
New methods for metastimuli: architecture,
embeddings, and neural network optimization

Rico A. R. Picone1,2[0000−0002−5091−5175], Dane Webb1[0000−0003−3722−617X],
Finbarr Obierefu3[0000−0001−8935−7222], and Jotham Lentz2[0000−0003−1190−1632]

1 Saint Martin’s University, Lacey WA 98503, USA rpicone@stmartin.edu

http://www.stmartin.edu
2 Dialectica LLC, Olympia WA 98501, USA rico@dialectica.io

http://dialectica.io
3 Université Bourgogne Franche-Comté, Besançon, France

http://www.ubfc.fr

Abstract. Six significant new methodological developments of the previously-
presented “metastimuli architecture” for human learning through ma-
chine learning of spatially correlated structural position within a user’s
personal information management system (PIMS), providing the basis
for haptic metastimuli, are presented. These include architectural in-
novation, recurrent (RNN) artificial neural network (ANN) application,
a variety of atom embedding techniques (including a novel technique
we call “∇” embedding inspired by linguistics), ANN hyper-parameter
(one that affects the network but is not trained, e.g. the learning rate)
optimization, and meta-parameter (one that determines the system per-
formance but is not trained and not a hyper-parameter, e.g. the atom
embedding technique) optimization for exploring the large design space.
A technique for using the system for automatic atom categorization in a
user’s PIMS is outlined. ANN training and hyper- and meta-parameter
optimization results are presented and discussed in service of method-
ological recommendations.

Keywords: Design: Human Centered Design and User Centered Design
· Design: Information design · Technology: Augmented Reality and En-
vironments · Technology: Haptic user interface · Technology: Intelligent
and agent systems · Technology: Natural user interfaces (NUI).

1 Objective and significance

We present six significant developments in the metastimuli architecture intro-
duced by [22]. The goal of the architecture remains: to improve human learning
of textual source material (i.e. text, audio, video with dialog) by presenting
a user with, in addition to their direct experience of the material, correlated
metastimuli that represent (through time) the structural “position” the source
material has in their own personal information management system (PIMS).
Some of the methods of the original architecture [22] are augmented in the ar-
chitecture presented here, illustrated in Figure 1. In particular, the classification

ar
X

iv
:2

10
2.

07
09

0v
1

 [
cs

.A
I]

 1
4

Fe
b

20
21

http://www.stmartin.edu
http://dialectica.io
http://www.ubfc.fr

2 R. A. R. Picone et al.

of atoms of information, which was a discrete process in the original architec-
ture, is here integrated into the training of the primary artificial neural network
(ANN) of the system. In fact, explicit classification has been circumvented al-
together. Furthermore, the original method of atom embedding, which is similar
to sentence embedding with its basis in word embedding, is compared to sev-
eral newer techniques. Two variations of PIMS-trained artificial neural network
(ANN) are compared: a feedforward is compared with a recurrent neural network
(RNN). Finally, the atom embedder and PIMS-trained ANN can be straightfor-
wardly adopted as a standalone classifier in its own right; however, since explicit
classification is not strictly required for metastimuli, its presentation is limited
to a structural exposition.

user
stimulus

PIMSPIMS ANNembedder

actuator

x

ŷ

meta-
stimulus

a

Fig. 1. The metastimuli system architecture. An atom a of stimulus, experienced di-
rectly by the user, is, in textual form, also directed through an embedder block that
embeds the atom as a vector x, which is the input to an artificial neural network (ANN)
pre-trained on the user’s structured personal information management system (PIMS).
The output of the ANN ŷ is a low-dimension real vector representing the structural
“location” of the atom a, which is converted by an actuator into a metastimulus (e.g.
haptic stimulus). [21]

2 Methods

The six methodological innovations are presented below.

2.1 Integrated PIMS classification

Figure 2 illustrates the new training loop for the PIMS ANN. A key innovation
here is that the projected PIMS representation is trained-into the ANN such
that a separate classification process is circumvented altogether.

2.2 Recurrent PIMS-trained ANN

We compare the performance of a FFNN and a RNN for the PIMS ANN object
in Figure 2 and Figure 4. FFNNs are a simple form of neural networks with a

Metastimuli: architecture, embeddings, ANN optimization 3

PIMS

atom
embedder

PIMS
ANN

node
lookup

PCA
projection

(a,C)

a x ŷ

C c y

backprop

Fig. 2. Training of the PIMS ANN. An atom a with category label C (corresponding
to the structural “location” of a) from a training set of the user’s PIMS is directed
to two paths, the upper for the atom and the lower for the category label. The atom
embedder encodes the atom a as vector x, which is the input to the PIMS ANN.
The category C is first given a high-dimensional one-hot vector representation c, then
projected via principal component analysis (PCA) projection to low-dimensional y,
which is the numerical label of the atom. The difference between this and the ANN
output ŷ is then backpropagated. [19]

lot of general utility. Connections in FFNNs do not loop and the information
always moves “forward”, (input layer to hidden layer to output layer). RNNs
are excellent for natural language processing tasks. RNNs are able to use the
sequential nature of natural language in the neural network architecture.

2.3 Null set validation

One of the conventionally presented results of an ANN training is a plot of
training and (sometimes) testing loss versus training epoch. A downward trend
of training loss signifies learning, whereas the downward trend of testing loss sig-
nifies the generality of that learning beyond the training set. Overfitting occurs
when the ANN learns to predict the testing data to the detriment of generality
therebeyond. In the context of natural language processing (NLP), overfitting
is the learning of specific semantic (meaning) constructions to the detriment of
recognizing similar constructions, observable when the training loss continues to
decrease while the testing loss begins to increase. Mitigation techniques for over-
fitting include the familiar “dropout” method in which certain data is ignored
during parts of training.

A question remains, however: how significant is the learning, really? The
magnitude of loss is not easily compared between data sets and learning meth-
ods, and there is no readily available “baseline” for comparison. Now consider an
ANN’s prediction performance on a set of testing data that is randomly labeled,
meaning its semantic content is as unrelated to its labels as possible. Such a test-
ing set should show, on average, no learning (reduced loss) and can be thought
of as representing a sort of contextually relevant “random guess” of predictions.
We call this data a null set ; this is illustrated in Figure 3.

It is difficult in practice to construct a null set that is truly unrelated to
the content, however, given that the content and labels, despite their random
assignment, are always already somewhat related. Therefore, a small amount of

4 R. A. R. Picone et al.

labeled data mislabeled (null) data

training

validation

testing
mutu

ally
 ex

clu
siv

e p
art

itio
n

This randomly
(mis)labeled data is
used to validate the
testing performance:
this set should, on
average, perform
worse than the testing
set. It is best practice
to generate several
null sets and average
the results. copy data

randomly label

Fig. 3. An illustration of the data partitions, including the null partition, a copy of the
testing data labeled randomly. This technique is derived from the experimental and
statistical validation method of the same name. Despite the significant computational
overhead, computing the loss for several null sets and averaging them for comparison to
training loss (which should be lower) is recommended at least during early development
of a new model. [18]

learning does in fact occur, but it represents a contextual “baseline” for training
and testing loss. The null loss baseline places a lower-bound on performance
metrics.

It is best to generate several randomly labeled copies of the testing data, test
the network on all of them and averaging the loss (to mitigate any “luck” in
the randomly assigned labels). This does increase computational cost, especially
if undertaken at every training epoch, so its use should be limited to early
development and final testing of an ANN model.

The term “null” is used to draw attention to the similarity of this technique
with the null hypothesis testing of statistics and “null sample” measurement
in experimental physics, in which the results of a challenging experiment are
considered well-validated when the only difference between two measurements is
the sample, one of which is of interest and the other of which yields a baseline,
zero, or null result.

2.4 Atom embeddings

Word embeddings are representations of words in a real vector space that main-
tains word context and relations thereamong. Embeddings can be learned via
a neural network from training data that includes many examples of natural-
language usage of the words in question [5]. Embeddings of words that, in the
training set, appear in similar contexts, drift toward each other over the course
of training.

Sentence embeddings are similar to word embeddings in that they encode
a sentence as a vector that represents the semantics of each sentence. Sentence
embeddings are typically mapped or learned from component word embeddings.

Metastimuli: architecture, embeddings, ANN optimization 5

Good embeddings filter some of the sharper contrasts in sentences and help
convey the context, intention, and subtleties in the text.

Sentence embedding techniques can be adapted to word sequences of different
length. Our application calls for approximately paragraph-length sequences we
call atoms.

Embedding atoms In both the training loop, Figure 2, and in application,
Figure 4, the atom embedder converts atoms to vector representations that the
PIMS ANN can process. The atom embedder contains a word embedder that
encodes each word into its word embedding vector. An atom a of word embedding
vectors is then encoded into an atom embedding x.

Two word embedders are evaluated. The first is trained with a relatively small
custom corpus and the second is trained with a large publicly available corpus.
The custom corpus contains a mechatronics textbook and a dynamic systems
textbook written by one of the authors. The large dataset is from TensorFlow
Datasets, the “scientific-papers” corpus [6], which contains over 200,000 scientific
papers from https://ArXiv.org.

Quality of embeddings depends on the specificity of the dataset to the use-
case and on the size of the dataset. We compare the performance of the small
but specific custom corpus and the large but less-specific corpus.

There are several sentence embedding methods that can be applied to atoms.
We evaluate the relative performance of several of these methods.

Four candidate methods are described below.

Bag of Words (BOW) sums or averages component word embedding vectors.
While surprisingly accurate for its simplicity, word order, distance between
words, and semantics are lost. [13]

Distributed Memory “Paragraph” Vector (PVDM) assigns each sentence
(“paragraph”) in an atom a trained identification (ID) vector. This ID vector
and its sentence’s word vectors are trained together. [13]

Smooth Inverse Frequency (SIF) computes sentence embeddings as a weighted
average of word vectors. [1]

Universal Sentence Encoders Averages all the words of a sentence before
feeding into multi-layered ANN. [4]

The results of section 3 include the first two above, and the novel∇-embeddings
presented below.

∇ embeddings The father of linguistics, Ferdinand de Saussure introduced the
concept of the differential value of meanings and words. First considering the
signifier or word.

The important thing in the word is not the sound alone but the phonic
differences that make it possible to distinguish this word from all others,
for differences carry signification. This may seem surprising, but how
indeed could the reverse be possible? Since one vocal image is no better

https://ArXiv.org

6 R. A. R. Picone et al.

suited than the next for what it is commissioned to express, it is evident,
even a priori, that a segment of language can never in the final analysis
be based on anything except its noncoincidence with the rest. Arbitrary
and differential are two correlative qualities. [28, p. 118]

So the “vocal image” or word is itself arbitrary and only takes on meaning in its
difference from others. Consider the following with regard to meaning.

Instead of pre-existing ideas then, we find [...] values emanating from the
system. When they are said to correspond to concepts, it is understood
that the concepts are purely differential and defined not by their positive
content but negatively by their relations with the other terms of the
system. Their most precise characteristic is in being what the others are
not. [28, p. 117]

This differentiality holds for both the word and its meaning.

Word embeddings differentially (usually via recurrence) embed word mean-
ings. Therefore, when considering a sentence or paragraph embedding—for us,
an atom embedding—it is worth considering differentiality. For instance, con-
sider the sentence She opens tonight. Not until the final word do the preceding
words take on their proper meaning: She opens . . . could go a different way,
such as She opens presents. So tonight actually fixes the meaning of opens, in
this case in the sense: she is the opening act.

There is much nuance, here. The bag-of-words methods of sentence embed-
ding that sum or average the word embeddings in a sentence retain some differ-
entiality of meaning left over from the word embeddings, but they ignore order,
which impacts the differential meanings. Several newer methods, including those
listed above, encode in some way the ordering of words, but increase (system
and computational) complexity significantly.

We introduce a simple approach we call ∇-embeddings. Consider atom a and
the difference between two sequential word embedding vectors ei and ei+1,

∇1
i = ei+1 − ei. (1)

Furthermore, consider the next-level of difference of differences

∇2
i = ∇2

i+1 −∇2
i (2)

such that ∇ji signifies the ith difference at the jth level. Proceeding in an array
over an atom with ν words, we obtain the following inverted Pascal’s triangle,

Metastimuli: architecture, embeddings, ANN optimization 7

standing on its head if you will.

e1 e2 e3 · · · eν−2 eν−1 eν

∇1
1 ∇1

2 · · · ∇1
ν−2 ∇1

ν−1

∇2
1 · · · ∇2

ν−1
. . .

... . .
.

. . .
... . .

.

∇ν−11

Furthermore, consider a sum xj over a level j,

xj =
∑
i

∇ji . (3)

This is a ∇j-embedding of the atom a. Note that even a ∇1-embedding retains
some differential information.

This new embedding method is applicable to atoms, paragraphs, and sen-
tences. It is included among the established atom embedding methods in the
results of section 3.

Keyword weighting Artificial neural networks encode a large range of subtle
and crude characteristics/representation of text. We expect that much correct
categorization could be achieved with simple keyword4 identification (e.g. the
category voltage likely applies to an atom containing the word volts), so the
ANN should include similar functionality.

This functionality is trained into the network by multiplying keyword vectors
by a keyword weighting factor that scales the corresponding embedding vectors
inflate atom vectors, effectively expressing the greater importance of keywords
in an atom embedding.

A concern with weighting the keywords is that the ANN may ignore semantic
content and rely too much on simple keyword recognition. Dropout that simply
removes random atoms from each training cycle, already used to reduce gen-
eral overfitting, is one method to counter this concern. Another is to include
the keyword scaling factor as meta-parameter to be optimized, as described be-
low. In this way, if semantic content is undervalued, the optimizer will adjust
accordingly.

4 Using available machine learning natural language libraries, such as the popular
NLTK used here [2], it is straightforward to lemmatize a category name in order to
generate relevant keywords automatically.

8 R. A. R. Picone et al.

2.5 Meta- and hyper-parameter optimization

Optimization weights and biases of a ANN, are commonly optimized by gradient
descent algorithms. Gradient descent algorithms are fast and are guaranteed to
reach a minimum. ANN training space is not plagued by large numbers of local
minimum. Instead, vanishing gradients and saddle points are issues.

Alternatively, the meta-parameters and the remaining hyper-parameters do
present a plane with many local minima. The hyper-parameters are tuned using
keras-tuner. Keras-tuner includes three, not including sklearn, derivative-free
optimizers. Random search, bayesian, and hyperband are included within the
keras-tuner module.

Meta-parameters are optimized with a pattern search algorithm. Any deriva-
tive free algorithm could be substituted that works well with integer objective
variables, scales search range near minimum, and is quick.

Table 1. A list of hyper-parameters optimized via keras-tuner and their possible values.
The hyparameters are partitioned into those related to the ANN architecture and those
related to the ANN training.

hyper-parameter possible values

ANN architecture

weights/biases R
activation function tanh, σ, S

hidden layers Z+

features Z+

ANN training

gradient-based optimizer parameters optimizer-dependent

learning rate R+

training epochs Z+

Hyper-parameter optimization Hyper-parameter optimization is handled
by the Keras-tuner library. The three tuners available in the library are random
search, bayesian optimization, and hyperband. For an explanation of the random
search algorithm see Rastrigin [26], for bayesian optimization see Pelikan et al.
[17], and for hyperband see Li et al. [15]. The parameters optimized by the
hyper-parameter optimization are shown in Table 1.

Meta-parameter optimization Pattern search is one of many derivative-free
optimization algorithms that be acceptable. Pattern search has all the traits
required. Pattern search is used because it is an algorithm that is relatively easy
to implement.

Metastimuli: architecture, embeddings, ANN optimization 9

Further optimization could be conducted by comparing additional search
algorithms. Choosing the best meta-parameter optimization is a ”trial and error”
search. Finding the optimal meta-parameter optimizer is too resource expensive
at this stage.

Algorithm 1 details the pattern search algorithm where X(new) is the new
base point, X ′ is the new temporary base point, X is the initial base point, δ is
the pattern step size, and α is an acceleration factor.

Algorithm 1 Pattern search algorithm [3, p. 51]

procedure PatternSearch(input,variables,here)
Define parameters for the algorithm.
Generate a random base point X.
while The difference between the previous base point best fitness and the current

base point best fitness is greater than the minimum difference. do
Generate exploratory points in a pattern, the mesh, around the base point X.
X(new) = the best exploratory point
if The fitness of the best exploratory point X(new) is better than the fitness

of the base point X then
X(new) ← best exploratory point
µ← µ0 . reset mesh size
while X(new) is better than X do

X ′ ← X . set exploratory point as new base point
X ← X(new)

X(new) ← X ′ + α · (X −X ′) . pattern move
Generate exploratory points in a pattern around the new base point.
X(new) ← the best new generated point

end while
else µ(new) ← µ− δ . decrease the mesh size
end if

end while
end procedure

2.6 PIMS ANN as a classifier, a bonus application

As has been noted, the new metastimuli architecture circumvents the need to
explicitly classify each atom. However, and this classification is in a sense im-
plicit in the output of the PIMS ANN ŷ. All that is needed to yield an explicit
classification of each atom is a relatively simple procedure depicted in Figure 4:
a (one) nearest-neighbor search, an inverse principle component analysis (PCA)
projection, and an inverse node lookup. This is superfluous for metastimuli, but
can be deployed as an auto-classifier for other applications with similar PIMS
structures.

10 R. A. R. Picone et al.

Table 2. A list of meta-parameters optimized through pattern search and their possible
values. The meta-parameters are partitioned into those related to the atom embeddings
and those related to the ANN.

meta-parameter possible values

embeddings

projection/output dimensions Z+

word em. model/input dimensions Z+

keyword weighting R+

atom embedding method BOWΣ, , BOWµ, PVDM, ∇

ANN

gradient-based optimizer SGD, Adam, AdaGrad,

AdaDelta, AdaMax,

RMSprop

ANN architecture FFNN, RNN

tuner optimizer random search, hyperband,

Bayesian

tuner parameters optimizer-dependent

atom
embedder

PIMS
ANN

nearest
neigh. search

inverse
node lookup

inverse PCA
projection

atom a x ŷ

yccat. C

Fig. 4. An atom classifier derived from the atom embedder, PIMS ANN, the inverse
PCA projection, and an inverse node lookup. The ANN has been trained on the user’s
PIMS structure, thereby making its output a low-dimensional estimate of the atom’s
“location” in the user’s PIMS. Converting this estimate into “node space” requires a
nearest-neighbor search, which can occur as shown, before inverse projection, or after.
[20]

Metastimuli: architecture, embeddings, ANN optimization 11

3 Results

Several new methods of metastimuli generation are presented, including an im-
provement to the overall metastimuli architecture. Variations on each method
are compared, resulting in application-specific recommendations. The software
tools we develop and present are made available as public repositories (those
already available are [23,35,36]).

