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Abstract. Brain graph synthesis marked a new era for predicting a target brain
graph from a source one without incurring the high acquisition cost and pro-
cessing time of neuroimaging data. However, works on recovering a brain graph
in one modality (e.g., functional brain imaging) from a brain graph in another
(e.g., structural brain imaging) remain largely scarce. Besides, existing multi-
modal graph synthesis frameworks have several limitations. First, they mainly
focus on generating graphs from the same domain (intra-modality), overlook-
ing the rich multimodal representations of brain connectivity (inter-modality).
Second, they can only handle isomorphic graph generation tasks, limiting their
generalizability to synthesizing target graphs with a different node size and topo-
logical structure from those of the source one. More importantly, both target and
source domains might have different distributions, which causes a domain frac-
ture between them (i.e., distribution misalignment). To address such challenges,
we propose an inter-modality aligner of non-isomorphic graphs (IMANGraph-
Net) framework to infer a target graph modality based on a given modality. Our
three core contributions lie in (i) predicting a target graph (e.g., functional) from
a source graph (e.g., morphological) based on a novel graph generative adversar-
ial network (gGAN); (ii) using non-isomorphic graphs for both source and target
domains with a different number of nodes, edges and structure; and (iii) enforc-
ing the source distribution to match that of the ground truth graphs using a graph
aligner to relax the loss function to optimize. Furthermore, to handle the unstable
behavior of gGAN, we design a new Ground Truth-Preserving (GT-P) loss func-
tion to guide the non-isomorphic generator in learning the topological structure
of ground truth brain graphs more effectively. Our comprehensive experiments
on predicting target functional brain graphs from source morphological graphs
demonstrate the outperformance of IMANGraphNet in comparison with its vari-
ants. IMANGraphNet presents the first framework for brain graph synthesis based
on aligned non-isomorphic inter-modality brain graphs which handles variations
in graph size, distribution and structure. This can be further leveraged for integra-
tive and holistic brain mapping as well as developing multimodal neurological
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disorder diagnosis frameworks. Our Python IMANGraphNet code is available at
https://github.com/basiralab/IMANGraphNet1.

Keywords: inter-modality graph alignment · non-isomorphic graph generator

1 Introduction

Multimodal brain imaging spinned several medical image analysis applications thanks
to the rich multimodal information it provides [1,2]. Multiple data sources such as mag-
netic resonance imaging (MRI), computed tomography (CT), and positron emission to-
mography (PET) offer the possibility of learning more holistic and informative data
representations. However, such modalities introduce challenges including high acquisi-
tion cost and processing time across different clinical facilities.

Following the exponential growth of deep learning applications using MRI data,
recently, such end-to-end frameworks have been investigated for multimodal MR im-
age synthesis [3,4]. These methods either synthesize one modality from another (i.e.,
cross-modality) or map both modalities to a commonly shared domain. Specifically,
generative adversarial networks (GANs) have held great promise in predicting medical
images of different brain image modalities from a given modality [5,6,7]. For instance,
[5] suggested a joint neuroimage synthesis and representation learning (JSRL) frame-
work with transfer learning for subjective cognitive decline conversion prediction where
they imputed missing PET images using MRI scans. In addition, [6] proposed a unified
GAN to train only a single generator and a single discriminator to learn the mappings
among images of four different modalities. Furthermore, [7] translated a T1-weighted
magnetic resonance imaging (MRI) to T2-weighted MRI using GAN. Although sig-
nificant clinical representations were obtained from the latter studies, more substantial
challenges still exist [2]. As the reader may recognize, the brain connectome is a com-
plex non-linear structure, which makes it difficult to be captured by linear models [8,9].
Besides, many methods do not make good use of or even fail to treat non-euclidian
structured data (i.e., geometric data) types such as graphs and manifolds [10]. Hence
a deep learning model that preserves the topology of graph-based data representations
for the target learning task presents a pertinent research direction to explore.

Recently, deep learning techniques have achieved great success on graph-structured
data which provides a new way to model the non-linear cross-modality relationship.
Specifically, deep graph convolutional networks (GCNs) have permeated the field of
brain graph research [11,12,13] via diverse tasks such as learning the mapping between
human connectome and disease diagnosis. Recently, landmark studies used GCNs to
predict a target brain graph from a source brain graph. For instance, [14] proposed a
novel GCN model for multimodal brain networks analysis to generate a functional con-
nectome from a structural connectome. Moreover, [15] presented a multi-GCN based
generative adversarial network (MGCN-GAN) to infer individual structural connec-
tome from a functional connectome. Another recent work [16] introduced MultiGraph-
GAN architecture, which predicts multiple brain graphs from a single brain graph while

1 Paper YouTube video: https://www.youtube.com/watch?v=kzS-PkOt5_4&
ab_channel=BASIRALab
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preserving the topological structure of each target predicted graph. However, all these
works use isomorphic graphs which means that the source graphs and the ground-truth
graphs have the same number of edges, nodes, and are topologically identical. There-
fore, using non-isomorphic graphs remains a significant challenge in designing gener-
alizable and scalable brain graph synthesis. Moreover, inferring a target domain from a
source domain introduces the problem of domain fracture resulting in the difference in
distribution between the source and target domains. Remarkably, domain alignment is
strikingly lacking in brain graph synthesis tasks [14,15,16] (Fig. 1).

Fig. 1: Conventional isomorphic intra-modality graph prediction versus proposed non-
isomorphic inter-modality graph alignment and prediction framework. A) Conven-
tional brain graph synthesis works focus on predicting isomorphic intra-modality target
graphs without alignment. B) To overcome the limitations of such models, we design
a simple but effective non-isomorphic inter-modality graph alignment and prediction
framework with the following contributions. First, we propose a KL divergence-based
graph aligner to align the distribution of the training source graphs (from a source
modality) to that of the target graphs (from a target modality). Second, we design a
graph GAN to synthesize a target modality graph from a source one while handling
shifts in graph resolution (i.e., node size). Third, we design a new Ground Truth-
Preserving (GT-P) loss function to guide the non-isomorphic generator in learning the
topological structure of ground truth target brain graphs more effectively.



To address such unsolved challenges and motivated by the recent development of
geometric deep neural network-based solutions, we propose an inter-modality aligner
of non-isomorphic brain graphs (IMANGraphNet) framework based on generative ad-
versarial learning. To do so, prior to the prediction block, we propose a graph aligner
network to align the training graphs of the source modality to that of the target one. Sec-
ond, given the aligned source graph, we design a non-isomorphic graph GAN (gGAN)
to map the aligned source graph from one modality (e.g., morphological) to the target
graph modality (e.g., functional). Note that the alignment step facilitates the training
of our non-isomorphic gGAN since both source and target domains have been aligned
by the aligner network (i.e., shared mode) (Fig. 2–A). Besides, in order to capture the
complex relationship in both direct and indirect brain connections [15], we design the
generator and discriminator of our GAN using GCNs. Moreover, to resolve the inherent
instability of GAN, we propose a novel ground-truth-preserving (GT-P) loss function
to force our non-isomorphic generator to learn the ground-truth brain graph more effi-
ciently. More importantly, by comparing the strongest connectivities of the ground-truth
graphs with those of the predicted brain graphs for the same subjects, we investigate
the reproducible power of our IMANGraphNet which not only predicts reliable brain
graphs but also captures the delicate difference across subjects. The compelling aspects
of our method can be summarized as follows:

1. On a methodological level. IMANGraphNet presents the first work on inter-modality
non-isomorphic graph alignment and synthesis, which can be also leveraged for de-
veloping precision medicine using network neuroscience [8].

2. On a clinical level. Learning brain connectivity inter-modality synthesis can pro-
vide holistic brain maps that capture multimodal interactions (functional, structural,
and morphological) between brain regions, thereby charting brain dysconnectivity
patterns in disordered populations [9].

3. On a generic level. Our framework is a generic method as it can be applied to
predict brain graphs derived from any neuroimaging modalities with complex non-
linear distributions even when they are non-isomorphic. IMANGraphNet can also
be applied to other types of non-biological graphs.

2 Methodology

In this section, we detail our non-isomorphic inter-modality graph alignment and pre-
diction framework (Fig. 2). In the first stage, we propose a Kullback-Leibler (KL)
divergence-based graph aligner which maps the distribution of the ground truth do-
main to the source domain. In the second stage, we design a non-isomorphic gGAN
to synthesize one modality graph from another while handling graph resolution shifts.
Moreover, to handle the unstable behavior of gGAN, we propose a new ground truth-
preserving (GT-P) loss function to guide the non-isomorphic generator in learning the
topological structure of ground truth brain graphs more effectively.
• Problem statement. Let Gi(Vi,Ei) denote a brain graph where each node in Vi

denotes a brain region of interest (ROI) and each edge in Ei connecting two ROIs k
and l denotes the strength of their connectivity. Each training subject i in our dataset is
represented by two brain graphs {Gsi(Vsi ,Esi),Gti(Vti ,Eti)}, where Gs represents



Fig. 2: Illustration of the proposed non-isomorphic inter-modality brain graph align-
ment and synthesis using IMANGraphNet. A) Graph aligner for inter-modality do-
main alignment. We aim to align the training graphs of the source modality Xs to
that of the target one Xt. Therefore, we design a KL divergence-based graph aligner
to bridge the gap between the distributions of the source and target graphs. B) Non-
isomorphic inter-modality graph GAN. Next, we propose a non-isomorphic graph
GAN to transform the aligned source brain graph X̂s→t (e.g., morphological) into the
target graph (e.g., functional) with different structural and topological properties. Both
aligner and generator networks are trained in an end-to-end manner by optimizing a
novel Ground Truth-Preserving (GT-P) loss function which guides the non-isomorphic
generator in learning the topology of the target ground truth brain graphs more effec-
tively.

the source brain graph with nr nodes and Gt is the target brain graph with nr′ nodes
with nr 6= nr′ . Specifically, these two graphs are considered as non-isomorphic with no
correspondence between nodes and edges across source and target graphs –i.e., they are
topologically different (Fig. 1). Formally, graph isomorphism can be defined as follows.

Definition 1. Two graphs G and H are isomorphic if there is a bijectionf : V (G)→
V (H) so that, for any v, w ∈ V (G), the number of edges connecting v to w is the same
as the number of edges f(v) to f(w). The function f is called an isomorphism from G
to H.

Definition 2. Two graphs G and H are non-isomorphic if they do not satisfy at least
one of the following conditions: (i) equal number of nodes, (ii) equal number of edges,
and (iii) topologically identical (i.e., preservation of the local neighborhood of each
node).



• Graph-based inter-modality aligner block. The first block of IMANGraphNet
(Fig. 2-A) comprises a graph-based inter-modality aligner that constrains the distribu-
tion of the mapped source brain graphs to match that of the ground-truth target brain
graphs. Inspired by the dynamic edge convolution proposed in [17] and the U-net ar-
chitecture [18] with skip connections, we propose an aligner network which is com-
posed of three-layer graph convolutional neural network (GCN) (Fig. 2-A). Given a
set of n training source brain networks (e.g., morphological connectomes) Xs

tr and a
set of n training ground-truth brain networks (e.g., functional connectomes) Xt

tr, for
each subject i, our aligner takes Xs

i as input and outputs X̂s→t
i which shares the same

distribution of Xt
i. Our model consists of three GCN layers adjusted by adding batch

normalization and dropout to the output of each layer. Specifically, batch normalization
efficiently accelerates the network training through a fast convergence of the loss func-
tion and dropout eliminates the risk of overfitting. Hence, these two operations help
optimize and simplify the network training.

To improve the quality of the inter-modality aligner network, we propose to min-
imize the discrepancy between ground-truth and aligned source brain graph distribu-
tions using KL divergence as a loss function. In fact, KL divergence, also known as
the relative entropy, is an asymmetric measure that quantifies the difference between
two probability distributions. Thereby, we define our inter-modality graph alignment
loss function using KL divergence to minimize the gap between the distributions of the
aligned source graphs and that of ground-truth target graphs. Specifically, we compute
the KL divergence between the ground truth distribution qtr and aligned distribution
ptr for the training subjects which is expressed as follows:

LKL =

n∑
i=1

KL (qi‖pi) (1)

where the KL divergence for subject i is defined as:KL (qi‖pi) =
∫ +∞
−∞ qi(x) log

qi(x)
pi(x)

dx

Note that the KL divergenceKL (qi‖pi) is not a symmetrical functionKL (qi‖pi) 6=
KL (pi‖qi) and defines the information gained by changing beliefs from a prior prob-
ability distribution p to the posterior probability distribution q (i.e., moving the prior
distribution towards the posterior one). Intuitively, q is the true distribution and p is the
aligned.
• Adversarial non-isomorphic graph generator block. Following the alignment

step, we design a non-isomorphic generator architecture that handles shifts in graph
resolution (i.e., node size variation) coupled with an adversarial discriminator.

Non-isomorphic brain graph generator. Our non-isomorphic graph generator G
is composed of three GCN layers regularized using batch normalization and dropout
to the output of each layer (Fig. 2-B), taking as input the aligned source graphs to
the target distribution X̂s→t

i of size nr × nr and outputting the predicted target brain
graphs X̂t

i of size nr′ × nr′ where nr 6= nr′ . Specifically, owing to dynamic graph-
based edge convolution operation [17], each GCN layer includes a unique dynamic filter
that outputs edge-specific weight matrix which dictates the information flow between
nodes k and l to learn a comprehensive vector representation for each node. Next, to
learn our inter-modality non-isomorphic mapping, we define a mapping function Tr :
Rnr×nr

′ 7→ Rnr
′×n

r
′ that takes as input the embedded matrix of the whole graph in



the latest GCN layer of size nr × nr′ and outputs the generated target graph of size
nr′ × nr′ (see subsection: Graph resolution shift based on dynamic edge convolution).

Graph discriminator based on adversarial training. Our non-isomorphic generator
G is trained in an adversarial manner against a discriminator network D (Fig. 2-B).
In order to discriminate between the predicted and ground truth target graph data, we
design a two-layer graph neural network [17]. Our discriminator D takes as input the
real connectome Xt

i and the generator’s output X̂t
i. The discriminator outputs a value

between 0 and 1 measuring the realness of the generator’s output. To enhance our dis-
criminator’s ability to distinguish between the target predicted and ground truth brain
graphs, we adopt the adversarial loss function so that it maximizes the discriminator’s
output value for the Xt

i and minimizes it for X̂t
i.

Graph resolution shift based on dynamic edge convolution. In all network blocks
of IMANGraphNet, each proposed GCN layer uses a dynamic graph-based edge con-
volution process [17]. Specifically, let h be the layer index in the neural network and dh
denote the output dimension of the corresponding layer. Each layer h includes a filter
generating network Fh : R 7→ Rdh×dh−1 that dynamically generates a weight matrix
for filtering message passing between ROIs k and l given the edge weight ekl. Here
ekl is edge feature (i.e., connectivity weight) that quantifies the relationship between
ROIs k and l. The purpose of each layer in our IMANGraphNet is to produce the graph
convolution result which can be observed as a filtered signal zh(k) ∈ Rdh×1 at node k.
The overall edge-conditioned convolution operation is defined as follows:

zhk = Θh.zh−1k +
1

|N(k)|
∑
lεN(k)

Fh(ekl;W
h)zh−1l + bh (2)

where zhk ∈ Rdh×1 is the embedding of node k in layer h, Θhlk = Fh
(
ekl;W

h
)

represents the dynamically generated edge-specific weights by Fh. bh ∈ Rdh denotes
a network bias and N(k) denotes the neighbors of node k.

Given the learned embedding zhk ∈ Rdh for node k in layer h, we define the em-
bedding of the whole graph in layer h as Zh ∈ Rnr×dh where nr is the number of
nodes. We draw to the attention of the reader that any resolution shift can be easily ex-
pressed as a transformation Tr : Rnr×dh 7→ Rdh×dh where Tr is formulated as follows:
Tr = (Zh)TZh. As such, shifting resolution is only defined by fixing the desired target
graph resolution dh. In our case, we set dh of the latest layer in the generator to nr′ to
output the predicted target brain graph X̂t of size nr′ × nr′ (Fig. 2).

Ground truth-Preserving loss function. GAN generators are conventionally opti-
mized according to the response of their corresponding discriminators. However, within
a few training epochs, we note that the discriminator can easily distinguish real graphs
from predicted graphs and the adversarial loss would be close to 0. In this case, the
generator cannot provide good results and will keep producing bad quality graphs. To
overcome this issue, we need to enforce a synchrony between the generator and the
discriminator learning throughout the whole training process. Thus, we propose a new
ground truth-preserving (GT-P) loss function composed of four sub-losses: adversarial
loss, L1 loss, Pearson correlation coefficient (PCC) loss and topological loss, which we
detail below. We define our GT-P loss function as follows:

LGT-P = λ1Ladv + λ2LL1 + λ3LPCC + λ4Ltop (3)



where Ladv represents the adversarial loss which quantifies the difference between
the generated and ground truth target graphs as both non-isomorphic generator and
discriminator are iteratively optimized through the adversarial loss:

argminGmaxD Ladv = EG(Xt)

[
log
(
D
(
G
(
Xt
))]

+ EG(X̂t)

[
log
(
1−D

(
G
(
X̂t
))]

(4)
To improve the quality of the predicted target brain graphs, we propose to add an l1

loss term that minimizes the distance between each predicted subject X̂t and its related
ground truth Xt. The l1 loss function is expressed as follows: Ll1 =

∥∥∥Xt − X̂t
∥∥∥
1
.

Even robust to outliers, the l1 loss only focuses on the element-wise similarity in
edge weights between the predicted and real brain graphs and ignores the overall cor-
relation between both graphs. Hence, we include the Pearson correlation coefficient
(PCC) in our loss which measures the overall correlation between the predicted and
real brain graphs. Since (i) the non-isomorphic generator aims to minimize its loss
function and (ii) higher PCC indicates a higher correlation between the ground-truth
and the predicted graphs, we propose to minimize the PCC loss function as follows:
LPCC = 1− PCC.

We further note that each brain graph has its unique topology which should be pre-
served when generating the target brain graphs. Therefore, we introduce a topological
loss function that forces the non-isomorphic generator to maintain the nodes’ topo-
logical profiles while learning the global graph structure. To do so, we first compute
eigenvector centrality (capturing the centralities of a node’s neighbors) of each node for
both predicted and real brain graphs. Then, we define the l1 loss between the real and
predicted eigenvector centralities in order to minimize the discrepancy between them.
Hence, we define our topology loss as Ltop = ‖ct − ĉt‖1, where ĉt denotes the eigen-
vector centrality vector of the predicted brain graph and ct is the eigenvector centrality
vector of the real one.

3 Experimental results and discussion

Evaluation dataset. We used three-fold cross-validation to evaluate the proposed IMAN-
GrahNet framework on 150 subjects from the Southwest University Longitudinal Imag-
ing Multimodal (SLIM) public dataset2 where each subject has T1-w, T2-w MRI and
resting-state fMRI (rsfMRI) scans. Our IMANGraphNet is implemented using PyTorch-
Geometric library [19].

Morphological brain networks (source). We used FreeSurfer [20] to reconstruct the
cortical morphological network for each subject from structural T1-w MRI. Specifi-
claly, we parcellated each cortical hemisphere into 35 cortical regions using Desikan-
Killiany cortical atlas. Finally, by computing the pairwise absolute difference in cortical
thickness between pairs of regions of interest, we generated a 35 × 35 morphological
connectivity matrix for each subject denoted as Xs.

2 http://fcon_1000.projects.nitrc.org/

http://fcon_1000.projects.nitrc.org/


Functional brain networks (target). Following several preprocessing steps of each
resting-state fMRI using preprocessed connectomes project quality assessment proto-
col, brain graphs (connectomes) were produced using a whole-brain parcellation ap-
proach as proposed in [21]. Each brain rfMRI was partitioned into 160 ROIs. Functional
connectivity weights were computed using the Pearson correlation coefficient between
two average fMRI signals of pairs of ROIs. These denote our target brain graphs Xt.

Parameter setting. For the hyperparameters of the aligner network, we set λKL =
0.001. Also, we set the non-isomorphic generator’s hyperparameters as follows: λ1 = 1,
λ2 = 1, λ3 = 0.1, and λ4 = 2. Moreover, we chose AdamW [22] as our default op-
timizer and set the learning rate at 0.025 for both the aligner and the non-isomorphic
generator networks and 0.01 for the discriminator. Finally, we trained our IMANGraph-
Net for 400 epochs using a single Tesla V100 GPU (NVIDIA GeForce GTX TITAN
with 32 GB memory). The feature dimensions of GCNs in the aligner are: GCN1 = (35,
35), GCN2 = (35, 1), GCN3 = (35, 35). The feature dimensions of GCNs in the non-
isomorphic generator are: GCN1 = (35, 35), GCN2 = (35, 160), GCN3 = (160, 160).
Similarly, feature dimensions of GCNs in the discriminator are set to GCN1 = (160,
160) and GCN2 = (160, 1).

Evaluation and comparison methods. To evaluate the effectiveness of our pro-
posed method for predicting one modality from another, we carried out four major
comparisons: (1) IMANGraphNet w\o alignment which considers only the prediction
task without aligning the distribution of the source graph to the ground truth graph. (2)
Statistical alignment-based IMANGraphNet where we used a statistical alignment in-
stead of the learned alignment when matching the distribution of the source graphs to
the ground truth graphs. (3) IMANGraphNet w\o PCC where we used our proposed
framework without the Pearson correlation coefficient based loss. (4) IMANGraphNet
w\o topology where we used our proposed framework without any topological loss.
As illustrated in Fig. 3, we computed the mean absolute error between the target pre-
dicted brain graphs and the real brain graphs. Clearly, our IMANGraphNet significantly
(p−value < 0.05 using two-tailed paired t-test) outperformed comparison methods by
achieving the lowest error between the predicted and real brain graphs across all eval-
uation metrics including topological properties using closeness centrality, betweenness
centrality and eigenvector centrality.

Brain graph alignment. As it is shown in Fig. 3, IMANGraphNet w\o alignment
method achieved the highest (MAE) between the real and predicted brain graphs. This
shows that the domain alignment improves the quality of the generated brain graphs in
the target modality domain (i.e., functional). We also notice an improvement in perfor-
mance when using a simple statistical alignment strategy (statistical alignment-based
IMANGraphNet) despite the inherent assumption that both source and target distribu-
tions are normal (a bell-shaped curve). Hence, when using a complex non-linear dis-
tribution (as our source morphological distribution in Fig. 2), the statistical aligner
cannot align to the target distribution properly. Undeniably, a learning-based aligner
has the ability to better adapt to any kind of distribution, thereby achieving the best
inter-modality graph synthesis results.

Insights into topological measures. To investigate the fidelity of the predicted brain
graphs to the real brain graphs in topology and structure, we evaluated our method using



Fig. 3: Prediction results using different evaluation metrics. Evaluation of alignment
and prediction brain graph synthesis by our framework IMANGraphNet against four
comparison methods: (1) IMANGraphNet w/o alignment, (2) Statistical alignment-
based IMANGraphNet, (3) IMANGraphNet w/o PCC and (4) IMANGraphNet w/o
topology. As evaluation metrics, we used the mean absolute error (MAE) between the
target ground truth and predicted brain graphs as well as their mean absolute difference
in three topological measures (CC: closeness centrality, BC: betweenness centrality
and EC: eigenvector centrality). w/o: without. ?: Our method IMANGrapNet signifi-
cantly outperformed all benchmark methods using two-tailed paired t-test (p < 0.05)
–excluding the statistical alignment-based IMANGraphNet using MAE(EC).

different topological measures (eigenvector, closeness, and betweenness). As shown in
Fig. 3, our framework produced the smallest MAE between the functional ground truth
and predicted brain graphs across all topological measurements. This shows that our
IMANGraphNet is able to well preserve the most central and important nodes (i.e., hub
nodes) in the synthesized functional connectomes.

Insights into the proposed loss objective. To prove the superiority of the proposed
GT-P loss function, we trained our IMANGraphNet with different loss functions. As
illustrated in Fig. 3, our GT-P loss function outperforms its ablated versions. These
results can be explained by the fact that the l1 loss focuses only on minimizing the dis-
tance between two brain graphs at the local level. Besides, PCC captures the strength of
the correlation between both brain graphs. It aims to maximize the similarity of global
connectivity patterns between the predicted and real brain graphs. However, both losses
overlook the topological properties of brain graphs (e.g., node centrality). For this rea-



Fig. 4: Visual comparison between the real and the predicted target brain graphs. a)
Comparison between the ground truth and predicted brain graphs by IMANGraph-
Net and four baseline methods (IMANGraphNet w/o alignment, Statistical alignment-
basedIMANGraphNet, IMANGraphNet w/o PCC, IMANGraphNet w/o topology) us-
ing a representative testing subject. We display the residual matrices computed using
the absolute difference between ground truth and predicted brain graph connectivity
matrices. b) The top 15 strongest connectivities of real and predicted functional brain
networks of 3 randomly selected testing subjects.

son, we introduced the eigenvector centrality in our topological loss which quantifies
the influence of a node on information flow in a network. The combination of these
complementary losses achieved the best functional connectivity prediction results from
morphological connectivity while relaxing the graph isomorphism (Definition 1) as-
sumption between source and target domains.

Reproducibility. In addition to generating realistic functional brain graphs, our frame-
work could also capture the delicate differences in connectivity patterns across subjects.
Specifically, we display in Fig. 4-a the real, predicted, and residual brain graphs for a
representative testing subject using five different methods. The residual graph is calcu-
lated by taking the absolute difference between the real and predicted brain graphs. An
average difference value of the residual is displayed on top of each residual graph. We
observe that the residual was noticeably reduced by our IMANGraphNet method.

Clinical interest. Fig. 4-b displays the top 10 strongest connectivities of real and
predicted functional brain graphs of 3 randomly selected testing subjects. Since brain
connectivity patterns vary across different individuals [23], we notice that the top 10
connectivities are not identical. However, our model can reliably predict such variations
as well as individual trends in functional connectivity based solely on morphological
brain graphs derived from T1-w MRI. This result further confirms that our approach
is trustworthy for predicting multimodal brain dysconnectivity patterns in disordered
populations [9] from limited neuroimaging resources.

4 Conclusion

In this paper, we introduced the first geometric deep learning architecture, namely
IMANGraphNet, for inter-modality non-isomorphic brain graph synthesis, which nicely



handles variations in graph distribution, size and structure. Our key contributions con-
sist in designing: (1) a graph aligner network to align the training graphs of the source
modality to that of the target one and (2) a non-isomorphic generator architecture that
handles shifts in graph resolution (i.e., node size variation) coupled with an adversarial
discriminator using GCNs. Furthermore, we proposed a new ground truth-preserving
loss function which guides the non-isomorphic generator in learning the topology of
the target ground truth brain graphs more effectively. Our framework outperforms the
baseline methods in terms of alignment and prediction results. IMANGraphNet not only
predicts reliable functional brain graphs from morphological ones but also preserves the
topology of the target domain. In our future work, we will extend our architecture to
predict multiple modality graphs from a single source one.
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