Skip to main content

Use of Blockchain for Ensuring Data Integrity in Cloud Databases

  • Conference paper
  • First Online:
Cyber Security Cryptography and Machine Learning (CSCML 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12716))

Abstract

This paper proposes a novel method for using a PoW-based Blockchain to ensure data integrity in cloud database management systems. The use of cloud platforms for storing data or even hosting databases is incredibly huge, and in many cases, there is no convenient way for a client to check the integrity of the data stored in the cloud database. To solve this, we propose a technique based on an interaction between the cloud platform and a PoW-based Blockchain. This interaction exploits a Distributed Hash Table and lightweight software agents, which are monitoring changes done to cloud database storage nodes. Data update operations are published by the agents as Blockchain log/audit transactions that propagate deep into the Blockchain network until they become immutably and cryptographically protected by it. The proposed method enables the Cloud Provider to manage metadata so that it will be able to easily detect deliberate or accidental corruptions of transactions and to recover the transactions in case such a data corruption incident occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen, D.C., Pathirana, P.N., Ding, M., Seneviratne, A.: Integration of blockchain and cloud of things: Architecture, applications and challenges. IEEE Commun. Surv. Tutor. 22(4), 2521–2549 (2020)

    Article  Google Scholar 

  2. Deka, G.C.: A survey of cloud database systems. IT Professional 16(2), 50–57 (2013)

    Article  Google Scholar 

  3. Zhang, Y., Xu, C., Lin, X., Shen, X.S.: Blockchain-based public integrity verification for cloud storage against procrastinating auditors. In: IEEE Transactions on Cloud Computing, p. 1 (2019). https://doi.org/10.1109/TCC.2019.2908400

  4. Zikratov, I., Kuzmin, A., Akimenko, V., Niculichev, V., Yalansky, L.: Ensuring data integrity using Blockchain technology. In: 2017 20th Conference of Open Innovations Association (FRUCT), pp. 534–539. IEEE (2017)

    Google Scholar 

  5. Gaetani, E., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A., Sassone, V.: Blockchain-based database to ensure data integrity in cloud computing environments (2017)

    Google Scholar 

  6. Basu, A., Dimitrakos, T., Nakano, Y., Kiyomoto, S.: A framework for Blockchain-based verification of integrity and authenticity. In: Meng, W., Cofta, P., Jensen, C.D., Grandison, T. (eds.) IFIPTM 2019. IAICT, vol. 563, pp. 196–208. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33716-2_15

    Chapter  Google Scholar 

  7. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

    Chapter  Google Scholar 

  8. Awerbuch, B., Scheideler, C.: Towards a scalable and robust DHT. Theor. Comput. Syst. 45(2), 234–260 (2009)

    Article  MathSciNet  Google Scholar 

  9. Zyskind, G., Nathan, O.: Decentralizing privacy: using Blockchain to protect personal data. In: 2015 IEEE Security and Privacy Workshops, pp. 180–184. IEEE (2015)

    Google Scholar 

  10. Sankar, L.S., Sindhu, M., Sethumadhavan, M.: Survey of consensus protocols on Blockchain applications. In: 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 1–5. IEEE (2017)

    Google Scholar 

  11. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). https://bitcoin.org/bitcoin.pdf

  12. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151, 1–32 (2014)

    Google Scholar 

  13. Weintraub, G., Gudes, E.: Data integrity verification in column-oriented NoSQL databases. In: Kerschbaum, F., Paraboschi, S. (eds.) DBSec 2018. LNCS, vol. 10980, pp. 165–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95729-6_11

    Chapter  Google Scholar 

  14. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 782–793 (2007)

    Google Scholar 

  15. Wei, P., Wang, D., Zhao, Y., Tyagi, S.K.S., Kumar, N.: Blockchain data-based cloud data integrity protection mechanism. Future Gener. Comput. Syst. 102, 902–911 (2020)

    Article  Google Scholar 

  16. Wong, W.K., Kao, B., Cheung, D.W.L., Li, R., Yiu, S.M.: Secure query processing with data interoperability in a cloud database environment. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 1395–1406 (2014)

    Google Scholar 

  17. Reyhanian, N., Farmanbar, H., Mohajer, S., Luo, Z. Q.: Resource provisioning for virtual network function deployment with in-subnetwork processing. In: 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5. IEEE (2020)

    Google Scholar 

  18. Battah, A.A., Madine, M.M., Alzaabi, H., Yaqoob, I., Salah, K., Jayaraman, R.: Blockchain-based multi-party authorization for accessing IPFS encrypted data. IEEE Access 8, 196813–196825 (2020)

    Article  Google Scholar 

  19. Li, Q.L., Ma, J.Y., Chang, Y.X., Ma, F.Q., Yu, H.B.: Markov processes in blockchain systems. Comput. Soc. Netw. 6(1), 1–28 (2019)

    Article  Google Scholar 

  20. Khanuja, H.K., Adane, D.S.: Database security threats and challenges in database forensic: a survey. In: Proceedings of 2011 International Conference on Advancements in Information Technology (AIT 2011) (2011). http://www.ipcsit.com/vol20/33-ICAIT2011-A4072.pdf

  21. Wang, Z., Minsky, N.H.: Towards secure distributed hash table. In: Guo, S., Liao, X., Liu, F., Zhu, Y. (eds.) CollaborateCom 2015. LNICST, vol. 163, pp. 257–266. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28910-6_23

    Chapter  Google Scholar 

  22. Ara, S.S., Thakur, S., Breslin, J.G.: Secure and distributed crowd-sourcing task coordination using the Blockchain mechanism. In: Montella, R., Ciaramella, A., Fortino, G., Guerrieri, A., Liotta, A. (eds.) IDCS 2019. LNCS, vol. 11874, pp. 402–413. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34914-1_38

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov Vainshtein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vainshtein, Y., Gudes, E. (2021). Use of Blockchain for Ensuring Data Integrity in Cloud Databases. In: Dolev, S., Margalit, O., Pinkas, B., Schwarzmann, A. (eds) Cyber Security Cryptography and Machine Learning. CSCML 2021. Lecture Notes in Computer Science(), vol 12716. Springer, Cham. https://doi.org/10.1007/978-3-030-78086-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78086-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78085-2

  • Online ISBN: 978-3-030-78086-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics