation

Implementing Quantum Finite Automata Algorithms on Noisy Devices 5

over classical computation for some suitable values for K, for each p. It was
shown [3] that, for each p, there exists a set of K with d = O(log p) elements
such that MK

p recognizes MODp with a fixed error bound.

4 MODp Implementations

In this section, we present our implementation schema in Qiskit and results on
simulators and real machines.

4.1 Single Qubit Implementation

We start with a single qubit implementation. An example implementation of
2-state MCQFA M7 for MOD7 is given in Figure 1 where the input string is aaa:

q0 : |0〉 Ry(4π/7) Ry(4π/7) Ry(4π/7) ✌✌ c0

Fig. 1. Single qubit MOD7 implementation

This circuit has one qubit (q0) and one bit (c0). There are different rotation
operators (gates) in Qiskit. Here we use Ry gate, which is defined on the Bloch
sphere and takes the twice of the rotation angle as its parameter to implement the
rotation on the unit circle on the |0〉−|1〉 plane. The outcome of the measurement
at the end is written to the classical bit c0.

4.2 Three-Qubit Implementations of MODp

A Naive Implementation To implement the unitary operator given in Equa-
tion (3.2), we use controlled gates, the conditional statements of the circuits. The
implementation cost of the controlled gates are expensive and unfortunately, the
straightforward implementation of the above algorithm is costly.

Kālis [7] gave a four-qubit implementation of the above algorithm for the
problem MOD11, where three qubits are used to simulate four sub-automata and
one ancilla qubit is used to implement the controlled operators.

Here we present our implementation schema by using only 3 qubits. All dia-
grams are obtained by using Qiskit [1]. We use three qubits called q2, q1, q0. We
implement U¢ operator by applying Hadamard gates to q2 and q1. The initial
state is |000〉. After applying Hadamard operators, we will have the following
superposition, in which we represent the state of q0 separately:

|v¢〉 =
1

2
|00〉 ⊗ |0〉 +

1

2
|01〉 ⊗ |0〉 +

1

2
|10〉 ⊗ |0〉 +

1

2
|11〉 ⊗ |0〉

6 U. Birkan et al.

The unitary matrix for symbol a is represented as follows:

Ua =









R1 0 0 0
0 R2 0 0
0 0 R3 0
0 0 0 R4









In order to implement Ua, we apply R1 when q2 ⊗ q1 is in state |00〉, R2 when
q2 ⊗ q1 is in state |01〉, R3 when q2 ⊗ q1 is in state |10〉, and R4 when q2 ⊗ q1 is
in state |11〉.

We pick K = {1, 2, 4, 8}. Then, after applying Ua, the new superposition
(UaU¢ |000〉) becomes

|v1〉 =
1

2
|00〉 ⊗ Ry (2π/11) |0〉 +

1

2
|01〉 ⊗ Ry (4π/11) |0〉 +

1

2
|10〉 ⊗ Ry (8π/11) |0〉 +

1

2
|11〉 ⊗ Ry (16π/11) |0〉 .

Once we have a block for Ua, then we can repeat it in the circuit as many times
as the number of symbols in the input. If our input is am, then the block for Ua

is repeated m times. After applying Um
a , the new superposition becomes

|vm〉 =
1

2
|00〉 ⊗ Rm

y (2π/11) |0〉 +
1

2
|01〉 ⊗ Rm

y (4π/11) |0〉 +

1

2
|10〉 ⊗ Rm

y (8π/11) |0〉 +
1

2
|11〉 ⊗ Rm

y (16π/11) |0〉 .

After reading the whole input, before the measurement, we apply the Hadamard
gates which correspond to the operator for symbol $.

There is no single-gate solution we can use to implement all of these operators
though. Besides, the controlled operators are activated only when all of the
control qubits are in state |1〉. This is why X gates are used; to activate the
control qubits when they are in state |0〉. Figure 2 depicts a circuit implementing
Ua.

Ua

q2 : |0〉 H • • • • H ✌✌

q1 : |0〉 H • • • • H ✌✌

q0 : |0〉 Ry(θ1) Ry(θ2) Ry(θ3) Ry(θ4) ✌✌

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

c0 c1 c2

Fig. 2. A naive MODp circuit implementation

Initially, two X gates (represented as ⊕ in the circuit diagrams) are applied
and R1 is implemented as the controlled rotation gate will be activated only

Implementing Quantum Finite Automata Algorithms on Noisy Devices 7

when the control qubits are initially in state |00〉. Next, we apply X gate to q2

and so the controlled qubits are activated when in state |01〉 and we implement
R2. Similarly, we implement R3 by applying X gates to both qubits so that the
controlled qubits are activated when in state |10〉, and finally we implement R4

so that the control qubits are activated in state |11〉.
Next, we discuss how to reduce the number of X gates and an improved

implementation is given in Figure 3. Initially, R4 is implemented as the controlled
operators will be activated only in state |11〉. Next, we apply X gate to q2 and so
the controlled qubits are activated when in state |10〉, and so, we implement R3.
We apply X gate to q1 and similarly the controlled qubits are activated when
in state |11〉 so that we implement R1. Finally, we apply X gate to q2 again
to implement R2. Note, that we apply one more X gate at the end so that the
initial value of q2 is restored.

Ua

q2 : |0〉 H • • • • H ✌✌

q1 : |0〉 H • • • • H ✌✌

q0 : |0〉 Ry(θ4) Ry(θ3) Ry(θ1) Ry(θ2)

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✌✌

c0 c1 c2

Fig. 3. An improved (but still naive) MODp circuit implementation

The number of X gates can be reduced further by omitting the last X gate
in the above diagram and changing the order of Ry gates in the next round so
that they follow the values of the controlled qubits. For each scanned a, either
one of the blocks is applied, alternating between the two, starting with the first
block. Overall, three X gates are used instead of four X gates for a single a.
Note that when the input length is odd, we should always use an extra X gate
before the final pair of Hadamard gates. The blocks are depicted below.

• • • •
• • • •

Ry(θ4) Ry(θ3) Ry(θ1) Ry(θ2)

(a) First Block

• • • •

• • • •

Ry(θ2) Ry(θ1) Ry(θ3) Ry(θ4)

(b) Second Block

Fig. 4. Reducing the NOT gates using two blocks to implement Ua

When we implement the circuit in Qiskit, there are different approaches to
implement the multi-controlled rotation gate. One option is Kālis’ implementa-
tion [7] that takes advantage of Toffoli gates and controlled rotations as seen in

8 U. Birkan et al.

Figure 5a. Another possibility is to use the built-in RYGate class in Qiskit. An
alternative implementation of controlled Ry gate presented in [6] is given in Fig-
ure 5b. In this implementation, the rotation gates applied on the target qubit
cancel each other unless the control qubits are in state |11〉 which is checked
by the Toffoli gate, thus yielding the same effect as an Ry gate controlled by
two qubits. As a further improvement, the Toffoli gate can be replaced with the
simplified Toffoli gate, (also referred to as Margolus gate in Qiskit) which has a
reduced cost compared to Toffoli gate. This replacement does not affect the over-
all algorithm as only the states corresponding to first and second sub-automata
and that of third and fourth sub-automata are swapped.

q2 • •
q1 • •

ancilla •

q0 Ry(θ)

(a) Kālis’ implementation

q2 • •
q1 • •

q0 Ry(θ/2) Ry(−θ/2)

(b) Alternative implementation

Fig. 5. Controlled Ry gate implementations

Before running a circuit on an IBMQ device, each gate is decomposed into
basis gates U1, U2, U3 and CX8 and this decomposition also depends on the
backend on which the circuit is run and the physical qubits used on the machine.
In the table given below, the number of basis gates required to implement the
rotation gate with two controls using the two approaches is given for the IBMQ
Santiago and IBMQ Yorktown machines with the default optimization level.

Table 1. Number of basis gates required by the controlled rotation gate implementa-
tions

RYGate Alternative

U1 U2 U3 CX U1 U2 U3 CX

Santiago 0 0 6 11 1 2 1 9
Yorktown 0 0 6 8 4 1 2 6

Next, we present some experimental results about MOD11 problem comparing
the performance of the 4 qubit implementation which was originally proposed
in [7] and our improved version with 3 qubits where the number of X gates are
reduced and the controlled rotation gates are implemented using the alternative
approach. The acceptance probability of each word is the number of times the
states |000〉 and |0000〉 are observed divided by the number of shots (which was
taken as 1000 for the experiments) for 3 qubit and 4 qubit implementations,

8 The set of basis gates was changed to CX, I , Rz,
√

X, X in January 2021.

Implementing Quantum Finite Automata Algorithms on Noisy Devices 9

respectively. The results do not look promising as the acceptance probabilities
are around 0.125 and 0.0625 for the 3 qubit and 4 qubit implementations, which
are the probabilities of observing a random result. Ideally, the acceptance prob-
abilities for the word lengths 11 and 22 would have been close to 1.

1 11 22

Word Length

0.05

0.10

0.15

P
ro

b
a
b
il
it

y

3 Qubits 4 Qubits

0.1250

0.0625

Fig. 6. Acceptance probabilities for MOD11 naive implementation

There are three main sources of error in IBMQ machines: number of qubits,
circuit depth and the number of CX gates. Even though our 3-qubits naive im-
plementation reduced the number of qubits and CX gates, this improvement was
not enough to have any meaningful result. Each Margolous gate still requires 3
CX gates which is better compared to the Toffoli gate which requires 6 but it
is still not enough[1]. In addition, the connectivity of the underlying hardware
requires some additional CX gates when the 4-qubits circuit is transpiled. Nev-
ertheless, our implementation provides a significant improvement in the number
of basis gates required for the implementation of the algorithm. In Table 2, we
list the number of basis gates required by both implementations for word length
11 using the default optimization level by IBMQ Santiago backend.

An Optimized Implementation The circuit construction above can be im-
proved by sacrificing some freedom in the selection of rotation angles as proposed
in [7]. In the circuit diagram given in Figure 7, only the controlled rotation op-
erators are used, where the unitary matrix for symbol a is as follows:

Ũa =









R1 0 0 0
0 R2R1 0 0
0 0 R3R1 0
0 0 0 R3R2R1









Thus, each sub-automaton applies a combination of rotations among three ro-
tations.

10 U. Birkan et al.

Ũa

q2 : |0〉 H • H ✌✌

q1 : |0〉 H • H ✌✌

q0 : |0〉 Ry(θ1) Ry(θ2) Ry(θ3) ✌✌

c0 c1 c2

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

Fig. 7. Optimized implementation for MOD11

Upon reading the left end-marker, we have the superposition state |v¢〉. The
block Ũa between the Hadamard operators represent the unitary operator corre-
sponding to symbol a. After reading the first a, the new superposition becomes

|ṽ1〉 =
1

2
|00〉 ⊗ Ry(θ1) |0〉 +

1

2
|01〉 ⊗ Ry(θ2)Ry(θ1) |0〉 +

1

2
|10〉 ⊗ Ry(θ3)Ry(θ1) |0〉 +

1

2
|11〉 ⊗ Ry(θ3)Ry(θ2)Ry(θ1) |0〉 .

By letting φ1 = θ1, φ2 = θ1 + θ2, φ3 = θ1 + θ3, and φ4 = θ1 + θ2 + θ3, the
state |ṽ1〉 can be equivalently expressed as

|ṽ1〉 =
1

2
|00〉 ⊗ Ry(φ1) |0〉 +

1

2
|01〉 ⊗ Ry(φ2) |0〉 +

1

2
|10〉 ⊗ Ry(φ3) |0〉 +

1

2
|11〉 ⊗ Ry(φ4) |0〉 .

Compared to the 3 qubit implementation presented in the previous subsec-
tion, this implementation uses less number of gates and especially the number of
CX gates is reduced. Furthermore, as no multi-controlled gates are required, the
number of CX gates used by the IBMQ Santiago machine even reduces when
the default optimization is used. The number of required basis gates for various
implementations is given in Table 2 for word length 11.

Table 2. Number of basis gates required by naive and optimized implementations ran
on IBMQ Santiago

Basis Gates

Implementation U1 U2 U3 CX

3 Qubits Naive 270 15 121 270

4 Qubits Naive 561 154 114 1471

Optimized 0 4 44 55

We conducted experiments on IBMQ Santiago machine with two different
set of values of k, {2, 4, 8} and {4, 9, 10}. A discussion about the choice of the
value of k is presented in the next subsection. The results are still far from the

Implementing Quantum Finite Automata Algorithms on Noisy Devices 11

ideal as it can be seen in Figure 8. We also plotted the ideal results we got from
the simulator. When compared with the naive implementation, we observe that
the acceptance probabilities fluctuate until a certain word length but after some
point they tend to converge to 1⁄8, the probability of selecting a random state.

11 22

(a) K = {2, 4, 8}

0.0

0.5

1.0

11 22

(b) K = {4, 9, 10}

Word Length

P
ro

b
a
b
il
it

y

Santiago Simulator

Fig. 8. Acceptance probabilities for MOD11 optimized implementation

A Parallel Implementation Recall that in the single qubit implementation,
we have a single automaton, but the problem is, that we get arbitrarily large error
for nonmember strings and we try to reduce it by running multiple sub-automata
in parallel. In this section we provide some experimental results about MODp

problem where we simply run each sub-automaton using a single qubit. Although
theoretically this approach has no memory advantage, it works better in real
devices as no controlled gates are used while still providing a space advantage
in terms of number of bits in practice.

Consider the circuit diagram given in Figure 9. Using three qubits, we run
three automata in parallel with three different rotation angles.

q2 : |0〉 Ry(θ1) ✌✌ c2

q1 : |0〉 Ry(θ2) ✌✌ c1

q0 : |0〉 Ry(θ3) ✌✌ c0

❴ ❴ ❴ ❴✤
✤
✤
✤
✤
✤
✤

✤
✤
✤
✤
✤
✤
✤

❴ ❴ ❴ ❴

Fig. 9. Parallel MOD11 circuit where each qubit implements an MCQFA

12 U. Birkan et al.

In this implementation, the unitary operators corresponding to ¢ and $ are
identity operators. Upon reading the first a, the new state becomes

|v′

1〉 = Ry(θ1) |0〉 ⊗ Ry(θ2) |0〉 ⊗ Ry(θ3) |0〉 .

We conducted experiments on IBMQ Santiago machine for MOD11 problem
with K = {1, 2, 4} and for MOD31 problem with K = {8, 12, 26}. The results are
summarized in Figure 10.

11 22 33 44
0.0

0.5

1.0

(a
)

M
O
D

1
1

Santiago Simulator

31 62
0.0

0.5

1.0

(b
)

M
O
D

3
1

Word Length

P
ro

b
a
b
il
it

y

Fig. 10. Acceptance probabilities for MOD31 and MOD11 parallel implementations

From the graphs above we can see that the experimental results on real
machines coincide with the simulator outcome especially for small word lengths.
The number of required basis gates to implement the parallel implementation is
simply three times the length of the word.

Choosing Values of k In [4], the authors consider various values of k for the
optimized implementation. One proposal is the cyclic sequences which work well
in numerical experiments and give an MCQFA with O(log p) states. Another
proposal is the AIKPS sequences [2] for which the authors provide a rigorous
proof but it requires larger number of states.

Implementing Quantum Finite Automata Algorithms on Noisy Devices 13

We conducted several experiments on the local simulator to see which values
of k produce better results for the optimized and parallel MCQFA implementa-
tions. We define the maximum error as the highest acceptance probability for
a nonmember string and we investigated for which values of k, the maximum
error is minimized. Experimental findings are listed below, in Table 3.

Table 3. Standard deviation and mean values for compared circuits

Min Max Mean Std. Dev.

MOD11 Optimized 0.010 0.080 0.034 0.018
MOD11 Parallel 0.109 0.611 0.270 0.148
MOD31 Parallel 0.319 0.974 0.615 0.167

In the optimized implementation, the maximum error ranges between 0.01
and 0.08 with a standard deviation of 0.018 so it can be concluded that the
choice of different values of k does not have a significant impact on the success
probabilities, for this specific case. When we move on to parallel implementation,
we observe that the maximum error probabilities vary heavily depending on the
choice of the value of k. Interquartile range is much larger this time. Furthermore,
MOD31 results include error values as high as 0.97 in the third quartile. MOD11

also has some outliers that show far greater error than we would like to work
with. With this insight, we picked the values of k accordingly in the parallel
implementation, which had an impact on the quality of the results we obtained.

5 Conclusion and Future Work

The goal of this study was to investigate circuit implementations for quantum
automata algorithms solving MODp problem. As a way of dealing with the limita-
tions of NISQ devices, we considered different implementation ideas that reduce
the number of gates and qubits used. Our findings contribute to the growing
field of research on efficient implementations of quantum algorithms using lim-
ited memory.

Recently, the basis gates of IBMQ backends were reconfigured as CX , I, Rz,√
X , and X . As a result, a new methodology should be developed in order to re-

duce the number of required gates. For instance, the circuit with two consecutive
Ry gates that is transpiled by Qiskit is given in Figure 11a. Instead of this de-
sign, we propose the implementation given in Figure 11b, which would reduce the
number of required basis gates. We use the fact that Ry(θ) =

√
X ·Rz(θ)·

√
X ·X ,

hence multiple rotations can be expressed as Rn
y (θ) =

√
X · Rn

z (θ) ·
√

X · X .

Acknowledgements

This research project started during QIntern2020 program of QWorld (July-
August 2020) and later continued under the QResearch Department of QWorld.

14 U. Birkan et al.

√
X Rz(θ + π)

√
X Rz(π)

√
X Rz(θ + π)

√
X Rz(π)

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

(a) Qiskit transpilation

√
X Rz(θ) Rz(θ)

√
X X

(b) Alternative implementation

Fig. 11. Ry gate implementations with the new basis set

We thank to anonymous reviewers for their helpful comments and Mārtiņš
Kālis for giving a presentation during QIntern2020 program on the details of his
master thesis and kindly answering our questions.

Birkan and Nurlu were partially supported by TÜBİTAK scholarship “2205
– Undergraduate Scholarship Program”. Yakaryılmaz was partially supported
by the ERDF project Nr. 1.1.1.5/19/A/005 “Quantum computers with constant
memory”.

References

1. Abraham, H., et al.: Qiskit: An open-source framework for quantum computing
(2019). https://doi.org/10.5281/zenodo.2562110, doi:10.5281/zenodo.2562110

2. Ajtai, M., Iwaniec, H., Komlós, J., Pintz, J., Szemerédi, E.: Construction of a thin
set with small fourier coefficients. Bull. London Math. Soc. 22(6), 583–590 (1990)

3. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: Strengths, weaknesses
and generalizations. In: 39th Annual Symposium on Foundations of Computer
Science, FOCS ’98. pp. 332–341. IEEE Computer Society (1998)

4. Ambainis, A., Nahimovs, N.: Improved constructions of quantum automata. The-
oretical Computer Science 410(20), 1916–1922 (2009)

5. Ambainis, A., Yakaryilmaz, A.: Automata and quantum computing. CoRR
abs/1507.01988 (2015), http://arxiv.org/abs/1507.01988

6. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computa-
tion. Physical Review A 52(5), 3457–3467 (1995)

7. Kālis, M.: Kvantu Algoritmu Realizācija Fiziskā Kvantu Datorā (Quantum Algo-
rithm Implementation on a Physical Quantum Computer). Master’s thesis, Uni-
versity of Latvia (2018)

8. Mereghetti, C., Palano, B., Cialdi, S., Vento, V., Paris, M.G.A., Olivares, S.: Pho-
tonic realization of a quantum finite automaton. Phys. Rev. Research 2(1), 013089–
013103 (2020)

9. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theo-
retical Computer Science 237(1-2), 275–306 (2000)

10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, USA, 10th edn. (2011)

11. Sipser, M.: Introduction to the Theory of Computation. International Thomson
Publishing, 1st edn. (1996)

12. Tian, Y., Feng, T., Luo, M., Zheng, S., Zhou1, X.: Experimental demonstration of
quantum finite automaton. npj Quantum Inf 5(56) (2019)

https://doi.org/10.5281/zenodo.2562110
http://arxiv.org/abs/1507.01988

	Implementing Quantum Finite Automata Algorithms on Noisy Devices