3.1 Learning by epoch

During optimization, each generated ANN model with its meta-parameter and
hyper-parameter set is trained for 10 epochs. This is not enough training to
produce a usable model but is sufficient as a comparison. Better meta- and
hyper-parameter sets produce better models that demonstrate lower fitness. The
short training is necessary to conserve resources as a single optimization may
require hundreds of models to be trained.

Therefore, at the end of optimization, the model with the optimal meta- and
hyper-parameters must be trained significantly longer to complete the optimiza-
tion process with a fully optimized ANN.

In deep learning, which we use here, longer training will continue to improve
the loss of the ANN for the dataset upon which it trains.

The optimal ANN with meta- and hyper-parameter is trained for 200 epochs.
After each training epoch, the ANN evaluates the testing dataset, which is la-
beled data withheld during the training process. Evaluating the testing set after
each training epoch demonstrates the ANN is learning from similar data and
not merely memorizing the dataset it trains on, which is called overfitting.

Upon completion of the test dataset evaluation, the model was tested on the
null dataset. For a full discussion on the use of the null dataset, see subsection
2.3.

3.2 Meta- and hyper-parameter optimization

Figure 6 shows the pattern search fitness for each iteration. The first chosen
value is the initial, randomly generated base point or set of meta-parameters.
The second chosen value is the set of meta-parameters that results in a ANN
with the lowest fitness compared with the initial set of meta-parameters and
the parent exploratory set of meta-parameter sets. This chosen value is the new
base point X(new). A pattern move creates a new temporary base point with a
new temporary exploratory set. This sequence is repeated for the third chosen
meta-parameter set.

Iterations after the third chosen meta-parameter did not result in a ANN
with lower fitness. The pattern search algorithm continued creating exploratory
sets with changing mesh sizes probing the design space until the search limit
was reached. The maximum of number of exploratory sets without a change in
base point is set at three for this run. The maximum number of exploratory sets
is set at three to reduce computation expenses as continuing the pattern search

12 R. A. R. Picone et al.

200
10 6

10 5

10 4

10 3
di

m
 0

 lo
ss Train

Test
Nullset

10 6

10 5

10 4

10 3

di
m

 1
 lo

ss Train
Test
Nullset

200
epochs

10 3

10 2

10 1

100

di
m

 2
 lo

ss

Train
Test
Nullset

200epochs

10 3

10 2

di
m

 3
 lo

ss

Train
Test
Nullset

Fig. 5. The loss for training, testing, and null data by training epoch with the optimal
meta- and hyper-parameters. As we expect, the null loss, which is the mean loss of five
models, performs poorly compared to the training and testing loss. The training loss
is used for ANN backpropagation. The testing loss shows how the model performs at
that epoch. It is important to note that the models were not updated based on testing
or null loss, only based on training loss.

Metastimuli: architecture, embeddings, ANN optimization 13

algorithm would be result in a large increase in computation time with nominal
reduction in fitness.

0 10 20 30 40 50 60 70 80
iteration

10 3

10 2

10 1
fit

ne
ss

attempted
chosen

0 10 20 30 40 50 60 70 80
iteration

10 3

10 1

101

lo
ss

attempt train
attempt test
chosen train
chosen test

Fig. 6. Meta-parameter and hyper-parameter search results in the form of the (top)
pattern search fitness and (bottom) final loss (averaged over dimensions) for each pat-
tern search iteration. The zero iteration chosen meta-parameter set is the initial “base
point” or randomly generated set of meta-parameters. Subsequent chosen sets are ex-
ploratory points with the better fitness than the base point and their set. The ANN is
trained for ten epochs with a given set of meta-parameters and hyper-parameters.

4 Discussion

The results depend on a significant number of meta- and hyper-parameters, opti-
mized according to the methods described above. Beyond the results themselves,
it is challenging to make general statements that are not potentially mislead-
ing; for instance, that technique X is better than technique Y. However, with
these qualifications and despite the risk of black swans,5 we present comparisons
among techniques despite the limited scope of evidence.

5 See Hume and the “problem of induction.”

14 R. A. R. Picone et al.

Table 3. Optimal hyper-parameters learning rate, optimizer parameters, and number
of hidden layers. The first value of the activation function and features is the input
layer.

dimension hyper-parameter optimal values

0

learning rate 3.76× 10−4

optimizer parameters β1 = 0.900, β2 = 0.996

hidden layers 8

1

learning rate 4.45× 10−4

optimizer parameters β1 = 0.900, β2 = 0.936

hidden layers 3

2

learning rate 5.06× 10−3

optimizer parameters β1 = 0.950, β2 = 0.936

hidden layers 2

3

learning rate 9.25× 10−3

optimizer parameters β1 = 0.900, β2 = 0.992

hidden layers 5

Table 4. Optimal hyper-parameters activation function and number of features for
each ANN layer and projection/output dimension. Layer 0 is the input layer.

dim. hyper-parameter ANN layer

0 1 2 3 4 5 6 7 8

0
activation fun. tanh σ tanh tanh tanh tanh tanh tanh tanh

features 760 88 8 8 8 8 8 8 8

1
activation fun. tanh σ tanh tanh

features 328 1368 8

2
activation fun. tanh S tanh

features 784 1216 8

3
activation fun. σ tanh tanh tanh tanh tanh

features 696 1168 8 8 8 8

Metastimuli: architecture, embeddings, ANN optimization 15

Table 5. The optimal meta-parameters from the meta-parameter optimization.

meta-parameter optimal values

embeddings

projection/output dimensions 4

word em. model/input dimensions 20

keyword weighting 5

atom embedding method PVDM

ANN

gradient-based optimizer Adam

ANN architecture FFNN

tuner optimizer random search

4.1 Optimal meta-parameters and hyper-parameters

The optimal hyper-parameters of Table 3 and Table 4 and optimal meta-parameters
of Table 5 represent the “best” of each parameter found in this study. Focusing
on the meta-parameters of Table 5, the optimal number of projection/output
dimensions, which is the dimension of the metastimuli, is four, a manageable
number in terms of current haptic devices. The optimal number of word embed-
ding or model input dimension was 20. Keyword weighting optimized at five,
which means scaling keyword embeddings derived directly from PIMS category
names was effective (a weight of unity would imply no improvement); however, it
is not so high as to imply that semantic content was irrelevant. The distributed
memory paragraph vector (PVDM) was the optimal atom embedding method,
implying that it was superior to the bag-of-words and ∇ methods, which is not
particularly surprising given that it is a more advanced technique.

Regarding the gradient-based hyper-parameter optimizer technique, the Adam
optimizer proved superior to SGD, AdaGrad, AdaDelta, AdaMax, and RM-
Sprop. The Adam optimizer is a stochastic gradient descent method developed
by Kingma and Ba [11]. Surprisingly, the feed-forward neural network performed
better than the recurrent neural network. It should be noted, however, that the
meta-parameter optimizer switched back-and-forth several times between the
two architectures; we suspect further study may show the RNN to perform bet-
ter. The optimal hyper-parameter tuner optimizer was random search, outper-
forming the hyperband and Bayesian optimizers.

4.2 Directions of the work

The results presented here are promising: the ANNs can learn on relatively
limited datasets and perform reasonably well at associating a meaningful (in
terms of a user’s PIMS) low-dimension real vector to atoms not previously seen.
However, much work remains before the hypothesis of the “metastimulus bond
effect” [22] on human learning can be studied directly. Before a study can be
conducted, two significant results must be achieved:

16 R. A. R. Picone et al.

1. a haptic interface must be developed to apply the real vectors resulting from
the work presented above (i.e. to apply metastimuli) and

2. users (study participants) must be provided a software environment for cre-
ating their own PIMSs that can be processed by the PIMS filter software.

Both directions are currently being pursued by the authors.

5 Acknowledgements

This work used the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation grant number
ACI-1548562, through the allocation for Shawn Duan (user: Dane Webb) [33,39].
Specifically, it used the Bridges system (bridges-gpu.psc.xsede.org), which is sup-
ported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing
Center (PSC) [16]. We thank TJ Olesky of PSC for their assistance with porting
code over to Bridges.

References

1. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence
embeddings (2016)

2. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python:
Analyzing Text with the Natural Language Toolkit. O’Reilly, Beijing
(2009). https://doi.org/http://my.safaribooksonline.com/9780596516499, http://
www.nltk.org/book

3. Bozorg-Haddad, O., Solgi, M., Löı, H.A., et al.: Meta-heuristic and evolutionary
algorithms for engineering optimization. John Wiley & Sons (2017)

4. Cer, D., Yang, Y., Kong, S.y., Hua, N., Limtiaco, N., John, R.S., Constant, N.,
Guajardo-Cespedes, M., Yuan, S., Tar, C., et al.: Universal sentence encoder. arXiv
preprint arXiv:1803.11175 (2018)

5. Charniak, E.: An Introduction to Deep Learning. Addison-wesley Data & Ana-
lytics, Addison Wesley Professional (2018), https://mitpress.mit.edu/books/

introduction-deep-learning

6. Cohan, A., Dernoncourt, F., Kim, D.S., Bui, T., Kim, S., Chang, W., Gohar-
ian, N.: A discourse-aware attention model for abstractive summarization of long
documents. Proceedings of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers) (2018). https://doi.org/10.18653/v1/n18-2097,
http://dx.doi.org/10.18653/v1/n18-2097

7. Fredembach, B., de Boisferon, A.H., Gentaz, E.: Learning of arbitrary association
between visual and auditory novel stimuli in adults: the “bond effect” of haptic
exploration. PloS one 4(3), e4844 (2009)

8. Jung, J., Jiao, Y., Severgnini, F.M., Tan, H.Z., Reed, C.M., Israr, A., Lau, F.,
Abnousi, F.: Speech communication through the skin: Design of learning protocols
and initial findings. In: Marcus, A., Wang, W. (eds.) Design, User Experience, and
Usability: Designing Interactions. pp. 447–460. Springer International Publishing,
Cham (2018)

https://doi.org/http://my.safaribooksonline.com/9780596516499
http://www.nltk.org/book
http://www.nltk.org/book
https://mitpress.mit.edu/books/introduction-deep-learning
https://mitpress.mit.edu/books/introduction-deep-learning
https://doi.org/10.18653/v1/n18-2097
http://dx.doi.org/10.18653/v1/n18-2097

Metastimuli: architecture, embeddings, ANN optimization 17

9. Kant, I., Guyer, P., Wood, A.: Critique of Pure Reason. The Cambridge Edition
of the Works of Immanuel Kant, Cambridge University Press (1999)

10. Karim, M.R.: Deep-learning-with-tensorflow (Apr 2017), https://github.com/

PacktPublishing/Deep-Learning-with-TensorFlow/graphs/contributors

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2017)
12. Kowsari, K., Heidarysafa, M., Brown, D.E., Meimandi, K.J., Barnes, L.E.: RMDL:

random multimodel deep learning for classification. CoRR abs/1805.01890
(2018), http://arxiv.org/abs/1805.01890

13. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International conference on machine learning. pp. 1188–1196 (2014)

14. Lehoucq, R., Maschhoff, K., Sorensen, D., Yang, C.: Arpack software, https://
www.caam.rice.edu/software/ARPACK/

15. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of
Machine Learning Research 18(1), 6765–6816 (2017)

16. Nystrom, N.A., Levine, M.J., Roskies, R.Z., Scott, J.R.: Bridges: A uniquely flex-
ible hpc resource for new communities and data analytics. In: Proceedings of the
2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyber-
infrastructure. XSEDE ’15, Association for Computing Machinery, New York,
NY, USA (2015). https://doi.org/10.1145/2792745.2792775, https://doi.org/

10.1145/2792745.2792775

17. Pelikan, M., Goldberg, D.E., Cantú-Paz, E., et al.: Boa: The bayesian optimization
algorithm. In: Proceedings of the genetic and evolutionary computation conference
GECCO-99. vol. 1, pp. 525–532. Citeseer (1999)

18. Picone, R.: Null data for machine learning (Dec 2020).
https://doi.org/10.6084/m9.figshare.13473834.v1

19. Picone, R.: Artificial neural network training with per-
sonal information management system integration (Feb 2021).
https://doi.org/10.6084/m9.figshare.13886231.v1

20. Picone, R.: An atom classifier architecture for an artificial neural net-
work trained on a personal information management system (Feb 2021).
https://doi.org/10.6084/m9.figshare.13886450.v1

21. Picone, R.: Metastimuli system architecture (Feb 2021).
https://doi.org/10.6084/m9.figshare.13884095.v1

22. Picone, R.A.R., Webb, D., Powell, B.: Metastimuli: An introduction to pims filter-
ing. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition. Human
Cognition and Behavior. pp. 118–128. Springer International Publishing, Cham
(2020)

23. Picone, R.A.: ricopicone/pims-filter: Pims filter (Jan 2020).
https://doi.org/10.5281/zenodo.3633355

24. Picone, R.A., Lentz, J., Powell, B.: Human Interface and the Management of In-
formation: Information, Knowledge and Interaction Design, Lecture Notes in Com-
puter Science, vol. 10273, chap. The Fuzzification of an Information Architecture
for Information Integration, pp. 145–157. Springer International Publishing (July
2017). https://doi.org/10.1007/978-3-319-58521-5 11

25. Picone, R.A., Powell, B.: A new information architecture: A synthesis of structure,
flow, and dialectic. In: Yamamoto, S. (ed.) Human Interface and the Manage-
ment of Information. Information and Knowledge Design, Lecture Notes in Com-
puter Science, vol. 9172, pp. 320–331. Springer International Publishing (2015).
https://doi.org/10.1007/978-3-319-20612-7 31

https://github.com/PacktPublishing/Deep-Learning-with-TensorFlow/graphs/contributors
https://github.com/PacktPublishing/Deep-Learning-with-TensorFlow/graphs/contributors
http://arxiv.org/abs/1805.01890
https://www.caam.rice.edu/software/ARPACK/
https://www.caam.rice.edu/software/ARPACK/
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.6084/m9.figshare.13473834.v1
https://doi.org/10.6084/m9.figshare.13886231.v1
https://doi.org/10.6084/m9.figshare.13886450.v1
https://doi.org/10.6084/m9.figshare.13884095.v1
https://doi.org/10.5281/zenodo.3633355
https://doi.org/10.1007/978-3-319-58521-5_11
https://doi.org/10.1007/978-3-319-20612-7_31

18 R. A. R. Picone et al.

26. Rastrigin, L.: The convergence of the random search method in the extremal control
of a many parameter system. Automaton & Remote Control 24, 1337–1342 (1963)

27. Saerens, M., Fouss, F., Yen, L., Dupont, P.: The principal components analysis of a
graph, and its relationships to spectral clustering. In: Boulicaut, J.F., Esposito, F.,
Giannotti, F., Pedreschi, D. (eds.) Machine Learning: ECML 2004. pp. 371–383.
Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

28. Saussure, F.d.: Course in General Linguistics. Columbia University Press (1916)

29. Scipy: Sparse eigenvalue problems with arpack, https://docs.scipy.org/doc/

scipy/reference/tutorial/arpack.html

30. Shahid, N., Perraudin, N., Kalofolias, V., Puy, G., Vandergheynst, P.: Fast robust
pca on graphs. IEEE Journal of Selected Topics in Signal Processing 10(4), 740–
756 (June 2016). https://doi.org/10.1109/JSTSP.2016.2555239

31. Sporleder, C., Lapata, M.: Automatic paragraph identification: A study across lan-
guages and domains. In: Proceedings of the 2004 Conference on Empirical Methods
in Natural Language Processing. pp. 72–79 (2004)

32. Stein, B.E., Meredith, M.A., Wallace, M.T.: Development and neural basis of mul-
tisensory integration. The development of intersensory perception: Comparative
perspectives pp. 81–105 (1994)

33. Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazle-
wood, V., Lathrop, S., Lifka, D., Peterson, G.D., Roskies, R., Scott, J.R., Wilkins-
Diehr, N.: Xsede: Accelerating scientific discovery. Computing in Science & En-
gineering 16(5), 62–74 (Sept-Oct 2014). https://doi.org/10.1109/MCSE.2014.80,
doi.ieeecomputersociety.org/10.1109/MCSE.2014.80

34. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J.,
Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A.R.J., Jones, E.,
Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E.W., Vand erPlas,
J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris,
C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Contribu-
tors, S...: SciPy 1.0–Fundamental Algorithms for Scientific Computing in Python.
arXiv e-prints arXiv:1907.10121 (Jul 2019)

35. Webb, D.: danewebb/tag-classification: Initial release of tag-classification (2020).
https://doi.org/10.5281/zenodo.3633402

36. Webb, D., Picone, R.A.: danewebb/tex-tagging: Initial release of tex-tagging
(2020). https://doi.org/10.5281/zenodo.3633400

37. Webb, D., Picone, R.A., Obierefu, F.: Metastimuli-Project. https://github.com/
dialectic/Metastimuli-Project (2021)

38. Webb, D., Picone, R.A., Obierefu, F.: Metastimulighter (Feb 2021).
https://doi.org/10.5281/zenodo.4539755

39. Wilkins-Diehr, N., Sanielevici, S., Alameda, J., Cazes, J., Crosby, L., Pierce,
M., Roskies, R.: An overview of the xsede extended collaborative support pro-
gram. In: High Performance Computer Applications - 6th International Confer-
ence, ISUM 2015, Revised Selected Papers. Communications in Computer and
Information Science, vol. 595, pp. 3–13. Springer Verlag, Germany (1 2016).
https://doi.org/10.1007/978-3-319-32243-8 1

40. Wittgenstein, L., Anscombe, G.: Philosophical Investigations: The German Text,
with a Revised English Translation. Blackwell (2001)

41. Zaccone, G., Karim, M.: Deep Learning with TensorFlow: Explore neural networks
and build intelligent systems with Python, 2nd Edition. Packt Publishing (2018)

https://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html
https://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html
https://doi.org/10.1109/JSTSP.2016.2555239
https://doi.org/10.1109/MCSE.2014.80
doi.ieeecomputersociety.org/10.1109/MCSE.2014.80
https://doi.org/10.5281/zenodo.3633402
https://doi.org/10.5281/zenodo.3633400
https://github.com/dialectic/Metastimuli-Project
https://github.com/dialectic/Metastimuli-Project
https://doi.org/10.5281/zenodo.4539755
https://doi.org/10.1007/978-3-319-32243-8_1

Metastimuli: architecture, embeddings, ANN optimization 19

A Software repositories

The software written to generate the results presented in this work is open-source
and can be found in the permanent software repository of [38]. The ongoing
development of the software is hosted at the GitHub repository [37]. Several
sub-repositories are included: [35,23,36].

	New methods for metastimuli: architecture, embeddings, and neural network optimization

