Skip to main content

A Literature Review on a Neuro-Psychological Approach to Immersive Technology Research

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12776))

Included in the following conference series:

Abstract

One of the challenges of immersive technology research is that its increasing system complexity makes evaluating the user experience difficult. The use of an electroencephalogram (EEG) has been suggested as a promising approach to understanding the user’s cognitive, emotional, and behavioral responses to immersive technology. However, the translation of this method into clear applications for user research remains challenging. To address this challenge, this paper outlines a systematic literature review to identify the applications of EEG measures currently adopted in immersive technology research. The full range of journal articles and major conference proceedings that reference the adoption of EEG measures to address immersive technology usage issues were searched. Based on rigorous inclusion and exclusion criteria, 84 relevant papers were identified and reviewed in the study. This literature review involves analysis of bibliometric data, research contexts, EEG analysis methods, and EEG stimuli. Presented in this paper are research gaps identified and opportunities for future research recommended based on the analysis results. This study contributes to advancing our knowledge about how to collect and analyze EEG data in immersive technology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anopas, D., Wongsawat, Y.: Virtual reality game for memory skills enhancement based on QEEG. In: 2014 7th Biomedical Engineering International Conference (BMEiCON), pp. 1–5. IEEE (2014)

    Google Scholar 

  2. Baker, T.E., Holroyd, C.B.: The topographical N170: electrophysiological evidence of a neural mechanism for human spatial navigation. Biol. Psychol. 94(1), 90–105 (2013)

    Article  Google Scholar 

  3. Baltatzis, V., Bintsi, K.-M., Apostolidis, G.K., Hadjileontiadis, L.J.: Bullying incidences identification within an immersive environment using HD EEG-based analysis: a swarm decomposition and deep learning approach. Sci. Rep. 7(1), 17292 (2017)

    Article  Google Scholar 

  4. Banaei, M., Hatami, J., Yazdanfar, A., Gramann, K.: Walking through architectural spaces: the impact of interior forms on human brain dynamics. Front. Hum. Neurosci. 11, 477 (2017)

    Article  Google Scholar 

  5. Bartholow, B.D., Amodio, D.M.: Brain potentials in social psychological research. Methods in social neuroscience, vol. 198 (2009)

    Google Scholar 

  6. Bauman, B., Seeling, P.: Visual interface evaluation for wearables datasets: predicting the subjective augmented vision image QoE and QoS. Fut. Internet 9(3), 40 (2017)

    Article  Google Scholar 

  7. Baumeister, J., Reinecke, K., Cordes, M., Lerch, C., Weiß, M.: Brain activity in goal-directed movements in a real compared to a virtual environment using the nintendo WII. Neurosci. Lett. 481(1), 47–50 (2010)

    Article  Google Scholar 

  8. Baumgartner, T., Valko, L., Esslen, M., Jäncke, L.: Neural correlate of spatial presence in an arousing and noninteractive virtual reality: an EEG and psychophysiology study. Cyberpsychol. Behav. 9(1), 30–45 (2006)

    Article  Google Scholar 

  9. Beres, A.M.: Time is of the essence: a review of electroencephalography (EEG) and event- related brain potentials (ERPs) in language research. Appl. Psychophysiol. Biofeedback 42(4), 247–255 (2017)

    Article  Google Scholar 

  10. Bischof, W.F., Boulanger, P.: Spatial navigation in virtual reality environments: an EEG analysis. Cyberpsychol. Behav. 6(5), 487–495 (2003)

    Article  Google Scholar 

  11. Boell, S.K., Cecez-Kecmanovic, D.: On being ‘systematic’ in literature reviews in IS. J. Inf. Technol. 30(2), 161–173 (2015)

    Article  Google Scholar 

  12. Brouwer, A.-M., Neerincx, M.A., Kallen, V., van der Leer, L., ten Brinke, M.: EEG alpha asymmetry, heart rate variability and cortisol in response to virtual reality induced stress. J. Cyberther. Rehabil. 4(1), 21–34 (2011)

    Google Scholar 

  13. Burns, C.G., Fairclough, S.H.: Use of auditory event-related potentials to measure immersion during a computer game. Int. J. Hum Comput. Stud. 73, 107–114 (2015)

    Article  Google Scholar 

  14. Caruana, N., de Lissa, P., McArthur, G.: Beliefs about human agency influence the neural processing of gaze during joint attention. Soc. Neurosci. 12(2), 194–206 (2017)

    Article  Google Scholar 

  15. Caruana, N., de Lissa, P., McArthur, G.: The neural time course of evaluating self-initiated joint attention bids. Brain Cognit. 98, 43–52 (2015)

    Article  Google Scholar 

  16. Cebolla, A.M., Petieau, M., Cevallos, C., Leroy, A., Dan, B., Cheron, G.: Long-lasting cortical reorganization as the result of motor imagery of throwing a ball in a virtual tennis court. Front. Psychol. 6, 1869 (2015)

    Article  Google Scholar 

  17. Chang, C.-J., Yang, T.-F., Yang, S.-W., Chern, J.-S.: Cortical modulation of motor control biofeedback among the elderly with high fall risk during a posture perturbation task with augmented rality. Front. Aging Neurosci. 8, 80 (2016)

    Article  Google Scholar 

  18. Chun, J., Kaongoen, N., Jo, S.: EEG signal analysis for measuring the quality of virtual reality. In: 2015 15th International Conference on Control, Automation and Systems (ICCAS), pp. 1801–1804. IEEE (2015)

    Google Scholar 

  19. Clemente, M., Rodríguez, A., Rey, B., Alcañiz, M.: Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Exp. Syst. Appl. Int. J. 41(4), 1584–1592 (2014)

    Article  Google Scholar 

  20. Da-Silva, P., Infantosi, A., Nadal, J.: Event-related synchronization/desynchronization for evaluating cortical response detection induced by dynamic visual stimuli. In: XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010, pp. 37–40. Springer (2010). https://doi.org/10.1007/978-3-642-13039-7_10

  21. Da Silva, P., Rosa, B., Cagy, M., Infantosi, A.: Motion-related VEPs elicited by dynamic virtual stimulation. In: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, pp. 1809–1812. Springer (2014). https://doi.org/10.1007/978-3-319-00846-2_446

  22. Dan, A., Reiner, M.: EEG-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays. Int. J. Psychophysiol. 122, 75–84 (2017)

    Article  Google Scholar 

  23. Davidson, R.J.: Cerebral asymmetry and emotion: conceptual and methodological conundrums. Cogn. Emot. 7(1), 115–138 (1993)

    Article  Google Scholar 

  24. Dimoka, A., et al.: On the use of neurophysiological tools in IS research: developing a research agenda for NeuroIS. MIS Q. 36(3), 679–702 (2012)

    Google Scholar 

  25. Ehinger, B.V., et al.: Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study. Front. Hum. Neurosci. 8, 71 (2014)

    Article  Google Scholar 

  26. Eimer, M.: The face-sensitivity of the n170 component. Front. Hum. Neurosci. 5, 119 (2011)

    Article  Google Scholar 

  27. Frömer, R., Hafner, V., Sommer, W.: Aiming for the bull’s eye: preparing for throwing investigated with event-related brain potentials. Psychophysiology 49(3), 335–344 (2012)

    Article  Google Scholar 

  28. Gerjets, P., Walter, C., Rosenstiel, W., Bogdan, M., Zander, T.O.: Cognitive state monitoring and the design of adaptive instruction in digital environments: lessons learned from cognitive workload assessment using a passive brain-computer interface approach. Front. Neurosci. 8, 385 (2014)

    Article  Google Scholar 

  29. Gharagozlou, F., et al.: Detecting driver mental fatigue based on EEG alpha power changes during simulated driving. Iran. J. Publ. Health 44(12), 1693 (2015)

    Google Scholar 

  30. Golding, J.F.: Motion sickness susceptibility. Auton. Neurosci.: Basic Clin. 129(1), 67–76 (2006)

    Article  Google Scholar 

  31. González-Franco, M., Peck, T.C., Rodríguez-Fornells, A., Slater, M.: A threat to a virtual hand elicits motor cortex activation. Exp. Brain Res. 232(3), 875–887 (2014)

    Article  Google Scholar 

  32. Gonzalez-Franco, M., Bellido, A.I., Blom, K.J., Slater, M., Rodriguez-Fornells, A.: The neurological traces of look-alike avatars. Front. Hum. Neurosci. 10, 392 (2016)

    Article  Google Scholar 

  33. Gramann, K., et al.: Cognition in action: imaging brain/body dynamics in mobile humans. Rev. Neurosci. 22(6), 593–608 (2011)

    Article  Google Scholar 

  34. Havranek, M., Langer, N., Cheetham, M., Jäncke, L.: Perspective and agency during video gaming influences spatial presence experience and brain activation patterns. Behav. Brain Funct. 8(1), 34 (2012)

    Article  Google Scholar 

  35. Hubbard, R., Sipolins, A., Zhou, L.: Enhancing learning through virtual reality and neurofeedback: a first step. In: Proceedings of the Seventh International Learning Analytics & Knowledge Conference, pp. 398–403. ACM (2017)

    Google Scholar 

  36. Invitto, S., Spada, I., De Paolis, L.T.: Augmented reality, embodied cognition and learning. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2015. LNCS, vol. 9254, pp. 125–134. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22888-4_10

    Chapter  Google Scholar 

  37. Jackson, A.F., Bolger, D.J.: The neurophysiological bases of EEG and EEG measurement: a review for the rest of us. Psychophysiology 51(11), 1061–1071 (2014)

    Article  Google Scholar 

  38. Jaiswal, N., Ray, W., Slobounov, S.: Encoding of visual–spatial information in working memory requires more cerebral efforts than retrieval: evidence from an EEG and virtual reality study. Brain Res. 1347, 80–89 (2010)

    Article  Google Scholar 

  39. Jangraw, D.C., Sajda, P.: Feature selection for gaze, pupillary, and EEG signals evoked in a 3D environment. In: Proceedings of the 6th Workshop on Eye gaze in Intelligent Human Machine Interaction: Gaze in Multimodal Interaction, pp. 45–50. ACM (2013)

    Google Scholar 

  40. Jeon, S., Park, W.: Computing presence in nonfigurative virtual environment under color and motion stimulus. In: Proceedings of the Future Technologies Conference, pp. 1100–1106. IEEE (2016)

    Google Scholar 

  41. Kang, S.Y., et al.: Brain networks responsible for sense of agency: an EEG study. PLoS ONE 10(8), e0135261 (2015)

    Article  Google Scholar 

  42. Kastner, A.K., Pauli, P., Wieser, M.J.: Sustained attention in context conditioning: evidence from steady-state VEPs. Int. J. Psychophysiol. 98(3), 546–556 (2015)

    Article  Google Scholar 

  43. Kennedy, R.S., Stanney, K.M., Dunlap, W.P.: Duration and exposure to virtual environments: sickness curves during and across sessions. Presence: Teleoper. Virtual Environ. 9(5), 463–472 (2000)

    Google Scholar 

  44. Kim, S.-P., et al.: Modulation of theta phase synchronization in the human electroencephalogram during a recognition memory task. NeuroReport 23(11), 637–641 (2012)

    Article  Google Scholar 

  45. Kim, Y., Kim, H., Ko, H., Kim, H.: Psychophysiological changes by navigation in a virtual reality. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, pp. 3773–3776. IEEE (2001)

    Google Scholar 

  46. Klatzky, R.L.: Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In: Spatial Cognition, pp. 1–17. Springer (1998). https://doi.org/10.1007/3-540-69342-4_1

  47. Kober, S.E., Kurzmann, J., Neuper, C.: Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: an EEG study. Int. J. Psychophysiol. 83(3), 365–374 (2012)

    Article  Google Scholar 

  48. Kober, S.E., Neuper, C.: Sex differences in human EEG theta oscillations during spatial navigation in virtual reality. Int. J. Psychophysiol. 79(3), 347–355 (2011)

    Article  Google Scholar 

  49. Kober, S.E., Neuper, C.: Using auditory event-related EEG potentials to assess presence in virtual reality. Int. J. Hum. Comput. Stud. 70(9), 577–587 (2012)

    Article  Google Scholar 

  50. Kok, A.: Event-related-potential (ERP) reflections of mental resources: a review and synthesis. Biol. Psychol. 45(1–3), 19–56 (1997)

    Article  Google Scholar 

  51. LaViola Jr., J.J.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32(1), 47–56 (2000)

    Article  Google Scholar 

  52. Lee, H.-G., Chung, S., Lee, W.-H.: Presence in virtual golf simulators: the effects of presence on perceived enjoyment, perceived value, and behavioral intention. New Med. Soc. 15(6), 930–946 (2013)

    Article  Google Scholar 

  53. Lee, H.J., Lee, J., Kim, C.J., Kim, G.J., Kim, E.-S., Whang, M.: Brain process for perception of the “Out of The Body” tactile illusion for virtual object interaction. Sensors 15(4), 7913–7932 (2015)

    Article  Google Scholar 

  54. Lee, J., Moon, S.-E., Cheon, M., Lee, J.-S.: EEG analysis on 3D navigation in virtual realty with different perspectives. In: Proceedings of the 3rd International Conference on Human-Agent Interaction, pp. 227–229. ACM (2015)

    Google Scholar 

  55. Lenggenhager, B., Halje, P., Blanke, O.: Alpha band oscillations correlate with illusory self- location induced by virtual reality. Eur. J. Neurosci. 33(10), 1935–1943 (2011)

    Article  Google Scholar 

  56. Leroy, A., Cevallos, C., Cebolla, A.-M., Caharel, S., Dan, B., Cheron, G.: Short-term EEG dynamics and neural generators evoked by navigational images. PLoS ONE 12(6), e0178817 (2017)

    Article  Google Scholar 

  57. Li, M., Jiang, Q., Tan, C.-H., Wei, K.-K.: Enhancing user-game engagement through software gaming elements. J. Manage. Inf. Syst. 30(4), 115–150 (2014)

    Article  Google Scholar 

  58. Lin, C.-T., Chiu, T.-C., Gramann, K.: EEG correlates of spatial orientation in the human retrosplenial complex. Neuroimage 120, 123–132 (2015)

    Article  Google Scholar 

  59. Lin, C.-T., Tsai, S.-F., Ko, L.-W.: EEG-based learning system for online motion sickness level estimation in a dynamic vehicle environment. IEEE Trans. Neural Netw. Learn. Syst. 24(10), 1689–1700 (2013)

    Article  Google Scholar 

  60. Luck, S.J., Kappenman, E.S.: ERP components and selective attention. In: The Oxford Handbook of Event-Related Potential Components, pp. 295–327 (2012)

    Google Scholar 

  61. Müller-Putz, G.R., Riedl, R., Wriessnegger, S.C.: Electroencephalography (EEG) as a research tool in the information systems discipline: foundations, measurement, and applications. CAIS 37, 46 (2015)

    Article  Google Scholar 

  62. Mager, R., et al.: Neurophysiological age differences during task- performance in a stereoscopic virtual environment. Appl. Psychophysiol. Biofeedback 30(3), 233–238 (2005)

    Article  Google Scholar 

  63. Maguire, E.A., Burke, T., Phillips, J., Staunton, H.: Topographical disorientation following unilateral temporal lobe lesions in humans. Neuropsychologia 34(10), 993–1001 (1996)

    Article  Google Scholar 

  64. Maurer, L.K., Maurer, H., Müller, H.: Neural correlates of error prediction in a complex motor task. Front. Behav. Neurosci. 9, 209 (2015)

    Article  Google Scholar 

  65. Menezes, M., et al.: Towards emotion recognition for virtual environments: an evaluation of EEG features on benchmark dataset. Pers. Ubiquit. Comput. 21(6), 1003–1013 (2017)

    Google Scholar 

  66. Mertens, R., Allen, J.J.: The role of psychophysiology in forensic assessments: deception detection, ERPs, and virtual reality mock crime scenarios. Psychophysiology 45(2), 286–298 (2008)

    Article  Google Scholar 

  67. Neubauer, A.C., Bergner, S., Schatz, M.: Two-vs. three-dimensional presentation of mental rotation tasks: sex differences and effects of training on performance and brain activation. Intelligence 38(5), 529–539 (2010)

    Google Scholar 

  68. Nguyen, H.M., Matsumoto, J., Tran, A.H., Ono, T., Nishijo, H.: sLORETA current source density analysis of evoked potentials for spatial updating in a virtual navigation task. Front. Behav. Neurosci. 8, 66 (2014)

    Article  Google Scholar 

  69. Nishiyama, N., Mizuhara, H., Miwakeichi, F., Yamaguchi, Y.: Theta episodes observed in human scalp EEG during virtual navigation-spatial distribution and task dependence. In: Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP 2002, pp. 428–432. IEEE (2002)

    Google Scholar 

  70. Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, USA (2006)

    Book  Google Scholar 

  71. Occhialini, M., Bernardini, G., Ferracuti, F., Iarlori, S., D’Orazio, M., Longhi, S.: Fire exit signs: the use of neurological activity analysis for quantitative evaluations on their perceptiveness in a virtual environment. Fire Saf. J. 82, 63–75 (2016)

    Article  Google Scholar 

  72. Pacheco, T.B.F., Oliveira Rego, I.A., Campos, T.F., Cavalcanti, F.A.D.C.: Brain activity during a lower limb functional task in a real and virtual environment: a comparative study. NeuroRehabilitation 40(3), 391–400 (2017)

    Google Scholar 

  73. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: Situation awareness, mental workload, and trust in automation: viable, empirically supported cognitive engineering constructs. J. Cognit. Eng. Decis. Making 2(2), 140–160 (2008)

    Article  Google Scholar 

  74. Park, H.-D., Bernasconi, F., Bello-Ruiz, J., Pfeiffer, C., Salomon, R., Blanke, O.: Transient modulations of neural responses to heartbeats covary with bodily self-consciousness. J. Neurosci. 36(32), 8453–8460 (2016)

    Article  Google Scholar 

  75. Pavone, E.F., Tieri, G., Rizza, G., Tidoni, E., Grisoni, L., Aglioti, S.M.: Embodying others in immersive virtual reality: electro-cortical signatures of monitoring the errors in the actions of an avatar seen from a first-person perspective. J. Neurosci. 36(2), 268–279 (2016)

    Article  Google Scholar 

  76. Petras, K., ten Oever, S., Jansma, B.M.: The effect of distance on moral engagement: event related potentials and alpha power are sensitive to perspective in a virtual shooting task. Front. Psychol. 6, 2008 (2016)

    Article  Google Scholar 

  77. Plank, M., Snider, J., Kaestner, E., Halgren, E., Poizner, H.: neurocognitive stages of spatial cognitive mapping measured during free exploration of a large-scale virtual environment. J. Neurophysiol. 113(3), 740–753 (2014)

    Article  Google Scholar 

  78. Potts, G.F., Patel, S.H., Azzam, P.N.: Impact of instructed relevance on the visual ERP. Int. J. Psychophysiol. 52(2), 197–209 (2004)

    Article  Google Scholar 

  79. Pugnetti, L., Meehan, M., Mendozzi, L.: Psychophysiological correlates of virtual reality: a review. Presence: Teleoper. Virtual Environ. 10(4), 384–400 (2001)

    Google Scholar 

  80. Riccio, G.E., Stoffregen, T.A.: An ecological theory of motion sickness and postural instability. Ecol. Psychol. 3(3), 195–240 (1991)

    Article  Google Scholar 

  81. Rodríguez, A., Rey, B., Clemente, M., Wrzesien, M., Alcañiz, M.: Assessing brain activations associated with emotional regulation during virtual reality mood induction procedures. Exp. Syst. Appl. 42(3), 1699–1709 (2015)

    Article  Google Scholar 

  82. Saproo, S., Shih, V., Jangraw, D.C., Sajda, P.: Neural mechanisms underlying catastrophic failure in human–machine interaction during aerial navigation. J. Neural Eng. 13(6), 066005 (2016)

    Article  Google Scholar 

  83. Saravanamoorthi, A., Banu, R.W.: EEG spectrum analysis of various electrodes from sleep stages of detection and drowsiness with monitoring driving performance of estimation control system. Asian J. Inf. Technol. 13(10), 618–626 (2014)

    Google Scholar 

  84. Schultze, U.: Embodiment and presence in virtual worlds: a review. J. Inf. Technol. 25(4), 434–449 (2010)

    Article  Google Scholar 

  85. Seeling, P.: Image quality in augmented binocular vision: QoE approximations with QoS and EEG. Periodica Polytechnica. Electr. Eng. Comput. Sci. 61(4), 327 (2017)

    Google Scholar 

  86. Sella, I., Reiner, M., Pratt, H.: Natural stimuli from three coherent modalities enhance behavioral responses and electrophysiological cortical activity in humans. Int. J. Psychophysiol. 93(1), 45–55 (2014)

    Article  Google Scholar 

  87. Senkowski, D., Talsma, D., Grigutsch, M., Herrmann, C.S., Woldorff, M.G.: Good times for multisensory integration: effects of the precision of temporal synchrony as revealed by gamma- band oscillations. Neuropsychologia 45(3), 561–571 (2007)

    Article  Google Scholar 

  88. Serino, A., et al.: Tuning of temporo-occipital activity by frontal oscillations during virtual mirror exposure causes erroneous self-recognition. Eur. J. Neurosci. 42(8), 2515–2526 (2015)

    Article  Google Scholar 

  89. Sharma, G., Kaushal, Y., Chandra, S., Singh, V., Mittal, A.P., Dutt, V.: Influence of landmarks on wayfinding and brain connectivity in immersive virtual reality environment. Front. Psychol. 8, 1220 (2017)

    Article  Google Scholar 

  90. Sharma, G., Salam, A.A., Chandra, S., Singh, V., Mittal, A.: Influence of spatial learning perspectives on navigation through virtual reality environment. In: Ascoli, G.A., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds.) BIH 2016. LNCS (LNAI), vol. 9919, pp. 346–354. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47103-7_34

    Chapter  Google Scholar 

  91. Sharma, G., Singh, V., Daniel, R.V., Mittal, A.P., Chandra, S.: Brain connectivity in spatial orientation task. In: Proceedings of the International Conference on Emerging Trends in Communication Technologies, pp. 1–4. IEEE (2016)

    Google Scholar 

  92. Shemesh, A., Talmon, R., Karp, O., Amir, I., Bar, M., Grobman, Y.J.: Affective response to architecture-investigating human reaction to spaces with different geometry. Archit. Sci. Rev. 60(2), 116–125 (2017)

    Article  Google Scholar 

  93. Simões, M., Amaral, C., Carvalho, P., Castelo-Branco, M.: Specific EEG/ERP responses to dynamic facial expressions in virtual reality environments. In: The International Conference on Health Informatics, pp. 331–334. Springer (2014). https://doi.org/10.1007/978-3-319-03005-0_84

  94. Škola, F., Liarokapis, F.: Examining the effect of body ownership in immersive virtual and augmented reality environments. Vis. Comput. 32(6–8), 761–770 (2016). https://doi.org/10.1007/s00371-016-1246-8

    Article  Google Scholar 

  95. Slobounov, S.M., Ray, W., Johnson, B., Slobounov, E., Newell, K.M.: Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study. Int. J. Psychophysiol. 95(3), 254–260 (2015)

    Article  Google Scholar 

  96. Slobounov, S.M., Teel, E., Newell, K.M.: Modulation of cortical activity in response to visually induced postural perturbation: combined VR and EEG study. Neurosci. Lett. 547, 6–9 (2013)

    Article  Google Scholar 

  97. Snider, J., Ahmed, O.J., Halgren, E., Poizner, H., Cash, S.S.: Human intracranial recordings during spatial exploration of a 3D virtual environment. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 464–467. IEEE (2013)

    Google Scholar 

  98. Stanney, K.M., Kingdon, K.S., Graeber, D., Kennedy, R.S.: Human performance in immersive virtual environments: effects of exposure duration, user control, and scene complexity. Hum. Perform. 15(4), 339–366 (2002)

    Article  Google Scholar 

  99. Steed, A., Pan, Y., Zisch, F., Steptoe, W.: The impact of a self-avatar on cognitive load in immersive virtual reality. In: 2016 IEEE Virtual Reality Conference (Vr), pp. 67–76. IEEE (2016)

    Google Scholar 

  100. Teplan, M.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  101. de Tommaso, M., et al.: Testing a novel method for improving wayfinding by means of a P3b virtual reality visual paradigm in normal aging. Springerplus 5(1), 1–12 (2016). https://doi.org/10.1186/s40064-016-2978-7

    Article  Google Scholar 

  102. Tromp, J., Peeters, D., Meyer, A.S., Hagoort, P.: The combined use of virtual reality and EEG to study language processing in naturalistic environments. Behav. Res. Methods 50(2), 862–869 (2018)

    Article  Google Scholar 

  103. Vavrečka, M., Gerla, V., Lhotska, L., Brunovský, M.: Frames of reference and their neural correlates within navigation in a 3D environment. Vis. Neurosci. 29(3), 183–191 (2012)

    Article  Google Scholar 

  104. Vecchiato, G., Tieri, G., Jelic, A., De Matteis, F., Maglione, A.G., Babiloni, F.: Electroencephalographic correlates of sensorimotor integration and embodiment during the appreciation of virtual architectural environments. Front. Psychol. 6, 1944 (2015)

    Article  Google Scholar 

  105. Vidugiriene, A., Vaskevicius, E., Kaminskas, V.: Modeling of affective state response to a virtual 3D face. In: Modelling Symposium (EMS), 2013 European, pp. 175–180. IEEE (2013)

    Google Scholar 

  106. Vogt, T., Herpers, R., Askew, C.D., Scherfgen, D., Strüder, H.K., Schneider, S.: Effects of exercise in immersive virtual environments on cortical neural oscillations and mental state. Neural Plasticity 2015 (2015)

    Google Scholar 

  107. Vogt, T., Herpers, R., Scherfgen, D., Strüder, H.K., Schneider, S.: Neuroelectric adaptations to cognitive processing in virtual environments: an exercise-related approach. Exp. Brain Res. 233(4), 1321–1329 (2015)

    Article  Google Scholar 

  108. Wamain, Y., Gabrielli, F., Coello, Y.: EEG μ rhythm in virtual reality reveals that motor coding of visual objects in peripersonal space is task dependent. Cortex 74, 20–30 (2016)

    Article  Google Scholar 

  109. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26(2), 13–23 (2002)

    Google Scholar 

  110. White, D.J., Congedo, M., Ciorciari, J., Silberstein, R.B.: Brain oscillatory activity during spatial navigation: theta and gamma activity link medial temporal and parietal regions. J. Cogn. Neurosci. 24(3), 686–697 (2012)

    Article  Google Scholar 

  111. Wiederhold, B., Riva, G.: Measuring presence during the navigation in a virtual environment using EEG. Ann. Rev. Cyberther. Telemed. 191, 136–140 (2013)

    Google Scholar 

  112. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence 7(3), 225–240 (1998)

    Article  Google Scholar 

  113. Wrzesien, M., Rodríguez, A., Rey, B., Alcañiz, M., Baños, R.M., Vara, M.D.: How the physical similarity of avatars can influence the learning of emotion regulation strategies in teenagers. Comput. Hum. Behav. 43, 101–111 (2015)

    Article  Google Scholar 

  114. Xu, J., Zhong, B.: Review on portable EEG technology in educational research. Comput. Hum. Behav. 81, 340–349 (2018)

    Article  Google Scholar 

  115. Yamamoto, S., Miyashita, H., Miyata, A., Hayashi, M., Okada, K.: Basic experiment for switching difficulty in virtual environment. In: Proceedings of the 3rd International Conference on Human Computer Interaction, pp. 49–56. ACTA Press (2008)

    Google Scholar 

  116. Yang, S.-R., Chen, S.-A., Tsai, S.-F., Lin, C.-T.: Transcutaneous electrical nerve stimulation system for improvement of flight orientation in a VR-based motion environment. In: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2055–2058. IEEE (2012)

    Google Scholar 

  117. Zacharis, G.K., Mikropoulos, T.A., Kalyvioti, K.: Cognitive load and attentional demands during objects’ position change in real and digital environments. Themes Sci. Technol. Educ. 9(2), 83–91 (2017)

    Google Scholar 

  118. Zhang, S., Zhang, Y., Sun, Y., Thakor, N., Bezerianos, A.: Graph theoretical analysis of EEG functional network during multi-workload flight simulation experiment in virtual reality environment. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3957–3960. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoung Suh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, G., Suh, A. (2021). A Literature Review on a Neuro-Psychological Approach to Immersive Technology Research. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2021. Lecture Notes in Computer Science(), vol 12776. Springer, Cham. https://doi.org/10.1007/978-3-030-78114-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78114-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78113-2

  • Online ISBN: 978-3-030-78114-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics