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Abstract. Accuracy and consistency are two key factors in computer-
assisted magnetic resonance (MR) image analysis. However, contrast
variation from site to site caused by lack of standardization in MR
acquisition impedes consistent measurements. In recent years, image har-
monization approaches have been proposed to compensate for contrast
variation in MR images. Current harmonization approaches either require
cross-site traveling subjects for supervised training or heavily rely on
site-specific harmonization models to encourage harmonization accuracy.
These requirements potentially limit the application of current harmoniza-
tion methods in large-scale multi-site studies. In this work, we propose
an unsupervised MR harmonization framework, CALAMITI (Contrast
Anatomy Learning and Analysis for MR Intensity Translation and Inte-
gration), based on information bottleneck theory. CALAMITI learns a
disentangled latent space using a unified structure for multi-site harmo-
nization without the need for traveling subjects. Our model is also able
to adapt itself to harmonize MR images from a new site with fine tuning
solely on images from the new site. Both qualitative and quantitative
results show that the proposed method achieves superior performance
compared with other unsupervised harmonization approaches.

Keywords: harmonization · unsupervised · image to image translation ·
disentangle · synthesis

1 Introduction

Magnetic resonance (MR) imaging is a commonly used non-invasive imaging
modality due to its flexibility and good tissue contrast. For the purposes of de-
scribing MR imaging analytically, we can think of an MR image as a function (i.e.,
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imaging equation) of the anatomy being imaged and the associated acquisition
parameters [3]. By changing the acquisition parameters or underlying imaging
equations, MR images with different contrasts can be generated. To take advan-
tage of this flexibility, MR images of the same anatomy with different contrasts
are often acquired in a single session. For example, T1-weighted (T1-w) images are
typically used to achieve balanced contrast between T2-weighted (T2-w) images [3].
However, a consequence of this flexibility is that there is no standardization
when it comes to MR contrasts. For example, both magnetization-prepared rapid
gradient echo (MPRAGE) and spoiled gradient echo (SPGR) are commonly used
T1-w images with very different visual appearances. This lack of standardization
makes machine learning (ML) models trained on MPRAGE images often fail on
SPGR images and underperform on MPRAGE images acquired by different scan-
ners or with slightly different parameters [19]. Scanner software and calibration
differences can also contribute to this effect.

The issue of contrast variation is commonly seen in multi-site studies, where a
trained model degrades in performance when tested on data from another site (i.e.,
the domain shift problem). This is because ML based methods assume the training
and testing are conducted on data drawn from the same distribution (domain).
This is not the case for MR images acquired from different sites, scanners, or
with differing imaging parameters. For example, T1-w images acquired from two
scanners with different configurations should obviously be treated as two domains.
However, T1-w and T2-w images acquired from the same scanner should also be
considered as coming from two domains.

MR image harmonization [6] alleviates domain shift by treating the problem
as an image-to-image translation (IIT) (or synthesis) task, where the goal is to
translate image contrasts between domains (e.g., T1-w images acquired from
different scanners). MR harmonization can be separated into two categories:
supervised and unsupervised. In the supervised setting, MR images of the same
anatomy across multiple sites are available; these are known as traveling subjects
or inter -site paired data. These images are used to train intensity transformations
between sites. However, traveling subjects are impractical in large-scale multi-site
harmonization tasks. Unsupervised harmonization methods do not require inter-
site paired data. Instead, these methods often rely on domain-specific models (e.g.,
intensity transformations and discriminators). We outline recent related work in
IIT and unsupervised domain adaptation (UDA), below.

IIT learns a transformation of images between different domains, e.g., MR
to CT [24, 26] or T1-w to T2-w [28]. In both supervised and unsupervised
IIT, the goal is to approximate the joint distribution drawn from the (two)
domains. Supervised IIT methods use pixel-to-pixel reconstruction error during
model training. Recent unsupervised IIT work has explored learning disentangled
representations [10, 14, 25], the idea being to tease apart the domain-invariant
and domain-specific information in the representation. As an unsupervised IIT
method, unsupervised harmonization faces four challenges. First, the lack of
inter-site paired data along with the coupling theory [15] tells us there are
infinitely many possible joint distributions given the two marginal distributions.
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(a) (b)

Fig. 1. (a) Given T1-w and T2-w images from Sites A and B, our method solves intra-
site supervised IIT (T1–T2 synthesis) and inter-site unsupervised IIT (harmonization),
where an alphabetical index indicates site and a numerical index indicate MR contrast.
(b) The proposed method consists of a single θ-encoder, a β-encoder, a decoder, and a
β-discriminator that work on all domains. x and x′ share the same contrast but have
different anatomy. The same networks work on all sites.

Therefore, to learn a meaningful harmonization model (joint distribution), further
constraints are required. Cycle-consistency is commonly assumed in unsupervised
IIT [10, 16, 27]. However, there is no theory that supports the validity of this
assumption. Second, the lack of inter-site paired data means that pixel-to-pixel
regularization cannot be easily achieved. Domain-specific discriminators are
commonly used in many unsupervised IIT methods [10,16,27]. For harmonization,
performance will heavily rely on the discriminators’ “judgement” during training,
and geometry shift is a common drawback in unsupervised harmonization. Third,
the use of site specific-models means that the size of the harmonization model
grows with the number of sites. Lastly, most existing harmonization approaches
are not able to work on domains not seen in the training data. When testing and
training domains differ, most methods require retraining with images from all
domains, which is not practical.

In general, the goal of UDA is to learn a model from a source domain
with labeled data and apply it to a target domain with unlabeled data during
testing [9, 12, 20, 23]. Without special design, domain shifts between training and
testing can cause a performance drop. Different from IIT, which aims at mapping
image data across domains, a UDA tries to adjust the model during testing. A
UDA allows the model to detect a domain and then provide self-supervision for
model adjustment during testing. UDAs are especially helpful in medical imaging,
where training and testing data are likely to come from different sources.

We propose an unsupervised harmonization approach, CALAMITI (contrast
anatomy learning and analysis for MR intensity translation and integration),
which integrates the merits of both IIT and UDA. Building upon the recent
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work in [7], we use the routinely acquired multi-contrast MR images within each
site (called intra-site paired data) during the same imaging session. However,
as we discuss in Section 2.2, this technique alone does not provide a globally
disentangled latent space and cannot be easily generalized to data from a new site.
CALAMITI is an improved, theoretically grounded, unsupervised harmonization
approach based on an information bottleneck (IB) [22] that learns a global,
disentangled latent space of anatomical and contrast information and can be
easily adapted to a new testing site using only the new data. To our knowledge, this
is the first work that overcomes the four challenges in unsupervised harmonization.
First, by taking advantage of the intra-site paired data, the proposed method
solves an unsupervised IIT problem in a supervised way, avoiding introducing
any extra constraint (e.g., cycle-consistency) on the model and achieving better
pixel-to-pixel regularization. Second, it has a unified structure for multi-site
harmonization, which means that model size does not grow with the number of
sites. Third, it provides a global latent space for all training data by encouraging
a consistent description of the anatomy. Finally, it is able to adapt to a new site
without any retraining on the original data. For all of this work, we also provide
a theoretical explanation of the disentangled latent space using IB theory.

2 Method

2.1 The disentangling framework

Our method uses multi-contrast MR images of the same subject within each
site (intra-site paired data) to train a cross-site harmonization model. Here, we
emphasize the relationship between “site”, “domain”, and “MR contrast”. As
shown in Fig. 1(a), given T1-w and T2-w images from Sites A and B, there are
four domains XA1

, XA2
, XB1

, and XB2
, where an alphabetical index indicates site

and a numerical index represents contrast. Our goal is to learn a disentangled
representation that captures anatomical and contrast information from the
input images. Following the notation in [7], the anatomical representation (β) is
domain-invariant and the contrast representation (θ) has some domain-specific
information. Thus, combining the β from one site with the θ from another allows
harmonization across sites. To learn the disentangled representation, we solve the
inter-site unsupervised IIT problem based on training from intra-site supervised
data.

Figure 1(b) outlines our framework, which consists of a θ-encoder, a β-encoder,
a decoder, and a β-discriminator that work on all domains. Here, we outline
the high-level training strategy using the proposed framework, and we highlight
the role of our β-discriminator in Section 2.2. Each site has paired T1-w and
T2-w images—with different imaging parameters at each site—which train a
disentangled network in a supervised IIT way. For example, intra-site paired
images xA1 and xA2 of the same subject imaged at Site A (in our case T1-w
and T2-w images from Site A) are sent to a β-encoder to extract anatomical
information. These images have the same anatomy, so the extracted anatomical
representations βA1

and βA2
should be the same. To encourage similarity of β,



Disentangled Representation Learning for Unsupervised MR Harmonization 5

we randomly shuffle between βA1
and βA2

before decoding as well as introduce
a small l1 loss between the two β’s. To prevent contrast representation θ from
capturing anatomical information, we provide the θ-encoder with an image of
different anatomy (but the same contrast), x′A1

. This is achieved by selecting a
different slice from the same volume as xA1

. The decoder takes the randomly
selected anatomical representation (β̃A), concatenated with a θ to generate a
synthetic image. The contrast of the synthetic image depends on which θ has
been chosen. The same β-encoder, θ-encoder, decoder, and β-discriminator are
used for all training sites to achieve a unified structure.

Our β-encoder and decoder both have a U-Net like architecture with four
downsampling layers, while the θ-encoder is four convolutional layers followed by
three fully connected layers. β is one-hot encoded with multiple channels and the
same spatial extents as the input image. For gradients to backpropagate through
the one-hot encoded β, we adopt and implement the trick introduced in [7,18],
wherein β’s are calculated using a Gumbel-softmax layer. One-hot encoding β
restricts its capacity, encouraging β to capture only anatomical information.

2.2 Creating a consistent anatomical space

To learn a consistent anatomical space for all sites, we introduce a β-discriminator
to our framework. Because our training strategy only uses supervised IIT within
each site—with no supervision between sites—the β-encoder could possibly learn
a distinct β space for each site. In this case, the β’s and θ’s are disentangled
within each site, and we refer to it as a locally disentangled latent space. This is
not desirable in harmonization, as combining these β’s and θ’s across sites would
not be ideal. To avoid this, we must encourage the learned β’s of all sites to
be from the same distribution (i.e., β’s and θ’s are globally disentangled). This
leads us to use a one-class discriminator on β space to encourage distribution
similarity. No matter which site an input β comes from, the β-discriminator
learns to distinguish whether the β is from Site A or not, further pushing θ to
describe the difference between sites as well as different MR contrasts.

The proposed framework solves a number of outstanding problems. First, it
performs unsupervised IIT by using supervised IIT during training. This avoids
geometry issues inherent in unsupervised IIT by penalizing pixel-to-pixel error
during training our framework. This is more effective than introducing a cycle
consistency constraint, as cycle consistency still allows a model to learn “circle–
square–circle”. Second, our unified harmonization structure means we have one
β-encoder, one θ-encoder, one decoder, and one β-discriminator that work on
all domains; Section 3 includes an 8-site experiment using this structure. This
saves a significant number of parameters when there are many sites—e.g., the
CycleGAN [27] requires O(N2) image translation models and N discriminators,
for N sites. Third, our discriminator functions on the latent variables β instead
of the harmonized images. This encourages our decoder to act like a universal
imaging equation, generating synthetic MR images based on any β and θ within
the distribution of the training data. This strategy combined with the unified
structure, makes our model more robust when there are more sites involved
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Table 1. Features of recent unsupervised IIT and UDA approaches.

BidirectionMultiple
domains

Unified
structure

Disentangle Global
latent
space

Domain
adap-
tation

CycleGAN [27] 3 – – – – –
UNIT [17] 3 – – – – –
MUNIT [10] 3 3 – 3 – –
DCMIT [25] 3 3 – 3 3 –
SDAnet [9] – – 3 – – 3

Dewey et al. [7] 3 3 3 3 – –
CALAMITI 3 3 3 3 3 3

during training. Lastly, our discriminator makes a one-class decision: whether an
input β is from Site A or not. We show in Section 2.4, that this allows our model
to adapt to a new testing site after fine tuning. Table 1 provides a summary
comparison of the proposed method with other unsupervised IIT approaches.

2.3 Learning from an information bottleneck

By providing the θ-encoder with an image of a different anatomy (but the
same contrast) as provided to the β-encoder, we create a conditional variational
autoencoder (CVAE) [21] even though the condition variable β is not connected
to the θ-encoder. All of these strategies help us to limit the information that can
be passed through each of the β and θ channels, which we now show theoretically
forms an IB given the model design.

IB theory [22] describes a constrained optimization problem with the goal
of learning a compressed latent representation Z such that the mutual informa-
tion (MI) between Z and the task variable Y is maximized while Z captures
minimum information about the input variable X. Mathematically, this can be
formulated as Z∗ = arg minZ I(Z;X) − λI(Z;Y ), where I(·; ·) is the MI and
λ is a hyper-parameter. IB theory is closely related to the variational autoen-
coders (VAEs) and disentangled representation learning (cf. [4, 5]). [2] showed
that IB is a more general case of the VAE objective.

Our network structure forms a CVAE. To better illustrate the IB in a general
setting, we slightly modify the notation (i.e., remove site index), and highlight
the CVAE structure.

Theorem 1. It can be shown that optimizing our network structure is equivalent
to solving a conditional IB problem, i.e.,

θ∗ = arg min
θ

I(X ′; θ)− λI(X; θ|β̃). (1)

The proof of Theorem 1 is similar to that in [2], despite the fact that we are
solving a CVAE problem with condition β̃. The reason why the first term of
Equation 1 is free from condition β̃ is because β̃ is disentangled from θ and will
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be ignored in calculating θ. An intuitive understanding of Equation 1 is that
the proposed method learns a contrast representation θ that captures minimum
information about the input variable X ′, while the (conditional) MI between θ
and the target variable X is maximized. Since the shared information between
variables X and X ′ is the contrast, we would expect θ to capture only contrast
information about X ′ after training. Equation 1 can be re-organized as a KL
divergence term and a reconstruction term (similar to the CVAE loss [21]), and
directly optimized as network loss functions, i.e.,

θ∗ = arg min
θ
DKL [p(θ|x′)||p(θ)]− λEp(θ|x′)

[
log p(x|θ, β̃)

]
, (2)

where p(θ) is a zero mean unit variance Gaussian distribution. p(θ|x′) and
p(x|θ, β̃) can be modeled by a probabilistic θ-encoder and decoder, respectively.
This KL divergence term encourages a bounded value for θ, which even if lightly
weighted restricts its possible expression. Accordingly, our network loss functions
include a reconstruction loss for supervised IIT (l1 and perceptual loss [11]), a KL
divergence term on θ, an adversarial loss between β-discriminator and β-encoder,
and a similarity loss on β between contrasts4.

2.4 Domain adaptation

Suppose the proposed model was pretrained on Sites A and B, and the goal is to
harmonize a new site, Site C, to SiteA orB without a retraining that includes data
from all sites. As in regular CALAMITI training, the supervised IIT is conducted
on images from Site C. However, the decoder and β-discriminator weights are
frozen, and only the last few layers of the β- and θ-encoders are updated. We rely
on the assumption that our decoder is well-generalized in previous training to
produce a variety of contrast images. Our β-discriminator guides the β-encoder
to generate β’s that follow the previously learned distribution of β; avoiding a
Site C specific β space. Thus our β-discriminator acts as a domain shift detector
on β space like other UDA methods [9, 23]. Until the β-encoder generates β for
Site C that is less distinguishable from previously learned β, the β-discriminator
will produce a loss for mismatching β’s. As the decoder weights are frozen in fine
tuning, once β’s from Site C match previously learned β distribution, we are able
to harmonize images between new and previous sites. Thus by combining βC1

with θA1 , we can harmonize anatomy imaged at Site C with the corresponding
contrast from Site A. Thus Site C can be harmonized to any site included in the
original training.

3 Experiments and Results

3.1 Datasets and preprocessing

MR images, both T1-w and T2-w, acquired from eight different sites (scanners)
were used to evaluate the proposed method. Data source, scanner details, and

4 Code is available at https://iacl.ece.jhu.edu/index.php?title=CALAMITI

https://iacl.ece.jhu.edu/index.php?title=CALAMITI
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Table 2. Scanner make, image sequence and parameters (TE, TR, TI if necessary),
and acquisition extent. T1-w sequence key: M - MPRAGE; ME - MEMPRAGE.

Site A (IXI [1]) Site B (IXI) Site C (OASIS3 [13]) Site D (OASIS3)
Philips Intera 1.5T Philips Gyroscan 3.0T Siemens Sonata 1.5T Siemens TimTrio 3.0T

T1-w
M: 4.6ms, unknown, unknown M: 4.6ms, unknown, unknown M: 3.93ms, 1.9s, 1.1s M: 3.16ms, 2.4s, 1s

1.2× 0.94× 0.94mm 1.2× 0.94× 0.94mm 1× 1× 1mm 1× 1× 1mm

T2-w
TSE: 100ms, 8.2s TSE: 100ms, 8.2s TSE: 116ms, 6s TSE: 455ms, 3.2s

0.94× 0.94× 1.25mm 0.94× 0.94× 1.25mm 0.9× 0.9× 5mm 1× 1× 1mm

Site E (OASIS3) Site F (OASIS3) Site G (Private) Site H (Private)
Siemens TimTrio 3.0T Siemens BioGraph 3.0T Philips Achieva 3.0T Philips Achieva 3.0T

T1-w
M: 3.16ms, 2.4s, 1s M: 2.95ms, 2.3s, 0.9s ME: 6.2ms, 2.5s, 0.9s M: 6ms, 3s, 0.84s

1× 1× 1mm 1.05× 1.05× 1.2mm 1× 1× 1mm 1.1× 1.1× 1.18mm

T2-w
TSE: 455ms, 3.2s TSE: 454ms, 3.2s TSE: 240ms, 2.5s TSE: 80ms, 4.2s

1× 1× 1mm 1× 1× 1mm 1× 1× 1mm 1.1× 1.1× 2.2mm

Fig. 2. Harmonization results of the proposed method. T1-w MR images from eight sites
with different manufacturer and imaging parameters are harmonized to Site A (middle
row) and Site G (bottom row). The contrast of harmonized images is determined by
the mean θ value over all testing images at a site.

imaging parameters are provided in Table 2. Sites A thru F are healthy controls,
Sites G and H imaged multiple sclerosis (MS) subjects. Sites D and E have
similar scanners and sequences and thus similar contrast. Images underwent
preprocessing including N4 inhomogeneity correction, super-resolution for 2D
acquired scans, registration to 1 mm3 MNI space, and white matter (WM) peak
normalization. The center 60 axial slices with spatial dimension of 224× 192 were
extracted for each subject.

3.2 Qualitative and quantitative evaluation

For Sites C, D, E, and F , there are 10 subjects (600 axial slices) used from each
site for training. For the remaining sites, 20 subjects from each site are used in
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Fig. 3. Visualization of θ space on testing T1-w images. Contours are fitted to the θ
clusters for visualization purpose.

training. There are longitudinal scans in the OASIS3 [13] dataset acquired by
different scanners with a short period between visits. These scans are held-out and
used as traveling subjects for quantitative evaluation in testing. Specifically, there
are seven traveling subjects between Site C and D, and ten traveling subjects
between Site E and Site F . The average days between two visits for Sites C/D
and Sites E/F are 162 days and 13 days, respectively. In our experiments, β is a
four-channel one-hot encoded map, with spatial dimension the same as the image,
while θ is a two-dimensional vector. Figure 2 shows harmonized MR images from
the eight sites. The mean θ value of all testing images at each site was used to
harmonize images between sites. Our analysis has focused on the T1-w images,
as these represent the images with the greatest disparity across the imaging
sites and the primary contrast for neuroimaging analysis. With regard to the
T2-w images, we achieve similar image quality as the T1-w images. Figure 3
shows θ values of the held-out T1-w testing images. We observe that Sites D
and E overlap, which is good as the sites have identical scanner configurations.
Second, images acquired using different methods (MPRAGE, and MEMPRAGE)
are separated. Third, the distance in θ space corresponds to human perception;
sites with visually similar contrast have closer clusters in θ space. For example,
although images in Sites D, E, F , and H are all MPRAGE images, θ points are
more closely clustered in Sites D, E and F , than Site H.

In Table 3 and Fig. 4, we show qualitative and quantitative comparison
of different unsupervised IIT methods. The traveling subjects are used in the
quantitative comparison. Specifically, our baseline is the MR images without
harmonization (No har), and we compare the structural similarity index measure-
ment (SSIM) and peak signal-to-noise ratio (PSNR) of histogram matching (Hist),
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Fig. 4. Visual comparison of different harmonization approaches. An MR image from
Site G is harmonized to Site A (see Fig. 2 for reference images). Yellow arrows indicate
geometry change.

Table 3. Numerical comparison (Mean±Std. Dev.) of unsupervised IIT approaches.
From left to right: no harmonization (No har), histogram matching (Hist), Cycle-
GAN [27], Dewey et al. [7], and the proposed method (Ours). The proposed method
shows significant improvements over all comparison methods based on paired Wilcoxon
signed rank tests, with an exception of PSNR of Site D → C. Bold numbers indicate
the best mean performance.

No har Hist CycleGAN Dewey et al. Ours (2 sites) Ours (8 sites)

Site C→D
SSIM 0.8034± 0.0184 0.8349± 0.0456 0.8729± 0.0346 0.8637± 0.0345 0.8811± 0.0292 0.8814 ± 0.0254
PSNR 26.81± 1.07 28.03± 1.45 29.60± 1.62 29.35± 1.06 29.80± 0.98 29.82 ± 0.80

Site D→C
SSIM 0.8034± 0.0184 0.7983± 0.0297 0.8583± 0.0264 0.8554± 0.0300 0.8617± 0.0245 0.8663 ± 0.0233
PSNR 26.81± 1.07 27.53± 1.21 28.63± 1.52 28.31± 1.30 28.50± 1.20 28.68 ± 1.28

Site E→F
SSIM 0.8706± 0.0447 0.8255± 0.0375 0.8737± 0.0404 0.8748± 0.0400 0.8815± 0.0366 0.8834 ± 0.0374
PSNR 29.74± 1.72 27.46± 1.04 29.70± 2.16 29.66± 1.82 30.05± 1.72 30.17 ± 1.82

Site F→E
SSIM 0.8706± 0.0447 0.7935± 0.0596 0.8719± 0.0537 0.8719± 0.0482 0.8817± 0.0402 0.8843 ± 0.0464
PSNR 29.74± 1.72 27.75± 1.26 29.79± 1.92 29.54± 1.57 30.28± 1.55 30.36 ± 1.68

CycleGAN [27], Dewey et al. [7], and CALAMITI. Histogram matching is a non-
training method, while the other approaches are ML-based. To select a reference
image for histogram matching, we first randomly chose a volume, then selected
the same slice number as our source image. For a fair comparison, we consider
two training scenarios for CALAMITI: only include two sites (the source and
target site in harmonization) or include all eight sites during training. Paired
Wilcoxon signed rank tests were conducted between CALAMITI (two sites) and
each comparison method under each performance measurement. Results show
that CALAMITI has significantly (p < 0.001, N = 420 for Sites C and D,
N = 600 for Sites E and F ) better performance over all comparison methods,
except for the PSNR of Site D → C. The null hypothesis is that the difference of
SSIM or PSNR between the two sites is from a distribution with zero median.
Interestingly, CALAMITI has slightly better performance when more sites are
used in training. We suggest two possible reasons for this. First, CALAMITI has
a unified structure, which makes the whole model less likely to overfit. Second,
our β-discriminator is a single class discriminator, so more sites should improve
the robustness of the discriminator.
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Fig. 5. Visual comparison of fine tuning. Harmonization model is trained on Sites G
and H, and tested on Site B. The task is to harmonize Site B images to Site G or
Site H. Fine tuning is conducted only on Site B.

Table 4. Demonstration of domain adaptation feature of our method. Paired Wilcoxon
signed rank tests show that the proposed method achieves significant (p < 0.001,
N = 420) improvements after DA.

Site C→D Site D→C
Before DA After DA Before DA After DA

SSIM 0.8729± 0.0301 0.8743± 0.0291 0.8028± 0.0309 0.8486± 0.0253
PSNR 29.01± 1.07 29.41± 0.98 25.37± 1.31 27.82± 0.82

3.3 Domain adaptation

We provide both qualitative and quantitative results to test domain adapta-
tion (DA). For qualitative comparison, we trained our harmonization model using
Sites G and H and applied the trained model on Site B in testing. The task
is to harmonize Site B to Site G or Site H without using data from Sites G
or H. As shown in Fig. 5, after fine tuning only on a subset of Site B images,
the model is able to adjust itself to produce reasonable harmonization results.
Table 4 shows quantitative DA results. In each experiment, the proposed method
was trained on the corresponding target site and Site G, while testing and fine
tuning were conducted solely on the source site. For example, when evaluating
DA in Site C → D, the model was trained on Site D and G, and Site C was
used as a previously unseen site for testing and fine tuning. Results show that
the proposed method achieves significant (p < 0.001, N = 420) improvements
after DA.

4 Discussion and Conclusion

Both qualitative and quantitative results from our eight-site experiment show
the potential of the proposed method in large-scale multi-site studies. There are
some limitations. First, the requirement of intra-site paired images in training
could potentially restrict some applications—pediatric data for example—where
acquiring multi-contrast images is not practical. Second, in our experiments,
we only used paired T1-w and T2-w images. However, the proposed method
can be extended to include more contrast MR images such as fluid-attenuated
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inversion recovery (FLAIR) images to achieve a better disentanglement. Third,
our experiments on MS patients show that the proposed method does not produce
a satisfactory harmonization result on WM lesion areas. We hypothesize that
inclusion of FLAIR images would improve this. Fourth, although satisfactory
results have been observed in Section 3.3, the way we used our β-discriminator to
update the β-encoder during domain adaptation is theoretically flawed. According
to Goodfellow et al. [8], the generator and discriminator must be updated jointly
to achieve optimal performance. We view all these limitations as opportunities
for future improvements.

In conclusion, we propose an unsupervised MR harmonization approach,
CALAMITI, which integrates merits from both unsupervised IIT and UDA, and is
grounded in information bottleneck theory. Our model learns a universal imaging
equation and a disentangled latent space without inter-site paired data. In contrast
to many unsupervised harmonization methods, our model takes advantages of the
intra-site paired data to prevent the geometry shift problem. Experiments show
that the proposed approach achieves state-of-the-art harmonization performance
both visually and in terms of SSIM and PSNR.
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