Skip to main content

Universal Adversarial Perturbation Generated by Using Attention Information

  • Chapter
  • First Online:
Advances in Intelligent Systems Research and Innovation

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 379))

  • 585 Accesses

Abstract

Since the concept of adversarial attack was proposed, the vulnerability of Deep Neural Networks (DNNs) has attracted the interest of artificial intelligence researchers. Many state-of-the-art DNNs suffer the risk of adversarial perturbations, which can be divided into image-dependent and universal. In this paper, we review some traditional algorithms developed by others and introduce a novel method to create universal adversarial perturbations by attention. Our approach is the first to generate universal perturbations by attacking the attention heat maps with the interpretation method, Layer-wise Relevance Propagation. Our experiment results, when compared with traditional ones, showing an improvement both on fooling ratios and transferability with the ImageNet dataset. The goal of our research is to create less vulnerable DNNs to adversarial attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org

    Google Scholar 

  2. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7) (2015)

    Google Scholar 

  3. Behjati, M., Moosavi-Dezfooli, S.-M., Baghshah, M.S., Frossard, P.: Universal adversarial attacks on text classifiers. In: ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7345–7349. IEEE (2019)

    Google Scholar 

  4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  5. Chollet, F., et al.: Keras. https://keras.io (2015)

  6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  7. Hayes, J., Danezis, G.: Learning universal adversarial perturbations with generative models. In: 2018 IEEE Security and Privacy Workshops (SPW), pp. 43–49. IEEE (2018)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hendrik Metzen, J., Chaithanya Kumar, M., Brox, T., Fischer, V.: Universal adversarial perturbations against semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2755–2764 (2017)

    Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  11. Kasabov, N.K.: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence. Springer, Berlin, Heidelberg (2019)

    Google Scholar 

  12. Khrulkov, V., Oseledets, I.: Art of singular vectors and universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8562–8570 (2018)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)

  15. Li, J., Ji, R., Liu, H., Hong, X., Gao, Y., Tian, Q.: Universal perturbation attack against image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4899–4908 (2019)

    Google Scholar 

  16. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  17. Liu, H., Ji, R., Li, J., Zhang, B., Gao, Y., Wu, Y., Huang, F.: Universal adversarial perturbation via prior driven uncertainty approximation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2941–2949 (2019)

    Google Scholar 

  18. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.-R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  19. Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1765–1773 (2017)

    Google Scholar 

  20. Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

    Google Scholar 

  21. Mopuri, K.R., Ganeshan, A., Venkatesh Babu, R.: Generalizable data-free objective for crafting universal adversarial perturbations. IEEE Trans. Pattern Anal. Mach. Intell. 41(10), 2452–2465 (2018)

    Article  Google Scholar 

  22. Mopuri, K.R., Garg, U., Venkatesh Babu, R.: Fast feature fool: a data independent approach to universal adversarial perturbations. arXiv preprint arXiv:1707.05572 (2017)

  23. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Berkay Celik, Z., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016)

    Google Scholar 

  24. Poursaeed, O., Katsman, I., Gao, B., Belongie, S.: Generative adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4422–4431 (2018)

    Google Scholar 

  25. Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  26. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  29. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer (2014)

    Google Scholar 

  30. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. arXiv preprint arXiv:1412.6856 (2014)

  31. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  32. Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12(10), 931–934 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research is partly supported by NSFC, China (Nos.: 61876107, U1803261, 61977046) and Committee of Science and Technology, Shanghai, China (No. 19510711200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolin Huang or Jie Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Huang, X., Yang, J., Kasabov, N. (2022). Universal Adversarial Perturbation Generated by Using Attention Information. In: Sgurev, V., Jotsov, V., Kacprzyk, J. (eds) Advances in Intelligent Systems Research and Innovation. Studies in Systems, Decision and Control, vol 379. Springer, Cham. https://doi.org/10.1007/978-3-030-78124-8_2

Download citation

Publish with us

Policies and ethics