Skip to main content

EntDetector: Entanglement Detecting Toolbox for Bipartite Quantum States

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12747))

Abstract

Quantum entanglement is an extremely important phenomenon in the field of quantum computing. It is the basis of many communication protocols, cryptography and other quantum algorithms. On the other hand, however, it is still an unresolved problem, especially in the area of entanglement detection methods. In this article, we present a computational toolbox which offers a set of currently known methods for detecting entanglement, as well as proposals for new tools operating on two-partite quantum systems. We propose to use the concept of combined Schmidt and spectral decomposition as well as the concept of Gramian operators to examine a structure of analysed quantum states. The presented here computational toolbox was implemented by the use of Python language. Due to popularity of Python language, and its ease of use, a proposed set of methods can be directly utilised with other packages devoted to quantum computing simulations. Our toolbox can also be easily extended.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abraham, H., et al.: QISKIT: an open-source framework for quantum computing (2019). https://doi.org/10.5281/zenodo.2562110

  2. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement, 2nd edn. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781139207010

    Book  MATH  Google Scholar 

  3. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992). https://doi.org/10.1007/BF00191318

    Article  MATH  Google Scholar 

  4. Brassard, G., Braunstein, S.L., Cleve, R.: Teleportation as a quantum computation. Physica D 120(1), 43–47 (1998). https://doi.org/10.1016/S0167-2789(98)00043-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935). https://doi.org/10.1103/PhysRev.47.777

    Article  MATH  Google Scholar 

  6. Gharibian, S.: Strong NP-hardness of the quantum separability problem. Quant. Inf. Comput. 10(3 & 4), 343–360 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474(1), 1–75 (2009). https://doi.org/10.1016/j.physrep.2009.02.004

    Article  MathSciNet  Google Scholar 

  8. Gielerak, R., Sawerwain, M.: A Gramian approach to entanglement in bipartite finite dimensional systems: the case of pure states. Quant. Inf. Comput. 20(13 and 14), 1081–1108 (2020). https://doi.org/10.26421/QIC20.13-1

  9. Gielerak, R., Sawerwain, M.: In preparations (2021)

    Google Scholar 

  10. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165–171 (2007). https://doi.org/10.1038/nphoton.2007.22

    Article  Google Scholar 

  11. Golub, G.H., van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  12. Gurvits, L.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 10–19. Association for Computing Machinery, New York (2003). https://doi.org/10.1145/780542.780545

  13. Harris, C.R., Millman, K.J., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  14. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1), 1–8 (1996). https://doi.org/10.1016/S0375-9601(96)00706-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  MathSciNet  MATH  Google Scholar 

  16. Johansson, J., Nation, P., Nori, F.: QuTiP: an open-source python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183(8), 1760–1772 (2012). https://doi.org/10.1016/j.cpc.2012.02.021

    Article  Google Scholar 

  17. Johnston, N.: QETLAB: A MATLAB toolbox for quantum entanglement, version 0.9 (2016). https://doi.org/10.5281/zenodo.44637

  18. Kolaczek, D., Spisak, B.J., Woloszyn, M.: The phase-space approach to time evolution of quantum states in confined systems: the spectral split-operator method. Int. J. Appl. Math. Comput. Sci. 29(3), 439–451 (2019). https://doi.org/10.2478/amcs-2019-0032

    Article  MathSciNet  MATH  Google Scholar 

  19. MATLAB: 9.7.0.1190202 (R2019b). The MathWorks Inc., Natick, Massachusetts (2018)

    Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  21. Sawerwain, M., Wiśniewska, J., Wróblewski, M., Gielerak, R.: GitHub repository for EntDectector package (2021). https://github.com/qMSUZ/EntDetector

  22. Sawerwain, M., Wiśniewska, J., Wróblewski, M., Gielerak, R.: Source code of EntDetector: entanglement detecting toolbox for bipartite quantum states (2021). https://doi.org/10.5281/zenodo.4643878

  23. Tóth, G.: QUBIT4MATLAB V3.0: a program package for quantum information science and quantum optics for MATLAB. Comput. Phys. Commun. 179(6), 430–437 (2008). https://doi.org/10.1016/j.cpc.2008.03.007

  24. Virtanen, P., Gommers, R., Oliphant, T., et al.: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

Download references

Acknowledgments

We would like to thank for useful discussions with the Q-INFO group at the Institute of Control and Computation Engineering (ISSI) of the University of Zielona Góra, Poland. We would like also to thank to anonymous referees for useful comments on the preliminary version of the paper. The numerical results were done using the hardware and software available at the “GPU \(\mu \)-Lab” located at the Institute of Control and Computation Engineering of the University of Zielona Góra, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Sawerwain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gielerak, R., Sawerwain, M., Wiśniewska, J., Wróblewski, M. (2021). EntDetector: Entanglement Detecting Toolbox for Bipartite Quantum States. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12747. Springer, Cham. https://doi.org/10.1007/978-3-030-77980-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77980-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77979-5

  • Online ISBN: 978-3-030-77980-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics